USING COMMON RANDOM NUMBERS AND CONTROL VARIATES IN
MULTIPLE-COMPARISON PROCEDURES

WEI-NING YANG and BARRY L. NELSON

Ohio State University, Columbus, Ohto
(Received September 1989; revision received September 1990; accepted October 1990)

This paper considers the determination of the relative merits of two or more system designs via stochastic simulation
experiments by constructing simultaneous interval estimates of certain differences in expected performance. Tukey’s
all-pairwise-comparisons procedure, Hsu’s multiple-comparisons-with-the-best procedure, and Dunnett’s multiple-
comparisons-with-a-control procedure are standard methods for making such comparisons. We propose refinements for
all three procedures through the use of two variance reduction techniques: common random numbers and control
variates. We show that the proposed procedures are better than the standard multiple-comparison procedures in the
sense that they have a larger probability of containing the true difference and, at the same time, not containing zero

when a difference exists.

his paper considers the determination of the rel-

ative merits of two or more system designs via
stochastic simulation experiments; this is undoubtedly
the most frequent use of simulation in practice. Spe-
cifically, we compare the expected values of univariate
performance measures that are common to each sys-
tem design by constructing simultaneous interval esti-
mates of certain differences in expected performance.
This approach is known in statistics as multiple com-
parisons (see, for instance, Miller 1981, or Hochberg
and Tamhane 1987). Applications include, but are
not limited to, comparing the expected cost per period
of several inventory policies, determining the alloca-
tion of buffer space that maximizes throughput in an
assembly line, and evaluating the improvement in the
response time of a computer system if new hardware
1s added.

In the simulation literature, ranking and selection
procedures have often been recommended for com-
paring system designs, particularly when the goal is to
select the best design (e.g., Gray and Goldsman 1988).
The difference between ranking and selection and
multiple comparisons is analogous to the difference
between hypothesis testing and interval estimation.
The former results in a decision, rather than an esti-
mate, so it is less informative. In typical ranking and
selection procedures the resulting inference pertains
only to the design selected as the best. Also, since
ranking and selection procedures always result in a
decision, two-stage sampling is needed to obtain a
prespecified probability of selecting the best system

design. In contrast, multiple-comparison procedures
provide inference about relationships among all sys-
tem designs and can be implemented in a single stage
of sampling, but they do not guarantee a decision.

Standard methods for making simuitaneous com-
parisons are Tukey’s (1953) all-pairwise-multiple-
comparisons procedure, Hsus (1984) multiple-
comparisons-with-the-best procedure, and Dunnett’s
(1955) multiple-comparisons-with-a-control proce-
dure. In this paper, we propose refinements for all
three procedures that are applicable in stochastic sim-
ulation experiments, where refinement means greater
sensitivity to differences in system performance. The
refinement is achieved through the use of two variance
reduction techniques: common random numbers and
control variates. Common random numbers is a well
known variance reduction technique that is used to
sharpen estimators of differences. Unfortunately, sta-
tistical analysis under common random numbers for
more than a single difference has been difficult to
derive (an exception is Clark and Yang (1986) who
developed a conservative ranking and selection pro-
cedure based on the Bonferroni inequality). The pri-
mary contribution of this paper is extending the use
of common random numbers to simultaneous esti-
mation of several differences.

After reviewing some background, three new
multiple-comparison procedures are presented and
shown to be superior to existing procedures under
certain conditions. An example and some discussion
end the paper.

Subject classifications. Stmulation, stauistical analysis: vartance reduction. Statistics' muluple comparisons.

