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This article introduces a new method for discrete decision variable optimization via simulation that combines the nested partitions
method and the stochastic branch-and-bound method in the sense that advantage is taken of the partitioning structure of stochastic
branch-and-bound, but the bounds are estimated based on the performance of sampled solutions, similar to the nested partitions
method. The proposed Empirical Stochastic Branch-and-Bound (ESB&B) algorithm also uses improvement bounds to guide solution
sampling for better performance. A convergence proof and empirical evaluation are provided.

[Supplementary materials are available for this article. Go to the publisher’s online edition of //E Transaction for datasets, additional

tables, detailed proofs, etc.]

Keywords: Stochastic branch-and-bound, optimization via simulation

1. Introduction

For large-scale and complicated stochastic optimization
problems, a closed-form objective function may not exist,
and therefore it has to be estimated through simulation.
Optimization via Simulation (OvS) provides solutions to
this type of problem. Andradottir (1998), Fu (2002), and Fu
et al. (2005) give extensive overviews of the OvS literature.

Most algorithms for Discrete decision variable Optimiza-
tion via Simulation (DOVS) are based on adaptive random
search. Hu et al. (2007) classified random search methods
as being either model-based or instance-based approaches.
Model-based methods, such as model-based annealing ran-
dom search by Hu and Hu (2010), generate new solutions
via an intermediate probabilistic model that is updated or
induced from previous solutions. Instance- or sampling-
based methods, on the other hand, search for new solutions
depending directly on previously sampled solutions. Our al-
gorithm is of the latter type. A partitioning approach, like
ours, can assess the promise of a subregion by accounting
for how much of the subregion we have explored and how
homogeneous and noisy the subregion appears to be, with-
out the need to define a distribution over all solutions in the
entire feasible region. A partitioning approach can be used
for general DOVS problems without significant amounts
of customization but can also exploit a good partitioning

*Corresponding author

0740-817X © 2013 “IIE”

scheme if we know it. The two research threads that are the
roots of our work are the Nested Partitions (NP) and the
Stochastic Branch-and-Bound (SB&B) methods.

NP is a globally convergent framework proposed by Shi
and Olafsson (2000). At each iteration the algorithm iden-
tifies a most promising region. When a better solution is
found inside the current most promising region, the region
is partitioned for further exploration. If a better solution
is found outside the current most promising region, NP
backtracks to its super region or to the whole feasible re-
gion. The intention of NP is to concentrate computational
effort where good solutions appear to be, and the search is
guided by the estimated performance of randomly sampled
solutions.

Branch-and-Bound (B&B) algorithms are widely used
to solve deterministic integer optimization problems.
Norkin, Ermoliev, and Ruszczynski (1998) and Norkin,
Pflug, and Ruszczynski (1998) adapted the B&B idea to
the stochastic setting. Their SB&B algorithm iteratively
partitions the feasible region into smaller and smaller
subregions; estimates bounds on the objective function
for these subregions by solving bounding problems; and
selects as the record set the subregion with the maximum
or minimum (depending on the problem) bound. Global
convergence can be proven for problems with a finite
number of feasible solutions. The SB&B algorithm
assumes that it is possible to estimate the bounds more and
more precisely with increasing simulation effort. Papers
applying SB&B include Gutjahr et al. (1999, 2000) and
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Doerner et al. (2006). Unfortunately, for complicated
DOvVS problems there may not be solvable bounding
problems.

Our Empirical Stochastic Branch-and-Bound (ESB&B)
algorithm combines SB&B and NP in the sense that it
takes advantage of the partitioning structure of SB&B but
estimates bounds based on the performance of sampled so-
lutions, as in NP. Using sampling-based bounds allows our
algorithm to apply even when solvable bounding problems
are not available and hence makes SB&B more practical.
Although it incurs some computational overhead, main-
taining a partition structure has advantages for problems
with a very bumpy or noisy response surface. In addition,
ESB&B employs Upper Confidence Bounds (UCBs) on
the potential of subregions created by branching to actu-
ally contain better solutions. To the best of our knowledge,
these UCBs are new, and we use them to guide solution
sampling for better finite-time performance without sacri-
ficing global convergence. This is a central contribution of
the article.

The concept of a UCB is seen in the multi-armed bandit
literature. In a multi-armed bandit problem, play of each
arm yields a reward with an unknown underlying prob-
ability distribution. The goal is to choose which arm to
play sequentially to maximize the long-run expected sum
of rewards. As described in Lai and Robbins (1985) and
Auer et al. (2002), a UCB is calculated to represent the
knowledge of each arm’s expected reward so far, evaluates
each arm’s potential of being the best, and helps decide
which arm to play next or, put in the DOVS context, how
to allocate the simulation budget. Our UCB, applied in
a partitioning-based DOvVS algorithm, is different in the
sense that it estimates the potential of a particular subre-
gion of the feasible region to contain better solutions, rather
than the potential of a particular solution, and is used to
guide solution sampling across subregions.

The article is organized as follows. Section 2 reviews
SB&B and NP, presents ESB&B, and states the main con-
vergence theorem. Section 3 describes how ESB&B uses
statistical bounds to guide solution sampling. Section 4
analyzes a simple problem to illustrate the behavior of
ESB&B, as well as displaying experiment results, and Sec-
tion 5 concludes the article. Details not found in this article
are available in Xu (2009).

2. ESB&B

First, we define the DOVS problem. Our goal is to find x
that solves
1
a0 v

where X is defined as X = X (D, X is the intersection of
the integer lattice with a hypercube in RY, given by

li < x <u, li, X, u; € Z, i=1,2,...,q,

Xu and Nelson

and D is a subregion in RY given by the inequalities
D={xeR’: g;(x)<0, j=1,2,..., p}.

We assume that D is convex and that there are only a finite
number of feasible solutions.

In this article we consider stochastic problems where
w(x) = E[Y(x)], and u(x) can only be estimated by gen-
erating observations of Y(x) via simulation. The observed
performance of X on replication s is represented as Y;(x) =
u(x) + &¢(x). For fixed x, we assume that the stochastic
noise &,4(x) is independent and identically distributed for all
s, which is true when the index s represents replications.
Throughout this article we use the term sample to mean
randomly choosing solutions x and simulate to mean ob-
serving Y(x). Like the NP method, ESB&B can also be
applied to deterministic problems; the corresponding ad-
justments can be found in Xu (2009).

