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1. INTRODUCTION

The motivation for this work is the desire to drive simulations of distrib-
uted replicated file systems. Much like network traffic or memory reference
patterns, workloads presented to file systems tend to be bursty and exhibit
a high degree of locality. That is, a file that has been accessed recently
tends to be accessed again soon. Furthermore, accesses tend to come in
“clusters”; there is a burst of activity, followed by a break, followed by
another burst, and so on. Figure 1 shows the access pattern for one such
file from a recorded trace. The bursty nature of the workload may have
considerable impact on several aspects of file system architecture, affect-
ing, for example, the performance of file caches. Some architectures for
replicated file systems may be particularly sensitive to this bursty work-
load since a file may be updated multiple times during a burst before the
update propagation subsystem has time to transmit the updates to all of
the replicas. The desire to gauge the frequency of such “conflicting updates”
via trace-driven simulation led to the work detailed here.

There are a small number of sets of trace data available for driving a file
system simulation. However, there are a number of limitations to the use of
traces. Traces are of finite length. If the events of interest in the simulation
occur sufficiently infrequently, then the length of the trace may be insuffi-
cient for quality results. (Conflicting updates should be infrequent if an
architecture in which they are possible at all is to be tolerated.) Despite
their limited size, traces are nevertheless voluminous and hence cumber-
some. They are also highly inflexible, representing only what happened

Fig. 1. Accesses to file 4863 (the vertical axis is a cumulative event count; the horizontal axis
is time in seconds).
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over some specific interval of time, which may or may not be more widely
representative. Thus, even when in possession of trace data, there is
motivation to produce a synthetic workload that can capture important
aspects of the recorded trace, but with greater flexibility. The work re-
ported here is a step along the path to building such a synthetic trace
generator for file accesses.

The central contribution of our work is to propose a flexible synthetic
workload generation model, and to provide a robust automatic algorithm
for fitting the model to trace data. The workload generation must be
flexible in the sense of accomodating disparate access patterns and the
algorithm can be run in a production mode, without manual intervention.
The specific outcome of interest in our simulation model, the occurrence of
conflicting updates, results primarily from the access pattern on individual
files; hence it is critical to capture the access pattern of individual objects,
and not simply some aggregate characteristics of the full trace data. High
quality models are essential because the file system incident that interests
us is a rare event whose occurrence is very sensitive to the per-file activity
that drives the system. The need for hands-off modeling is forced by the
large number of input models that must be developed; the data set
described here represents access to almost 8,000 files. Robustness is critical
because the data sets are heterogeneous, including completely regular
sequences of events, entirely random (i.e., Poisson-like) sequences of
events, and sequences of events that combine somewhat regular structure
with a high degree of randomness.

1.1 Trace Data Characteristics

This article makes use of trace data gathered at DEC SRC [Hisgen 1990]. It
totals over two gigabytes, representing approximately 29 million file sys-
tem access events collected over a four-day period from 114 DEC Firefly
workstations running the experimental (UNIX-like) Taos operating system.
Trace events are timestamped with a millisecond accuracy. We selected for
analysis the busiest two-hour subset of the data and did not distinguish
between read and write events. The rest of this article deals with this
subset. Clock synchronization algorithms running between the machines in
the distributed file system maintain the collection of clocks in close (but not
perfect) synchronization.

The traces were recorded at the system call interface on each machine
and so represent a record of file access by users and programs. Traces
gathered at this point are much more difficult and invasive to gather than
are traces recorded from probes placed at the interface to servers that have
already had cache hits filtered out at the client machines. However, it is
critical to place the probe upwind of any caches if the measurements are to
be used to judge caching or replica consistency.

Figure 2 shows a histogram of the interarrival times for the full set of
trace data. Viewed this way, the marginal distribution of the interarrival
times appears very nearly exponential, suggesting a Poisson arrival pro-
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cess. However, this picture has obscured the identity of the file being
accessed, a feature critical to our application. Even if file identity were not
important and one were interested only in the aggregate arrival process, it
would be incorrect to conclude that successive requests form a Poisson
arrival process, which requires independent, as well as exponentially
distributed, interarrival times. When one zooms in closer to where the
decomposition into a separate process per file is visible, a very different
pattern emerges and one can see strong dependence among interarrival
times.

Figure 1 shows a portion of this arrival-counting process at a more
detailed level (access to a single file), illustrating some important charac-
teristics. The choice of file 4863 is based on its illustrative properties and
not on file 4863 being a representative sample. The data appear to be
generated by a two-level process: one process generating clusters of events,
and within each cluster, a second process generating individual events. A
sequence of independent, identically distributed interarrival times would
do a poor job of representing such patterns.