Operations Research
Vol. 39, No. 4, July-August 1991

0030-364X/91/3904-0583 $01.25
© 1991 Operations Research Society of America

Copyright © 2001 All Rights Reserved



584 / YANG AND NELSON

1. BACKGROUND

Assume that 7 = 2 system designs are to be compared
in terms of their mean performance, and denote the
mean performance of the ith system by 6, i = 1, 2,

., r. If the difference between the performance of
each system design and every other system design is
of interest, then Tukey’s method of all pairwise mul-
tiple comparisons (MCA) provides simultaneous con-
fidence intervals for 4, — 6, for all i # j. However, if
identification of the system with the largest mean
performance is of interest, then 6, — max,.6, for

=1, 2, ..., r, are the appropriate parameters to
estimate, because if §, — max .8, > 0, then system i
has the largest mean; otherwise, §, — max,..0, = — A
indicates that the mean performance of system i is
within A of the largest. Hsu’s method of multiple
comparisons with the best (MCB) provides simulta-
neous confidence intervals for §, — max,.6, for all ;
(see Hsu and Nelson 1988 and Yang and Nelson 1989
for examples of using MCB for optimization via sim-
ulation). Finally, if the difference between the mean
performance of a designated system design (say, design
r) and every other alternative system design is of
interest, then Dunnett’s method of multiple compar-
isons with a control (MCC) provides simultaneous
confidence intervals for 8, — 6, for all i # r.

Let Y, be the jth simulation output from the ith
system design and suppose that 4, = E[Y,,] for all j.
The multiple-comparison procedures just cited are all
applicable if the balanced one-way model (1) pertains:

)/1/=61+ €y (1)

fori=1,2,...,randj=1,2,..., n, where ¢, €,

., € are independent N(0, ¢?) random variables
with ¢® unknown. Let 8,, 6,, . .., 6, be estimated by
the sample means

for i = 1, 2, ..., r, and let 6% be estimated by the
pooled sample variance

62 = ZZ(Y,, Y)

r(n_l)lljl

:I'—‘

The constants # and 7, and the random variables Y,,

, Y, and 62, are the inputs to all three of the
multiple-comparison procedures described in the sec-
tions that follow.

In stochastic simulation experiments the response
variable, Y,,, often has a strong linear relationship
with certain input random variables that drive the
simulation experiment. Suppose that the response

variable can be described by the following more
detailed model:

)/lj=el+ﬂ:(xj_“)+nlj (2)

fori=1,2,...,randj=1,2,..., n where ny, n2,

.., nm are independent N(0, %) random variables
with 72 unknown; X,, X,, ..., X, are iid. g X 1
vectors of input random variables that are indepen-
dent of 5, and have known mean vector g; and 8, is a
g X 1 unknown constant vector. In contrast to model
(1), where Var[Y,)] = ¢? for all i and j, in model (2)
Var[Y,] = 7° + 8/ 2xB., where Zx = Var[X,], which
is not necessarily the same for all .

Let 8y, 8., ..., 8 be estimated by the control-variate
estimators
fori=1,2,...,r and let 7? be estimated by
1
2
T T rn—q- 1)

2 [Yu - é: - ﬁAI/(X} - “)]2

1 =1

™M~

¢

where

:I»—

and

31 = SxxSxr,

1 n _ _,—l
=[n_lj§l<x,—X>(x,—X>]

1 - < -
X - 7 )/1 .
l:n - l = J J )]

Notice that we have assumed that the X, called the
control vectors, are identical across system designs.
This means that the same control vectors must be
available in each system design, and that they can be
forced to take identical values, typically by generating
them using common, random numbers. For example,
in an inventory system different inventory policies
result in different system designs, but the demand on
each system is independent of the inventory policy
simulated. Thus, if the total demand during the plan-
ning horizon is the control variate, then common
random numbers results in an identical total demand
for each inventory policy.

The approach that we have taken, which is central
to the analysis that follows, is to account for the
dependence resulting from common random numbers
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through a linear model (2) with unknown parameters.
We discuss the consequences of this assumption fur-
ther in the final section. The other key assumption—
that the control variates are identical across systems—
restricts the simulation input processes that can be
used as control variates. Inputs not used as control
variates should be independent across systems to sat-
isfy model (2); in practice, this means that different
random number streams must be assigned to each
system design for those input processes.