2.1. SB&B and NP

In the classic branch-and-bound algorithm, X is iteratively
divided into disjoint and non-empty subregions X* gener-
ating a partition P. Let u*(X*) denote the optimal objec-
ti\f function value of the subproblem that is restricted to
X

w' (X)) = max u(x), X eP.
xeX?

Then clearly the optimal value of Problem (1)
equals 1*(X) = maxxrep w*(XF). Norkin, Ermoliev, and
Ruszczynski (1998) make the following assumptions.

Assumption 1. For each subregion X? C X, there exist func-
tions L: 2X — R and U: 2X — R such that

LX) < ' (X") < UX"),
L(X?) = u(x') forsomex’ e X7,

and if X* is a singleton then L(X?) = u*(X?) = UXP).

In a stochastic problem these bounds can only be cal-
culated exactly in some special cases. Therefore, SB&B is
based on the availability of statistical estimates, n and &,
of U and L, respectively, that can be generated and refined
through iterations of the algorithm.

Assumption 2. For each subregion X” C X, there exist se-
quences of estimators n* and &K, k=1,2, ..., such that
limy_, o n*(X?) = UXP) a.s. and limy_, o, £4(XP) = L(XP)
a.s.

The SB&B algorithm works as follows: At each iteration
from among all of the subregions of the current partition,
the subregion with the greatest (estimated) upper bound
is selected as the record set. An approximate solution is
chosen as an element of the subregion with the greatest (es-
timated) lower bound. The record set is partitioned into
smaller subregions, and the estimates of the upper and
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lower bounds are refined. A new record set and approx-
imate solution are selected and the algorithm continues.
When the algorithm is terminated (by some stopping crite-
rion), the approximate solution of the current iteration is
selected as the best solution. Below we give a more detailed
description of the SB&B algorithm.

SB&B algorithm

Step 0. Initialization: Set iteration counter k = 0, initial
partition Py = {X}, and record set R® = X and
calculate the bounds 1°(X) and £°(X).

Step 1. Partitioning: Select an approximate solution x* €
XK = argmax{&K(X?) : X € Py}. If the record set
R is a singleton, then set P, = P, and go to Step
2. Otherwise, construct a partition of the record
set, P/'( R¥). Define the new full partition by P} =
(P\MR*}) U P{(RF). Elements of P, will also be
denoted by X*.

Step 2. Bounding: For all subregions X” € P}, calculate es-
timates n*t!(X*) and & *1(X*) for U(X?) and
L(X?), respectively.

Step 3. Updating partition and record set: Update record
set R = argmax{n*+!1(X?) : X* € P}} and par-
tition Py = P;. Set k = k+ 1 and go to Step 1.

There are two potential drawbacks to the direct applica-
tion of SB&B. First, there need to be bounding functions
L and U and convergent estimators of them. Second, there
is overhead needed to retain and refine a larger and larger
partition structure as the algorithm progresses since no
partition is ever eliminated from consideration as in deter-
ministic branch and bound.

The first drawback can be addressed using a sampling-
based upper bound. For instance, we can simply choose
the solution with the greatest accumulated sample average
through the current iteration and use this average as the
estimate of the upper bound. Then to avoid the need to
carry along information on an increasing number of parti-
tions, we could modify the definition of the new partition to
be P = {X\ R*} U P/(R"). In other words, we only main-
tain the most recently refined partition and aggregate all
other solutions into a single “surrounding region.” With
these two refinements we have a version of the NP method
similar to Pichitlamken and Nelson (2003).

We use Fig. 1 to illustrate the difference in partitioning of
SB&B and NP. Starting from a partition P, = {X;, X5, X3},
suppose the record set is R = X3, and the partition of
the record set P}(R*) = {X4, X5, X¢}. In the SB&B algo-
rithm, the new full partition P, = (P:\{ R}) J P/ (R) =
(X1, X3, X4, X5, X¢}, as shown in Fig. 1(a). In NP, X\ R =
Xl UXz, and 'P]/{ = {X1 UXz, X4, X5, X(,}, as shown in
Fig. 1(b). SB&B maintains a partition structure for X; and
X,, subregions that are not within the record set, but NP
combines them.

X, U X, Xs

(b)
Fig. 1. (a) Partitioning of SB&B and (b) partitioning of NP.

While we adopt the concept of sampling-based bounds,
we believe that there is substantial value in retaining the
partitions. The sampling-based bounds make SB&B more
practical. Also, the partition structure is advantageous
especially when the response surface is bumpy or noisy,
because an algorithm tends to make more mistakes when
selecting the record set by sampling from such a surface, and
a partition structure allows the algorithm to quickly recover
from mistakes. In the remainder of this article we describe
and evaluate our ESB&B algorithm, which combines the
partition structure of SB&B with the sample-based bounds
of NP. ESB&B also allocates solution sampling by cal-
culating UCBs for subregions. The UCB is another sort
of statistical bound that estimates the potential of a subre-
gion to yield even better solutions based on samples seen so
far. This guided sampling approach is new for partitioning-
based DOVS algorithms and can improve the algorithm’s
finite-time performance substantially, as shown in our nu-
merical studies.

2.2. ESB&B

ESB&B estimates bounds as does NP using the estimated
objective function values of the solutions that have been
simulated. Specifically, at each iteration k, ESB&B ran-
domly samples a number of feasible solutions; call this set
Sk. It also maintains a set & of all solutions that have
been sampled through iteration k. ESB&B simulates the
solutions in S and computes bounds on subregions using
the estimated performance of solutions within the subre-
gion. In the next iteration, ESB&B allocates the number of
solutions to be sampled from subregions in the current par-
tition P based on each subregion’s estimated potential to
contain better solutions. This expands Step 2 of SB&B into
three sub-steps. And at each iteration, ESB&B chooses the
solution with the best estimated performance as the current
best solution.

ESB&B algorithm

Step 0. Initialization: Set iteration counter k = 0, 5 % = @,
initial partition Py = {X}, record set R* = X.
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Step 1. Partitioning: If the record set R¥ is a singleton, then
set P, = Py and go to Step 2. Otherwise, construct
a partition of the record set, P;(R*). Define the
new full partition by P, = (P\{R*}) U P{(R").
Elements of P, will also be denoted by X”.

Step 2. Bounding:

2.1. Solution sampling: For each subregion X* ¢
P;(RF), randomly sample 9r solutions. If
k > 0, for subregions X? € P;\{ R} sample
6(XF) solutions, where #(X?) depends on in-
formation in &*! and has been computed
in Step 2.3 of the last iteration. Aggregate all
of the sampled solutions into a set, S*. Let
Gk=a+Is.

2.2. Bound estimation: Simulate Ang observa-
tions from each solution in S that has not
been encountered before and simulate Ana
additional observations from each solution
that has been encountered before. For all
subregions X7’ e Py, calculate estimates
nt1(XP) and £(XP) for UX?) and
L(X?), respectively.

2.3. Sample allocation: Compute the number
of solutions to be sampled, 8(X?), for all
X? e P, for the next iteration based on
information in G,

Step 3. Updating partition and record set: Update the
record set R = argmax{n**!1(X?): X? € P}}
and partition Py = Py. Set k =k + 1 and go to
Step 1.

Whenever we terminate the algorithm (usually when the
simulation budget is reached), we select as the best solution
x* the one with the maximum cumulative sample average.
Notice that this is different from SB&B, which selects the
current approximate solution as the best solution. We do
not use an approximate solution in ESB&B.

Partitioning divides the record set into disjoint non-
empty subregions. In our implementation of ESB&B,
solution sampling is done using the MIX-D algorithm
(Pichitlamken and Nelson, 2003). See online Appendices A
and B for a detailed description of the partitioning and
solution sampling schemes.

Bound estimation estimates the upper and lower bounds
of all subregions. Rather than solving bounding problems,
as SB&B does, ESB&B uses the estimated objective func-
tion values of solutions that have been simulated. To de-
scribe how this is done, we first define some notation. Let
n(x) denote the total number of replications obtained from
solution x through iteration k. As stated in the beginning
of Section 2, the observed performance of x on replication
s can be represented as Y (x) = pu(x) + &4(x). Let

n(x)
Fix) = % D = 03+ 5 @

Xu and Nelson

be the cumulative sample mean of all observations of so-
lution x for n(x) > 0. For each subregion X’ € P[, we
select the solution with the greatest cumulative sample
mean through the current iteration and use this average
as the estimate of the upper and lower bounds
P TX) =X = max (Y(x)).
xeXPnek

Notice that X” N &k # ¢ since whenever a record set is
partitioned to generate new subregions, every subregion is
sampled. In ESB&B, when the algorithm terminates, we
select the solution with the maximum cumulative sample
average as the best solution, rather than using the approx-
imate solution from the subregion with the greatest esti-
mated lower bound, as does SB&B. Therefore, the lower
bound estimation in ESB&B is not of practical use. While
keeping lower bound estimation in ESB&B so that it shares
the same structure as SB&B, we adopt the easiest way of
estimating the lower bound that satisfies Assumptions 1
and 2, which is setting the lower bound equal to the upper
bound and both equal to the greatest sample mean.

We choose the subregion with the greatest estimated up-
per bound as the record set for next iteration:

R = arg max {n*"'(X")}.
XPepy;

We also define n* = maxxpep;({nk“ (X?)} as the value of the
greatest estimated upper bound, which is also the estimated
objective function value of the current best solution. No-
tice that these simple sampling-based bounds can be used
for any problem. However, problem-specific bounds that
satisfy Assumption 2 can be used to improve performance.

Step 2.3 in ESB&B assesses the potential of each sub-
region and uses this information to guide sampling. This
step improves performance of the algorithm without af-
fecting convergence under some mild assumptions. Before
going into the details of the sample allocation step, we state
the convergence of the ESB&B algorithm in the following
theorem.

Theorem 1. Assume |u(x)| < oo and Var(e(x)) < oo for all
x € X and |X| < o0o. Denote by X* the solution set of Equa-
tion (1). If at every iteration every subregion has a positive
probability bounded away from zero of being sampled, then
with probability one there exists an iteration number ko such
that for all k > ko, the record sets RF are singletons and
R C X~

Proof. We first prove limy_, o n*t'(X?) = U(X?) a.s. for
any given subregion X’

At each iteration, every subregion has a positive prob-
ability of being sampled that is bounded away from
zero. The MIX-D algorithm guarantees that whenever a
subregion is chosen for sampling, every solution has a
non-zero probability of being selected, and that probabil-
ity is bounded below by 1/|X| > 0 (Pichitlamken, 2002).
Therefore, with probability one, all solutions are sampled;
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ie., limgoo X NG*=X" g.s. Since X* is finite, for
almost all sample paths w, there exists Kj(w) > 0 such that
XP NGk =XFforallk > K(w).

Since we add more simulations for every sampled so-
lution for every iteration, every solution is simulated in-
finitely many times as k& goes to infinity. Also, since we
use the cumulative sample mean to evaluate the value of
each solution, by the Strong Law of Large Numbers, for
all x € X, limy_, o, Y(x) = u(x) a.s. This means that for
almost all sample paths w, for any x and any given § > 0
there exists a K(w, X, §) > 0such that | ¥(x) — u(x)| < 8 for
all k > K(w, x, §).

Assume that all x € X? have in total N < |X?| dis-
tinct u(x) values. Group all x € X? by their u(x) val-
ues into N sets X', X?,..., XV so that u(x)= u(x)
for all x,x' € X", n=1,2,..., N. Let w(X") denote
u(x) for all xe X". Order these sets in sequence
XD X XM 5o that w(XY) > w(XP) > ... >
p(XM). Let d = 0.5min,—; 5 y—1 {n(X™) — p(X"+D)}
and K>(w) = maxyexr K(, X, d). Then maxycxr { Y(X)} =
maxy. yo Y(X) for all k > K>(w).

For any given € > 0, let K3(w, €) = maxyexr K(w, X, €).
Then forall k > Ki(w, €), | Y(x) — u(x)| < € forall x € X”.