Let §2=n""+ (n — )X = u)’Sxk(X — n). The
constants 7, g and r, and the random variables b,...,
6,, 7 and $2, are the inputs to all three new multiple-
comparison procedures derived below.

In the next three sections, we construct confidence
intervals for multiple comparisons based on control-
variate estimators. The following two lemmas are
critical in those derivations.

Lemmal. Let X ={X,,j=1,2,...,n}. Assume that
model (2) holds. Then conditional on X, the random
variables 6, are independent N(8,, $r>) random vari-
ablesfori=12...,r.

Proof. Notice that

0A/= YI—BI(X—”’)
=Y - [SxSxr )X — w)
=Y - [(L'L)'LY])X -

n 1Y, — [Y/LILL) WX - )

n M — (X = ) (L)LY, 3)

where L’ = [(X; — X), X. = X), ..., X, = X)]; Lixx
is a 1 X n matrix with each component 1, and Y, =
[Y., Ya, ..., Y.,). Thus, conditional on X, 4, is
normally distributed because it is a linear combination
of independent normally distributed random vari-
ables. Also, §, is independent of 9, for all i # j since,
conditional on X, Y, is independent of Y.

The conditional mean and variance of 6, can
be derived from (3) by noting that E[Y,|X] = 4, +
8/(X, — p) and Var[Y, X] = 7? under model (2).

Lemma 2. Assume that model (2) holds. Then con-
ditional on X, #? is independent of 6, for all i,
and rin — q — 1)72/7% has a x* distribution with
r(n — g — 1) degrees of freedom.
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Proof. Let
I Xy —w)
1 (X; - w)’
A= |- .
1 X, —w)
and
0:1 + él’(xl - ”')
01 + ﬁl’(XZ - ”')

Y, = A(A’A)'AY, =

b, + B/ (X, — n)
Then

n

Ql = Z [Yu - éz - B:(Xj - I"')]2

Jer
= (Y, - Y)Y, - Y)

= (Y, - Y)Y,

= [Y, - A(A’A)'A’Y ]'Y,
=Y/[I - A(A’A)'A]Y..

Hence, conditional on X, Q, is independent of Q,
for all i # | because Y, is conditionally independent
of Y, for all i # / and A is fixed by conditioning.
Also, conditional on X, Q,/7 2 has a chi-squared distri-
bution with n — g — 1 degrees of freedom (Rao 1973,
3b.5 1), and is conditionally independent of 6, (Rao,
3b.4 viii). Notice that r(n — g — 1)7> = /=1 Q,,
which is the sum of conditionally independent chi-
squared random variables. Thus, conditional on X,
r(n — g — 1)7%/r* has a chi-squared distribution with
r(n — g — 1) degrees of freedom and is independent
of , for all .

2. ALL PAIRWISE MULTIPLE COMPARISONS
(MCA)

In a discrete-item inventory system, let s represent the
reorder point for an item and S represent the maxi-
mum stock level. Each feasible (s, S) combination is
an inventory policy, and the expected cost per period
of different policies may be of interest. Let ¢, be the
expected cost per period for policy . In this section,
we develop a procedure that could be used to compare
each inventory policy with the others.

For model (1), Tukey gives the following
(1 — «)100% simultaneous confidence intervals:

b.—-0,€Y - Y, + g% - §/n forall i #
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for the r(r — 1)/2 differences in system performance,
where g7,,-1) is the upper « quantile of the Student-
ized range distribution with r systems and r(n — 1)
degrees of freedom; extensive tables of g<,,_) can be
found in Hochberg and Tamhane. Theorem 1 estab-
lishes interval estimators for the same parameters
based on the control-variate estimators.

Theorem 1. Assuming that model (2) holds:

0, - 0, E é, - éj i q(r'.r(n—-q—l) . gTA
Jorall i # jare (1 — a)100% simultaneous confidence
intervals for 8, — 8, for all i # J.

Proof. From Lemmas | and 2, and the definition of
the Studentized range distribution, the fgllowing prob-
ability statement holds conditional on X:

Prig, —6,€6,— 4,
£ G gy - o7 foralli#j|1X} =1 - a.

Since the right-hand side does not depend on X, the
probability is I — « unconditionally as well.

3. MULTIPLE COMPARISONS WITH THE BEST
(MCB)

In a manufacturing system there may be a limited
amount of buffer space available between work-
stations in an assembly line. If buffer space is meas-
ured in terms of the number of discrete items that can
be stored in the space, then different allocations lead
to a finite number of system designs. Let 4, be the
expected throughput of the line under allocation .
The allocation that maximizes throughput for the line
may be of interest. In this section, we develop a
procedure that could be used to select the best
allocation.

For model (1), Hsu gives the following (1 — «)100%
simultaneous confidence intervals:

6, — max 6,
JFE

(S [()_7, — max )7/ - d;y-l.r(n—l) ° 6' 2/”) s

JFEi
+
<)7, —max ¥, + d'_1 1) - 6 2/n> ],
J#

i=1,2,...,r

where x* = max{0, x}, x~ = min{0, x}, and
di-1.ra—1) 18 the upper « quantile of a random variable
that is the maximum of r — 1 equally correlated
multivariate-f random variables with correlation /4

and r(n — 1) degrees of freedom; extensive tables of
di_1 -1 can be found in Hochberg and Tamhane.
Theorem 2 establishes interval estimators for the same
parameters based on the control-variate estimators.

Theorem 2. Assuming that model (2) holds:

6, — max 6,
JEi

e [(é, — max é] - d;'—].y(n_q—]) . \/§(§?> N

J#E

.

(0, —max 6, + dS\ g1 - Jiaf) ]
J#E

Jori= 1,2 ..., rare (Il — a)100% simultaneous
confidence intervals for 8, — max .8, for all i.

The proof, which is analogous to that of
Theorem 1, follows the steps in Hsu and Nelson.

4. MULTIPLE COMPARISONS WITH A
CONTROL (MCC)

In a computer system, new hardware (e.g., disk drive,
additional memory) could be added to improve sys-
tem response. Let 6, be the mean response time for
the existing system, and let 6,, i # r be the mean
response time for hardware upgrade proposal . In this
section, we develop a procedure that could be used to
compare each upgrade proposal to the existing system.

For model (1), Dunnett gives the following
(1 — @)100% simultaneous confidence intervals:

01 - 01 € )—/1 - }_,I x ,dltry—l./(n—l) * & 2/”5

i=1,2,...,r=1

where | d}/_, .-, 1S the upper & quantile of a random
variable that is the maximum of the absolute values
of r — 1 equally correlated multivariate-r random
variables with correlation Y2 and r(n — 1) degrees of
freedom; extensive tables of | d |}~ ,_, can be found
in Hochberg and Tamhane. Theorem 3 establishes
interval estimators for the same parameters based on
the control-variate estimators.

Theorem 3. Assuming that model (2) holds
01 - 0r = él - ér + Id,lry—l./(n—q—l) M \/55;

Jori=1,2,...,r—1are(l — a)100% simultaneous
confidence intervals for 6, — 6, for all i # r.

The proof is analogous to that of Theorem 1.




5. EXPECTED WIDTH OF THE CONFIDENCE
INTERVALS

The goal of multiple-comparison procedures is to
identify the differences between systems’ performance.
The expected width of the confidence interval is an
important criterion, given that the interval achieves
its nominal coverage, because it indicates the size
difference that the procedure can distinguish.
Theorem 4 shows that the control-variate interval
estimators have a shorter expected width in the special
case when both models (1) and (2) hold simultane-
ously. This assumption is necessary to make a fair
comparison because neither model (1) or model (2)
implies the other.