Now for any given € and almost all sample paths w, for
all k > max {K;(w), Kx(w), Kz(w, €)} we have

I (XEP) — UXD)|

=| max {¥(x)} — max u(x)
xeXPNGk xeX?
= |max { ¥(x)} — max u(x) XPnek = X7,
xeX”? xeX”?
k > Kj(w)

= [max Y(x) — u(XD)

Xe

- max {¥(x)} = max ¥(x),
xeXP{ (x)} max (%)

k> Ky)(w)
<e. VX)) — u(x)| <€, k> Ko, €)
That is, we have
lim p**'(X?) = UX?) a.s. )
k— 00

Next, notice that since |X| < oo, there can only be a fi-
nite number of iterations with partitioning. Therefore, there
exists a Ku(w) such that for k > K4(w) the partition re-
mains unchanged. Denote it as P*°. Within this partition
all record sets are singletons; otherwise, they would have
been further partitioned. Since there are a finite number of
record sets, there exists a Ks5(w) such that for k > Ks(w) all
record sets are recurrent in the sense that they are record
sets for infinitely many k. Note that both K4(w) and Ks(w)
depend on the sample path. Let R denote one such record
set, and let {k} be the iteration indices on which R is
chosen as record set. By definition we have

n(R) = n9(XF) VX e P>, Kk, > max{Ki(w), Ks(w)}.
3)

From Equation (2) we have

Jim n"I(R) = U(R) = u(R),

lim 79(X") = UKX"),
/<}%oo
since R is a singleton. Passing to the limit in Inequality
(3) we obtain u(R) > U(XP) for all X € P>, which com-
pletes the proof. [ |

3. Estimating the partition potential for a sample
allocation

In Step 2.3 of ESB&B we compute 6(X’), the number of
solutions to be sampled from each subregion that is not
a record set X € P, \{ R*!}. In our implementation, 0 =
(0(XP), XP e P,\{R**1}} is a sample from a multinomial
distribution with ¢ trials and success probabilities ¢ =
{p(XP), XP e P\{R1}}. The values ¢(XF) reflect our
assessment of the potential of subregion X” to contain
better solutions. This step improves algorithm performance
by assigning more samples on average to a subregion with
better potential. The particular scheme used in this step
does not affect convergence as long as each subregion has
a non-zero and bounded probability of being sampled.

To see how we assess the potential of a subregion X7,
suppose that we have sampled m < |X”| solutions from this
subregion, denoted Xxi, Xy, ..., X;;, for convenience. Fur-
thermore, suppose for the moment that they could be
evaluated without noise, giving wu(xy), u(x2), ..., u(Xn).
Let,

_ 1 m
p=— ;N(Xi)
= Y- ?
m—14= ' '

Now consider another randomly sampled solution, de-
noted X, 1, from this subregion. Our assessment of the
potential of the subregion is based on being able to claim,
either exactly or approximately, that

Pr{u(Xm+1) > o+ AMa)Sy/ 1 + %} < ®. 4)

We compare subregions based either on the relative val-
ues of their bounds & + A(xo)Sy/1 + 1/m (with a larger
bound meaning more potential) or by fixing their bounds
at it + AMao)Sy/ 1 + 1/m = n*, the estimated objective func-
tion value of the current best solution, and solving for «
(with a larger oy meaning more potential). The empirical
Chebyshev inequality of Saw et al. (1984) provides a value
of A(ap) that guarantees that Equation (4) holds, while
assuming that the values u(x;) are normally distributed
provides an approximate (and tighter) bound where A(w)
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is based on the ¢ distribution. It is also possible to use
Hoeffding’s inequality or Bernstein’s inequality to develop
a UCB, assuming some kind of bounds for u(x;) (see, for in-
stance, Li (2009)), which we do not use due to the difficulty
of estimating parameters.

In our context, we cannot apply Equation (4) directly
since we do not observe u(x;) but instead observe an es-
timate Y(x;) based on n(x;) replications. Therefore, the
bounds we use are adjusted by assuming that the simu-
lation noise is normally distributed with equal variances
(Var(ss(x)) = o V x); this makes all of our bounds approx-
imate. In this article we simply state how the bounds are
calculated and used; detailed derivations can be found in

Xu (2009).

First, we define some additional notation. For
a generic subregion XP e, let m=|XFNG&SK
be the total number of solutions in the subre-

gion that have been sampled and simulated through
iteration k. Let Y=m™'Y"__\rner Y(x) denote the sam-
ple mean of all solutions in the subregion, S% = (m —
DY xrner (Y(x) — Y)? the sample variance of the es-
timates, and S5 = v Y xrner Soro) (%(x) — ¥(x))? the
pooled sample variance within the subregion, where v =
Y xexrnek (1(x) — 1). Also, define the effective degrees of
freedom n* such that 1/n* = m™2 Y yrner 1/n(x). Notice
that m, Y, S%,, S%,, v, and n* are statistical measures of a spe-
cific subregion X” at iteration k. We omit k for simplicity.

We compute 8(X?), the number of solution samples allo-
cated to subregion X”, using the two methods described in
the following subsections. These methods apply to stochas-
tic problems; readers interested in deterministic problems
can refer to Xu (2009) for corresponding adjustments.

3.1. UCB-based sample allocation

In this approach the subregions with greater UCB tend
to be assigned more solution samples. The outline of the
algorithm is as follows. Let 0 < € < 1 be a small positive
constant we choose to guarantee that the probability of
each subregion to be sampled is bounded away from zero.

Algorithm SA-UCB

Step 1. For each X € P\{R*"!}, compute the UCB
¢(X?), which will be described below.

Step 2. Let Imin = minyrepy g1y C(XF), XFy, = argmin
{¢(XP): XP e PR, and =Yy repy e
(g(XP) - gmin)-

Step 3. Let p be a small positive number and compute pre-
liminary probabilities p(XZ. )= p and p(XF) =
¢(XP) = Zmin\ Tz (1 — p) for all other X”. The value
of p is chosen dynamically so that the preliminary
probability assigned to subregion XZ. . p(XZP. ),

is half the preliminary probability assigned to

Xu and Nelson

the subregion with the second-smallest UCB. Let
Ty = Yoxrepp ey Max {e, p(XP)}. Assign a prob-
ability (X”) = max {e, p(XF)}/ T, for all X”.

Step 4. Let ¢ = {p(XTF)} be the vector of p(XF). Draw a
sample, = {#(X?)}, from a multinomial distri-
bution with parameters o and ¢. Assign 0(X?)
samples to subregion X*.

Notice that 7, < |X| < oo; therefore, p(X?)>¢€/T, is
bounded away from zero.

We implement the following two different types of UCBs
and compare their performance in the numerical study sec-
tion. Notice that the bounds and statistical measures are
all for a specific subregion X* at iteration k, which we omit
for simplicity.

3.1.1. Chebyshev bound

The UCB is
S 1 tl—avS
XP)= Y+ A8y /1 + — + —22
¢(XY) Y p N

where A is computed from the empirical Chebyshev In-
equality of Saw et al. (1984), which implies that A solves

L ((m+ 1)(m — 1+ 22))/ma? | _
m+1 -

Also, t_q,y 1s the (1 — «)-quantile of the ¢ distribution with
v degrees of freedom.

3.1.2. Normal bound
The UCB is

- I e
XP=Y—|—1‘_0, 13 |+ — 4 —2=0P
(X" 1—a/2,m—1SY - N

It is worth mentioning that the bounds above do not
account for the situation where all the solutions in the sub-
region have been sampled. In such cases we compute the
bound as follows:

Vn(x)

We use ¢ = 0.05 and «p = 0.2 in the implementation.

_ S
g(XP) = maX Y(X) + ZLl—a,n(x)—l —r .
xeXPN&k

3.2. Probability-based sample allocation

In this approach subregions with a larger probability of
containing a solution with an objective function value bet-
ter than n*, the estimated objective function value of the
current best solution, tend to be assigned more solution
samples. The outline of the algorithm is as follows. Let
0 < € <« 1 be a small positive constant we choose to guar-
antee that the probability of each subregion to be sampled
is bounded away from zero.
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Algorithm SA-Pr

Step 1. For all X? e P\{ R}, compute a probability
p(X") = Pr{(Xps1) > 1*}. _

Step 2. Let Ty = xrep(pen) Max {e, p(XP)}. Assign a
probability ¢(X?) = max {e, p(X")}/ T,
X7,

Step 3. Let ¢ = {p(X7F)} be the vector of p(X?). Draw a
sample, 8 = {#(X?)}, from a multinomial distri-
bution with parameters o and ¢. Assign 8(X”)
samples to subregion X7

for all

Notice that 7, < [X| < oo, therefore o(X?)>€/T, is
bounded away from zero.

We implement the following two probability estimates
and compare their performance in the numerical study sec-
tion. Notice that the probabilities and statistical measures
are all for a specific subregion X* at iteration k, which we
omit for simplicity. In each case we find p that solves the
given equation.

3.2.1. Chebyshev probability
Let

nt—Y
Sy,/1+ L
The conclusion Pr{u(x;,11) > n*} < p follows directly from
the empirical Chebyshev Inequality for the deterministic

case. We use this probability as an approximation for the
stochastic case.

L(nﬂ)(:AZHAZ J

, where A=
n—+1

pX") =

3.2.2. Normal probability
‘We need to find «; and «; so that

— 1 Hewr S,
N =Y+l m1 Sy 1 + — + —=".
m Jn*
To facilitate this we also require #_4, m—1 = ti—a,,v, and

therefore

-Y

n
Syy/T+ (1/m) + (S, /v/n%)

tl—ot],m—l = tl—ozz,v =

Then p(X?) = ay + an.

Similar to the bound-based sample allocation, the prob-
abilities above do not account for the situation where all
of the solutions in the subregion have been sampled. In
such cases we compute the probability as follows: for all
x € X' N &k, compute a(x) that solves

n* — Y(x)

Sp//n(x)

and let p(X*) = max{a(x) : x € X* N &K},

Zlfoz(x),n(x)fl =

Fig. 2. T-level weighted binary tree (7 = 4).

4. Evaluation

In this section, we first analyze a stylized optimization prob-
lem to shed some light on the behavior of the ESB&B algo-
rithm relative to NP, focusing on the impact of maintaining
the partition structure. We then present some experimental
results.

4.1. Hlllustration: weighted binary tree problem

Consider the following deterministic problem:

max p(x) = max E w;iX;,
X X
i=1

s.t. x; € {0, 1} 1<i<T,

where w; >0 for all i. The optimal solution x* =
(xf, x5, ..., xp)=(1,1,...,1). We can think of solving the
problem as searching a weighted 7-level binary tree for x*,
shown in Fig. 2. The levels correspond to the indices of de-
cision variables, i. A left branch (dashed line) at level i rep-
resents x; = 0, and a right branch (solid lines) x; = 1. One
can think of a leaf node as a solution x = (x, %, ..., X7),
determined by its location, and a non-leaf node at level 7 as
a subregion, denoted by (xi, X2, ..., X;), where x; € {0, 1}
is fixed for 1 < i < t. The root node at level 0, with all x;
unassigned, is denoted by (). A weight w; is imposed on
branches at level i, i = 1,2, ..., T, to determine the value
of leaf nodes (solutions).

We compare the performance of ESB&B on this prob-
lem with that of NP, both using the same partitioning and
sampling scheme. The relative performance thus shows the
value of the partition structure of ESB&B. We study how
the problem structure determined by the weight vector
w = (wy, wy, ..., wy) impacts this value.

The ESB&B algorithm we implement for the weighted
binary tree problem (ESB&B-WBT) is as follows:

Algorithm ESB&B-WBT

Step 0. Sett = 0, let the record set be the root node, (), and
the initial partition be {()}.
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Step 1. Partition the record set, (x1, X2, ..., X)), by X;41
into two subregions. Delete the record set from
the partition and add the two subregions.

Step 2. Take one solution sample from all the subregions
in the partition.

Step 3. Compute the upper bound of each subregion as
the objective value of the sample taken from the
subregion.

Step 4. Choose the subregion with the greatest upper
bound to be the new record set, update t = ¢ + 1,
and go to Step 1.

Step 5. Repeat Steps 1 to 4 until the optimal solution x* is
found.

We implement the NP algorithm of Shi and Olafsson
(2000) with the same partitioning and sampling scheme.

Algorithm NP-WBT

Step 0. Set t = 0 and let the root node, (), be the initial
most-promising region.