For notation, let / and Hcv denote the width
of the standard and the control-variate, multiple-
comparison intervals, respectively. Define ¢, to be
the generic upper « quantile for MCA, or V2 times
the upper « quantile for MCB and MCC, with r
systems and df degrees of freedom. Then He, =
2C —g=1) * 67 and H = 2¢¢ 01y - 6/vn are the
generic widths of the control-variate and the standard
intervals, respectively, with the exception of MCB,
where Hcv and H are the fundamental quantities that
determine the width of these constrained intervals.

Let R? be the squared multiple correlation coeffi-
cient between the response variable, Y,,, and the con-
trol vector, X,, in model (2), and let — . denote
convergence in probability. If both models (1) and (2)
hold simultaneously, then the multiple correlation
coefficient in model (2) is the same across systems and
72 = (1 — R?¢? Under these conditions we have the
following result.

Theorem 4. Assuming that both models (1) and (2)
pertain simultaneously:

E[Hcv| X] _’;

E[H] l-R'=1.

Proof. Conditional on X, the expected width of the
control-variate, multiple-comparison intervals is
E[Hcv| X]

. V2
= 2c».r(n~q»l) T
vr(n —g—1)

DEi=g=D+ 1)
T(r(n—q— 1/2)

Also, the expected width of the standard multiple-
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comparison intervals is

E[H]

o V2 T(rn=D+ 1) o
- ror(n—=1) \/}’(T—-_T)

I(r(n — 1)/2) N

From Theorem 5.2.3 in Anderson (1984), n(X —
1) S3A(X — ) —_ x2, a chi-squared random variable
with ¢ degrees of freedom, where —_. denotes conver-
gence in distribution. Thus, né* —., 1, by Slutsky’s
theorem and the fact that convergence in distribution
to a constant implies convergence in probability as
well. Then, n6%r2—., (1 — R?)¢ 2, which implies vnbr/
c—,v1l — R?

As n increases for fixed 7, ¢/ ig-1) = Crrn—1) —
¢’ because the quantile decreases at a decreasing rate
as the degrees of freedom increase. Also, I'(a + '~)/
I'(a) — Va as a increases. Thus, the ratio

B X _ oy Y007 2 =g
E[H] Critn=1) a

If both models (1) and (2) hold simultaneously and
the response variable and the control vector are jointly
normal, then we obtain the following stronger result.

Theorem 3. Assuming that both models (1) and (2)
hold and (Y,,, X)), j=1,2,...,nare(q+ l)-variate
normally distributed for all i

E[Hcv] — 57
—E[H] — Vvl —-R < 1.

Proof. Let W, = (n/(n — D)X — u)’Sxk(X — p), so
that 62 = (1 + W,)/n. Under the normality assump-
tion, (n — 1)W, has a Hotelling-7 distribution with
n — 1 degrees of freedom and parameter g, which
implies that (n — q)W,/q follows an F distribution
with degrees of freedom ¢ and #n — ¢. By the relation-
ship between the F distribution and the Beta distri-
bution, we have

1 n—q q
T+ W, Beta< 3 ,2>

where Beta((n — q)/2, q/2) is the Beta distribution
with parameters (n — ¢)/2 and ¢g/2. Then

E[§] = —= - El(1 + W,)']

1
N
_ 1 T@/2T((n - g — 1)/2)

Vn T((n — @)/2)T((n — 1)/2)

Copyright © 2001 All Rights Reserved



588 / YANG AND NELSON

yielding
E[Hcv]
= E[E[Hcv | X]]
2 o Jj
= LCrpnmg—1)
=g - 1)

T((r=g=1+1)/2)
L(r(n — g = 1)/2)
. V2
T(r(n—g -1+ 1)/2)
I'(r(n —q = 1)/2)
L T/ ((n = g — 1)/2)

- T.