Step 1. Partition the most-promising region, (xi, xo, ...,
Xt), by X;41 into two subregions. Aggregate all of
the other subregions into one surrounding region.

Step 2. Take one solution sample from all of the subre-
gions.

Step 3. If the sample with the largest objective value is in
the most promising region, then the subset that
contains it becomes the new most promising re-
gion. Otherwise, backtrack to the root node. Up-
date t = ¢ + 1 and go to Step 1.

Step 4. Repeat Steps 1 to 3 until the optimal solution x* is
found.

It is worth mentioning that since the problem is deter-
ministic, once the algorithm finds the optimal solution x*
it stays there. Therefore, we design both algorithms so that
they stop when the optimum is found. The measure we use
to compare the two algorithms is the expected number of
steps it takes to find the optimal solution.

Both algorithms can be modeled as Markov chains. For
ESB&B-WBT, the state is the current partition, whereas for
NP-WBT the state is the current most promising region.
For both Markov chains we compute the expected number
of steps before finding the optimal solution.

The performance of both algorithms is affected by the
weight vector w. Weusew' = (1,2,4)and w’ = (4,2, 1) to
explain how the weights affect the problem structure under
our partitioning scheme; we use a variety of weights in our
evaluation.

When w = w/, the objective value of solutions, from left
toright, is {0, 1, 2, 3, 4, 5, 6, 7}. Partitioning at level 1 gives
two subregions: {0, 1, 2, 3} and {4, 5, 6, 7}. Further parti-
tioning of the first subregion at level 2 gives {0, 1}, {2, 3},
and {4, 5, 6, 7}. By contrast, when w = w”, the objective
value of solutions, from left to right, is {0, 4, 2, 6, 1, 5, 3, 7}.
Partitioning at level 1 gives two subregions: {0, 4, 2, 6} and

Xu and Nelson

Table 1. Comparison of ESB&B-WBT and NP-WBT: four-level
tree

ESB&B-
(wy, wy, ws,wy) WBT  NP-WBT Difference % Difference
8,4,2,1) 4.0000 4.0000 0 0
4,8,2,1) 4.5000 5.2421 —0.7421 —14
4,2,8,1) 5.2188 9.7508 —4.5320 —46
(2,4,8,1) 5.9961 11.4414 —5.4453 —48
(2,4,1,98) 6.8164 223561 —15.5398 -70
(2,1,4,8) 8.0285 29.9445 —21.9160 -73
(1,2,4,8) 9.1060  32.6701 —23.5641 =72

{1, 5, 3, 7}. Further partitioning of the first subregion at
level 2 gives {0,4}, {2,6}, and {1, 5, 3,7}. Therefore, a
weight vector with w; > wy > --- > wr gives a perfectly
ordered list of solutions, or a “smooth” response surface,
whereas a weight vector with w7 > wr_| > --- > w) gives
a shuffled list of solutions, or a “rough” response surface,
which leads to more mistakes for both algorithms when se-
lecting the record set (most promising region) by sampling.
It is intuitive that ESB&B-WBT is going to have more of an
advantage over NP-WBT when the solutions are less well-
ordered, as ESB&B-WBT allows a quick jump to a better
subregion when a mistake is realized, whereas NP-WBT
has to backtrack to the root node and start to search all
over again.

We list the expected number of steps before finding
the optimal solution for ESB&B-WBT, NP-WBT, the
difference between the two, and the percentage difference
in Table 1 (7 =4) and Table 2 (T = 5). The percentage
difference is computed as the expected number of steps
of ESB&B-WBT minus that of NP-WBT over NP-WBT,
which is the percentage savings in computing time of
ESB&B-WBT over NP-WBT.

In both tables, the weight vectors are listed in a way
that, as we go down the table, solutions are less well-
ordered. The results show that ESB&B-WBT outperforms

Table 2. Comparison of ESB&B-WBT and NP-WBT: five-level
tree

ESB&B-
(wy, wy, ws,wg) WBT  NP-WBT Difference % Difference
(16,8,4,2,1) 5.0000 5.0000 0 0
(8,16,4,2,1) 5.4808 6.2493  —0.7685 -12
(8,4,16,2,1) 6.2183  10.8195  —4.6012 —43
(8,4,2,16,1) 7.0558  21.1377 —14.0819 —67
(8,4,2,1,16) 8.0347  42.6536 —34.6189 —81
4,8,2,1,16) 8.7437  46.4530 —37.7093 —81
(4,2,8,1,16) 9.8170  57.5061 —47.6891 —83
4,2,1,8,16) 11.4054  76.8094 —65.4040 -85
(2,4,1,8,16) 12.4707  82.0483 —69.5776 -85
(2,1,4,8,16) 14.3449  95.0562 —80.7113 -85
(1,2,4,8,16) 159234  99.6354 —83.7111 —84
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Table 3. Parameters used in the numerical experiments

Number
Experiment of trials @ Anp Any O ¥¢p O
Miller and Shaw Fig.3 200 3 1 1 10 10 10
Miller and Shaw Fig.4 200 3 1 1 10 20 10
Miller and Shaw Fig.5 200 3 1 1 20 20 10
Miller and Shaw Fig.6 200 3 1 1 10 20 10
Miller and Shaw Fig. 7 200 3 10 2 10 20 10
Bowl Table 4 100 3 1 I 30 30 15
Buffer allocation Fig. 8 100 2 4 1 10 10 5

NP-WBT under all weight vectors. When the solutions are
less well-ordered, ESB&B-WBT has more advantage over
NP-WBT.

4.2. Empirical evaluation

Now we compare the performance of ESB&B against the
NP algorithm of Pichitlamken and Nelson (2003) on three
test problems: Miller and Shaw, bowl with flexible dimen-
sions, and buffer allocation. We consider different sam-
ple allocation schemes for ESB&B: Chebyshev probability-
based (Cpr), normal probability-based (Npr), Chebyshev
bound-based (Cbd), and normal bound-based (Nbd). To
compare different algorithms, we measure their perfor-
mance against simulation effort (the number of simulation
replications), rather than iterations. In each of the follow-
ing subsections, we first characterize the test problem and
then give results and observations. Parameters used in the
numerical experiments are summarized in Table 3 (number
of trials, number of subregions per partition (w), number
of replications for newly sampled solutions (Ang), num-
ber of replications for previously sampled solutions (Arny),
number of solution samples for subregions of the record
set for ESB&B (¥r), total number of solution samples for
all of the other subregions for ESB&B (1), and number
of solutions per subregion for NP (1)).

4.2.1. Miller and Shaw problem

This test problem is a modification of the multimodal func-
tion F, used in Miller and Shaw (1995). We rescale F> and
add two copies of it to make the problem two-dimensional:

sin®(0.057x;)  sin®(0.057 x)
(X, ) = 22(x1—10/80)2 22(x2—10/80)? ©)

0 < <100, ;3 €Z, i=1,2.

This problem has a global optimum (10, 10) with an ob-
jective value of 2. The response surface is bumpy, with 25
local optima. To make it a DOVS problem, normally dis-
tributed noise with zero mean and standard deviation 0.3
is added to Equation (5). We study both the deterministic
and stochastic versions of the problem.

First, we examine the effect of the number of solutions
per subregion (9r solutions for each subregion of record

2
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Fig. 3. Objective value of current optimal estimate at each time
point for the Miller and Shaw problem: 9g = 10 and ¥ = 10
(color figure provided online).

set and a total of ¥¢ solutions for all the other subregions)
on the relative performance of ESB&B compared with NP
for the deterministic problem. We consider two sample
allocation schemes here, Cpr and Npr. We fix the number
of samples per subregion at 10 for NP. Figure 3 shows the
objective function value of the estimated optimal solution
at each time point (averaged over 200 searches) for g = 10
and 9o = 10; Fig. 4 is for ¥g = 10 and ¢ = 20, and Fig.
5 is for g = 20 and ¥o = 20. From these three figures
we can see that ESB&B with both Cpr and Npr sample
allocation schemes has better performance compared with

1950 %48 1
% A
A
A
19f * 1
A
1.85F " 1
*
AN
1.8F a
1.75¢ 1
170% -~ NP ]
*  Normal pr-based
. A Chebyshev pr-based
165 . . . n n
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Number of replications

Fig. 4. Objective value of current optimal estimate at each time
point for the Miller and Shaw problem: 9g = 10 and 9o = 20
(color figure provided online).
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Fig. 5. Objective value of current optimal estimate at each time
point for the Miller and Shaw problem: dg = 20 and ¥o = 20
(color figure provided online).

NP as ¢ increases. The intuition is that, when a “good”
subregion (which contains good solutions) happens to
appear inferior because of bad samples, enough samples
from the subregion for the following iterations allows the
algorithm to correct the mistake.

Next, we study the performance of different sample allo-
cation methods. Figure 6 shows the performance of ESB&B
compared with NP for Npr, Cpr, Nbd, and Cbd. It suggests
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that the normal probability-based sample allocation is bet-
ter than all of the other methods.

We then examine the performance of different sample al-
location methods with a noisy objective function. Figure 7
demonstrates the advantage of the normal probability-
based method over the others and that ESB&B has an even
greater advantage over NP when the problem is stochastic,
for all types of sample allocation schemes.

4.2.2. Bowl problem with flexible dimension

This test problem is designed to illustrate the impact of
dimension and the interaction between dimensions. It is
formulated as follows:

(X1, X2, .oy Xg)
= 1000 exp{—0.001(x1, x2, ..., X)) TN (X, X%, o X))
1/d 1/d
—mT <x < mT xeZ, i=1,2....4d (6)

where m = 20 000 is the total number of feasible solutions,
d is dimension, and X is a d x d matrix that determines
the correlation between different dimensions of the deci-
sion variable. This problem has a surface that is shaped
like one for the probability density function of a multi-
variate normal distribution. It has a single global optimum
(0,0, ...,0) with objective value 1000. The feasible region
is a hyperbox, where the bounds are rounded to the nearest
integer if necessary. Defining the feasible region this way
keeps the number of feasible solutions (nearly) the same as
the dimension changes, allowing us to isolate the impact of

2
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Fig. 6. Objective value of current optimal estimate at each time point for the Miller and Shaw problem: all sample allocation methods,

deterministic case (color figure provided online).



Downloaded by [Professor Barry Nelson] at 09:24 12 June 2013

Branch-and-bound approach to optimization via simulation 695

2 \
191
1.8
1.7
1.6
1.5
1.4 NP H
*  Normal pr-based
13K A Chebyshev pr-based |
' +  Chebyshev bound-based
©  Normal bound-based
| | | | | | I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of replications

Fig. 7. True value of current optimal estimate at each time point for the Miller and Shaw problem: all sample allocation methods,

stochastic case (color figure provided online).

dimension from that of the number of feasible solutions.
This problem is similar to the test problem in Xu et al.
(2010).

We use the correlation matrix

_1 P 0 10—

p L - p p
Ez . . . . ?

Lo p p 1]

where p is the common correlation coefficient. A larger o
indicates higher correlation among dimensions, which in
this case makes the problem less separable. This makes it
harder to search for the optimum for both ESB&B and NP,
since both algorithms partition by dimension.

Here we only report results for the deterministic problem,
for which both ESB&B and NP stay at the optimum once
it is found. We thus use the number of iterations to find
the optimum as the performance measure (averaged over
100 searches, recorded every 100 iterations). Table 4 lists
the performance measure for NP, ESB&B with Npr, and
ESB&B with Cpr, the absolute and percentage difference
between NP and ESB&B-NPr, and NP and ESB&B-CPr.
The numbers reveal two trends: (i) the advantage of ESB&B
over NP increases in p, but (ii) this trend becomes unclear
as the dimension increases. We can explain these results as
follows: Under higher correlation, both algorithms tend to
make more mistakes in selecting a good subregion. ESB&B
hence outperforms NP as it is able to jump directly from
subregion to subregion, while NP has to backtrack and
then search all the way down. However, this trend gets
dominated by dimension as dimension increases.