Vn T((n — q)/2T((n — 1)/2)

- E[é] - 7

Thus
E[Hv]
E[H]
=czr(n—q—l) Vr(n_ 1)
Crrn-1) Nr(n—g-— 1)

T(r(n—g—-1)+1)/2)
I(r(n—gq—-1)/2)

I'(n/2)T((n—qg—1)/2) S —
I1((”‘f1)/2)1“((n—1)/2)‘/l R*—V1-R2

L(r(n—1)/2)
I((r(n— 1)+ 1)/2)

Even though the confidence interval width is an
important criterion when the interval estimator
achieves its nominal coverage, it only reflects the
performance of the variance estimator. Point esti-
mator performance also affects the interval estimator.
When model (2) holds and # is not too small, 4, is a
better point estimator of 8, than Y, in terms of smaller
variance (Lavenberg and Welch 1981).

A more comprehensive criterion for multiple-
comparison procedures is the probability of identi-
fying differences and the direction of differences, when
differences exist, since it considers both point esti-
mator and variance estimator performance simulta-
neously. We empirically compare the control-variate
procedures and the standard procedures in terms of
this probability in the next section.

6. EMPIRICAL EVALUATION

Multiple-comparison procedures construct simulta-
neous confidence intervals for selected differences in

expected system performance. If # is the event that
the intervals simultaneously contain all of the selected
differences, either §, — §,, 6, — max .0, or §, — 4,, then
Pr{#} = 1 — a when the assumptions underlying the
procedure are satisfied. The event # could be called
correct inference because the procedure correctly iden-
tifies a region that contains all of the parameters. Let
# be the event that the intervals exclude zero when
the true difference is not zero. The event % could be
called useful inference because the procedure distin-
guishes differences in expected performance. Given
two multiple-comparison procedures for the same esti-
mation problem when both have Pr[#} = 1 — q, the
superior procedure is the one for which Pr{# N %} is
larger; that is, the one that has a larger probability of
correct and useful inference. Notice that the event
% N % implies that differences, and the direction of
the differences, are correctly identified.

We estimated Pr{# N #} for an (s, S) inventory
system similar to the one mentioned earlier. In an
(s, §) inventory system some discrete item is periodi-
cally reviewed. If the inventory level is found to be
below s units, then an order is issued to bring the
inventory level up to S units; otherwise, no additional
items are ordered. Different (s, S) inventory policies
result in different inventory systems. Koenig and Law
(1985) used this example to illustrate a two-stage
subset selection procedure for determining a subset
that contains the inventory policy with the minimum
expected cost; Hsu and Nelson (1988) and Yang and
Nelson (1989) used this example to illustrate MCB.
See any of these papers for a detailed description of
the model.

The performance measure of the (s, .S) inventory
system is the expected average cost per period of the
inventory system for 30 periods. The only stochastic
element in the model is the demand for inventory in
each period, which is assumed to a sequence of i.i.d.
Poisson random variables with a common mean of
25. The five policies considered, and their correspond-
ing expected average cost per period (which can be
calculated analytically for this example), are given in
Table I.

The probability of correct inference and the proba-
bility of correct and useful inference were estimated
for the standard and control-variate procedures for
n = 10, 20, 30, ..., 100 by repeating the entire
experiment 700 times, implying a maximum standard
error of (0.25/700)'* ~ 0.02 for the probability esti-
mates. The nominal confidence level was set at
a = 0.05, so that the estimated Pr{#} should be
approximately 0.95 if correct coverage is being
achieved.
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Table 1
Inventory Policies and Expected Average
Cost per Period

Policy ! K} S 0,
1 60 100 147.38
2 40 100 130.70
3 40 60 130.55
4 20 40 114.18
5 20 80 112.74

For the standard procedures each inventory policy
was simulated independently, i.e., a different random
number stream was used to generate demands under
each (s, S) policy. For the control-variate procedures
a single random number stream was used to make
demands identical for each policy, and the control
variate was the sum of the demands for all 30 periods.
IMSL subroutine drgivn was used to compute the
control-variate estimators via least-squares regression,
Simulations included all five policies (r = 5) or policies
3,4 and 5 only (r = 3).

For MCA, we are interested in simultaneous confi-
dence intervals for 8§, — 8, for all i # j. For MCB, we
construct simultaneous confidence intervals for 8, —
min,. 0, i=1,2,...,r by constructing simultaneous
confidence intervals for (—6,) — max ., (—0,), i =1, 2,
..., r, since we are interested in the system with the
minimum expected cost. For MCC, we use inventory
policy (20, 80) as the control system and construct
simultaneous confidence intervals for 8, — 85 for all
i#5.

Tables II and III give the results for r = 3 and 3,
respectively. They show that both procedures appear
to have Pr{# } = 0.95, but the control-variate proce-
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dures dominate the standard procedures in terms of
the Pr{#& N # . Notice that in both cases the proba-
bility of correct and useful inference is significantly
lower than the coverage probability unless # is large,
but the control-variate procedures can more than
double Pr{# N %} for small values of n. The nearly
zero probability of correct and useful inference for
MCA when r = 5 emphasizes the value of using MCB
when only comparisons with the best system design
are of interest, which is typically the case in optimi-
zation problems.

Yang (1989) performed an extensive empirical com-
parison of the standard and control-variate, multiple-
comparison procedures using linear models so that
factors such as the number of control variates, ¢,
dependence between the controls and response,
R?, and the difference between the mean responses,
g, — 8,, could be controlled. The results from those
experiments support the conclusions drawn from the
inventory system example.

7. DISCUSSION

We expect multiple-comparison procedures based on
control-variate estimators to be better simply because
the control-variate estimators are more precise. How-
ever, because of the loss in degrees of freedom, they
may not be better when the sample size is too small.
This paper establishes that simultaneous confidence
intervals based on common random numbers and
control-variate estimators can be constructed, and
proves that they are better when the sample size is not
too small and the assumptions of both models (1) and
(2) apply (Theorem 4). However, both (1) and (2) will
not hold in general.

Table 11
Estimated Pr{ ¢} and Pr{ & N %} for MCA, MCB, MCC, Respectively, for r = 3, « = 0.05 and
Inventory Policies i = 3, 4, 5. (The standard error of the estimates is < 0.02.)

Pri{ &} PriZ€ N %}
Standard Control Variate Standard Control Variate
n MCA MCB MCC MCA MCB MCC MCA MCB MCC MCA MCB MCC
10 0.94 0.97 0.95 0.93 0.96 0.91 0.03 0.13 0.05 0.12 0.27 0.14
20 0.96 0.97 0.95 0.95 0.95 0.92 0.09 0.20 0.11 0.24 0.42 0.27
30 0.94 0.96 0.95 0.94 0.96 0.92 0.12 0.30 0.15 0.37 0.59 0.41
40 0.95 0.97 0.95 0.93 0.96 091 0.17 0.35 0.20 0.48 0.69 0.51
50 0.96 0.97 0.95 0.93 0.96 0.91 0.25 0.43 0.29 0.58 0.79 0.63
60 0.95 0.95 0.94 0.94 0.95 0.93 0.31 0.51 0.35 0.69 0.86 0.72
70 0.95 0.96 0.95 0.93 0.95 0.92 0.37 0.56 0.43 0.77 0.89 0.78
80 0.94 0.97 0.94 0.95 0.96 0.93 0.41 0.62 0.46 0.80 0.92 0.83
90 0.94 0.96 0.94 0.94 0.96 0.92 0.47 0.65 0.50 0.86 0.96 0.87
100 0.95 0.97 0.95 0.93 0.96 0.91 0.54 0.73 0.59 0.88 0.96 0.88
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Table III
Estimated Pr{ ¢’} and Pr{ #N %} for MCA, MCB, MCC, Respectively, for r = 5 and o = 0.05.
(The standard error of the estimates is < 0.02.)