Table 4. Number of simulation replications to find the optimal solution for the bowl problem with flexible dimension

p=0 p=05 p =09 p=0 p=05 p =09 p=0 p=05 p=09
NP 3200 3900 9600 3400 20100 18300 2600 4100 25900
ESB&B NPr 1100 1800 1000 2500 3000 7000 1700 3000 11 500
NPr — NP —2100 —2100 —8600 —900 —17100 —11300 —900 —1100 —14400
% Difference —66 —54 -90 —26 -85 —62 =35 -27 —56
ESB&B CPr 1500 2100 1200 3700 4100 5900 2100 4100 15800
CPr — NP —1700 —1800 —8400 300 —16 000 —12400 —500 0 —10100
% Difference =53 —46 —88 9 —80 —68 —-19 0 -39
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4.2.3. Three-stage buffer allocation problem

This test problem is to find the optimal design of a three-
stage flow line with finite buffer storage spaces in front
of stations 2 and 3. Each station & has a single server,
whose service time is exponentially distributed with rate t;,,
h =1, 2, 3. There are an infinite number of jobs in front of
station 1. If the buffer in front of station / is full, station
h — 1 is blocked. The goal is to find the service rate for
all stations, as well as the buffer space before stations 2
(by) and 3 (b3), to maximize the throughput of the line.
The total buffer spaces and service rate is limited by the
following constraints:

71+ 10+ 13 <20,

by + b3 < 20,
—by, — b3 < =20,
1<t <20, h=123,
1<b, <20, h=23,
‘L’h,bh € 7.

The number of feasible solutions is 21 660. There are
two optimal solutions: (ty, 12, 73, b2, b3) = (6,7, 7, 12, 8)
and (7, 7, 6, 8, 12) with expected throughput of 5.776 (the
optima are obtained from the balance equations of the
underlying Markov chain; see Buzacott and Shantikumar
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(1993)). To reduce the initial condition bias, the throughput
is estimated after the first 2000 units have been produced,
and it is averaged over the subsequent 50 units released.
We sampled five solutions per subregion for NP and set
¥R = 9o = 10 for ESB&B. Figure 8 depicts the true perfor-
mance of the current optimal estimate at each time point,
averaged over 100 searches. It indicates that ESB&B has
an advantage over NP, with normal probability-based and
Chebyshev bound-based sample allocation methods per-
forming the best.

4.3. UCB on region vs. UCB on solution

One of the central contributions of this research is to use a
UCB to estimate the potential of solution subregions and
guide sampling. As described in Section 1, a UCB can also
be applied to solutions, rather than regions, to guide al-
location of simulation budget as in the multi-arm bandit
literature. To assess the value of maintaining partitions and
estimating UCBs on regions, relative to applying UCBs di-
rectly to solutions without partitioning, we developed a
random search algorithm RS-UCB. Algorithm RS-UCB
is designed so that at each iteration, w x ¥r + o solu-
tions are sampled and evaluated (some could be repeats),
which matches with what happens in ESB&B. Recall that

4.6 NP
*  Normal pr-based
4.4 % A Chebyshev pr-based H
‘ +  Chebyshev bound-based
A O Normal bound-based
42 o | | | | | | I I I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of replications

Fig. 8. True value of current optimal estimate at each time point for three-stage buffer allocation problem (color figure provided

online).
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Fig. 9. True value of current optimal estimate at each time point for the stochastic Miller and Shaw problem: ESB&B, RS-UCB, and

pure random search (RS) (color figure provided online).

for ESB&B w is the number of subregions per partition,
¥R is the number of solution samples for subregions of the
record set, ¥ is the total number of solution samples for all
of the other subregions, Any is the number of replications
for newly sampled solutions, and Anp is the number of
replications for previously sampled solutions for ESB&B.

Algorithm RS-UCB

Step 0. Initialization: Set iteration counter k = 0, &% = ¢.
Step 1. Solution sampling and evaluation: Randomly sam-
ple w x ¥r solutions and call the set of sampled
solutions S*. Let 6% = %! J S*. Simulate Ang
observations from each solution in S* that has not
been encountered before and simulate Ana addi-
tional observations from each solution that has
been encountered before.
Step 2. Additional evaluation based on UCB: Compute
UCB of all samples in S*. Simulate Anx additional
observations for ¥ solutions with the largest UCB.
Updating iteration number: Set k = k + 1 and go to
Step 1.

Step 3.

Whenever we terminate the algorithm (usually when the
simulation budget is reached), we select as the best solu-
tion X* from GF the one with the maximum cumulative

sample average. The calculation of UCB on a solution is
straightforward given the assumptions that simulation
noise is normally distributed with equal variances, and the
UCB basically gives an upper confidence interval.

We study the performance of ESB&B and RS-UCB on
the stochastic version of the Miller and Shaw problem de-
scribed in Section 4.2.1. We also study pure random search,
which samples and evaluates w x ¥r + ¥ solutions at each
iteration as a baseline. All of the parameters are as in the
fifth row of Table 3. Figure 9 shows that ESB&B clearly out-
performs RS-UCB and pure random search. This demon-
strates the value of UCB combined with partitioning over
just using UCB on solutions. Interestingly, RS-UCB only
shows a slight advantage over pure random search at later
iterations. The intuition is that in the early iterations, using
UCB on solutions to assign additional simulation budget
is not as efficient as using the budget to explore more new
solutions; however, as the number of iterations increases,
using UCB on solutions does help identify good solutions
among those that have already been sampled.

5. Conclusions

In this article we proposed the ESB&B algorithm that
keeps the partition structure of the SB&B algorithm, while
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estimating bounds based on sampling. The algorithm uses
the estimated performance of the observed best solution
to guide searching and computes statistical bounds that
indicate the potential of subregions to control solution
sampling. This research provides a framework to apply
SB&B where there is no solvable bounding problem.

The ESB&B algorithm converges asymptotically to the
global optimum. A numerical study shows that ESB&B
outperforms NP in the considered test problems. The ad-
vantage is greater when the problem is noisy or there is
significant interaction between different decision variables.
A normal probability-based sample allocation scheme ex-
hibits the most potential.

To make this framework more adaptive, we can balance
the effort in sampling and simulation by adjusting the fol-
lowing four parameters: number of solutions sampled for
the current best subregion, number of solutions sampled
for the other subregions, initial number of replications for
newly sampled solutions, and incremental number of repli-
cations for re-sampled solutions. We can also adaptively ad-
just the number of subregions and the number of solutions
sampled as the algorithm progresses and subregions be-
come smaller. A combination of different statistical bounds,
at different stages of searching, is a possible direction, as
well as designing new statistical bounds to guide sampling.
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