Pr{ %} Prien %}
Standard Control Variate Standard Control Variate
n MCA MCB MCC MCA MCB MCC MCA MCB MCC MCA MCB MCC
10 0.94 0.97 0.93 0.96 0.97 0.95 0.00 0.09 0.03 0.00 0.19 0.11
20 0.95 0.96 0.93 0.96 0.97 0.95 0.00 0.17 0.10 0.00 0.31 0.19
30 0.95 0.95 0.93 0.95 0.96 0.95 0.00 0.26 0.14 0.00 0.46 0.33
40 0.94 0.96 0.93 0.97 0.98 0.95 0.00 0.31 0.18 0.00 0.58 043
50 0.95 0.96 0.94 0.95 0.96 0.94 0.00 0.39 0.27 0.00 0.68 0.54
60 0.93 0.93 0.93 0.96 0.97 0.95 0.00 0.47 0.33 0.00 0.77 0.65
70 0.93 0.94 0.93 0.95 0.96 0.93 0.00 0.52 0.40 0.00 0.84 0.73
80 0.93 0.94 0.92 0.96 0.98 0.95 0.00 0.57 0.44 0.00 0.88 0.77
90 0.94 0.94 0.92 0.96 0.98 0.95 0.00 0.60 0.47 0.00 0.92 0.83
100 0.94 0.94 0.93 0.95 0.98 0.93 0.00 0.68 0.56 0.00 0.95 0.87

When the linear relationship (2) holds, we suspect
that the equal residual variance assumption of model
(2) is often less severely violated than the correspond-
ing equal variance assumption of model (1), because
model (1) is a special case of model (2) with 8, = 8,
for all / and /. Thus, if the linear relationship holds,
the assumption of model (1) is stronger than that of
model (2) in the sense that it implies that the depend-
ence between the response variable and the control
variates is the same for all systems.

On the other hand, if the linear relationship does
not hold, then the control-variate point estimators are
biased (Nelson 1990). However, if the relationship
between the response and the controls is similar for
each system design, then all of the control-variate
point estimators may be biased in the same direction,
so that taking differences may partially cancel the bias.
For this reason, multiple-comparison procedures
based on control-variate estimators are expected to be
robust to deviation from the linearity assumption.

Of course, the validity of multiple-comparison infer-
ence also depends on distributional assumptions: mar-
ginally normal responses, in the case of model (1), and
conditionally normal responses, in the case of model
(2). Appropriate caution should be exercised when
using procedures based on such strong assumptions.

Assuming that model (2) holds, the control-variate
estimators are statistically independent. Thus, com-
mon random numbers have no direct effect on the
estimators of the differences, 6, — ¢ ; that is, there is
no variance reduction beyond what is achieved by
using control variates alone. However, common ran-
dom numbers make it possible to calculate the appro-
priate quantiles to form confidence intervals. On the
other hand, common random numbers tend to reduce
the variance of ¥, — Y, Unfortunately, under com-
mon random numbers we cannot construct simulta-

neous confidence intervals based on sample means Y,,
i=1,2,..., rbecause the covariance structure of the
estimators is unknown.

A limitation in our formulation is that the control
variates X,, j = 1, 2, ..., n must assume identical
values across systems. This assumption is not neces-
sary. The assumption guarantees equal conditional
variance of the control-variate estimators for different
systems, which makes the appropriate quantiles (e.g.,
di-1 vn-q-1y) €3Sy to calculate. In general, we only need
to know the ratios of the variances of estimators for
different systems; equality is not required. More pre-
cisely, we only need equal residual variances for dif-
ferent systems under model (2), and estimators with a
diagonal covariance matrix, in order to compute
appropriate quantiles (Hayter 1989, Edwards and
Hsu 1983). Extensions in this direction are under
investigation.

The empirical results reported here and in Yang
(1989) suggest that the control-variate, multiple-
comparison procedures are superior, in the sense of
having larger probability of correct and useful infer-
ence, when the sample size is not too small. We
conjecture that, provided R? > 0 and models (1) and
(2) hold, there exists an n* such that the probability
of correct and useful inference for the control-variate
procedures is strictly larger than the corresponding
probability for the standard procedures for all # > n*,
However, it is difficult to prove this conjecture because
the probability of correct and useful inference of both
procedures converges to the nominal coverage.
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