Figure 3 shows the histogram of interarrival times for this same file.
Most of the files in the trace exhibit a similar shape: a large amount of
mass near the origin, and then a smaller mass considerably farther out,
with little in between. The histogram in Figure 2 is quite different as it
represents the aggregate arrivals and so the interarrival times are quite
small. At the file level, we consider the large number of short interevent
times to be interarrival times within a cluster, whereas the smaller number

Fig. 2. Histogram of aggregate interarrival times less than 0.2 seconds for all files (3,038, or
0.73% of the sample are $0.2 seconds and are not displayed).
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of larger interevent times represents the gaps between the end of one
cluster and the first event of the next.

Given a plot of a distribution like that shown in Figure 3 for any one file,
it may be possible to pick manually a value that lies between the mass at
the left and that at the right and declare that value to be the maximum
allowable intracluster gap. Given such a value, it is then easy to partition
the interarrival times into two sets: those that represent gaps within a
cluster (the intracluster times), and those that represent gaps between
clusters (the intercluster times). This is equivalent to drawing boxes
manually around the clusters in Figure 1. All interarrival gaps that lie
entirely within boxes are intracluster gaps, and those not within boxes are
intercluster gaps. A method that determines where to draw the boxes
around each cluster should ensure that the maximum intracluster gap is
less than the minimum intercluster gap. For file 4863 our method resulted
in values of 3.09 for the maximum intracluster gap and 10.5 for the
minimum intercluster gap.

Once the data are partitioned in this way, we can fit a distribution to the
time between the start of each cluster to form the first process. Then,
within all the clusters, we can match a distribution to the time between
each event to represent the second level of the process. We assume the
same process is generating intracluster arrivals for all clusters. For file
trace data this is reasonable as such arrivals are probably generated within
inner loops of an application. A distribution for the size of each cluster can
then be used to terminate the second process.

An automated method for doing such clustering is needed when a data
set is composed of more than a handful of such fine-grained patterns. The

Fig. 3. Histogram of interarrival times for file 4863.
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data shown in Figure 2 are composed of nearly 8,000 such objects. Each file
may have its own access pattern, some of which may be characterized by
frequent long bursts, others by rare short flurries of activity, with still
others showing little clustering. Manual clustering of such a large data set
is impractical, yet no static parameters (say for maximum allowable
intracluster gap) yield good results over the entire heterogeneous data set;
that is, a value that is an ordinary intracluster gap for one file may
represent an intercluster gap for another.

1.2 Clustering Approach

In this article, we adapt a well-known algorithm called hierarchical cluster-
ing with single linkage, to measure the distance between clusters. Although
some of the literature on hierarchical clustering disparages this method for
other applications, it has ideal characteristics for file access data, as shown
in Section 4. The final (and critical) step in hierarchical clustering is to
determine when clustering should be stopped (between the extremes of one
cluster per event and one cluster containing all events). Frequently, such a
decision is reached manually; however, this is again not practical for such
large data sets. Section 4.1 introduces a new stopping rule designed
specifically for this application.

The methodology we propose uses the Johnson translation system [John-
son 1949] to fit a distribution to the intercluster times, intracluster times,
and the cluster sizes. Each of these is treated as an independent univariate
distribution if clustering successfully identifies a two-level process. The
Johnson translation system is a natural choice given our need for a robust
model: within this single system of distributions exists a unique distribu-
tion that matches any finite first four moments (equivalently sample mean,
variance, skewness, and kurtosis) that can occur in a data set. This
property offers much more flexibility than standard one- and two-parame-
ter families, such as the exponential, gamma, or lognormal, and there
exists software support for fitting Johnson distributions. In addition,
random-variate generation from the Johnson system is straightforward.

The effectiveness of this methodology is evaluated by comparing the
output of a simulation driven by two representations of the same input
process. The simulation is first driven by the actual trace data and then is
driven by the arrivals generated from our two-level process. The output of
the two simulations is compared to establish that the features of the trace
data that most affect the simulation output are accurately represented by
the input model.

1.3 Road-Map of the Article

The next section reviews related work. Section 3 gives some background on
the replicated file system application that provided the original motivation
for this research and also serves as the validation test of the input
modeling methodology. Section 4 details the automatic clustering technique
and presents the dynamic stopping rule. Then Section 5 presents our
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methods for modeling the input trace as a two-level process and for
generating synthetic trace data from the model. Section 6 presents our
experimental validation of the synthetic trace generation methods. Finally,
Section 7 summarizes and concludes the article.

2. RELATED WORK AND ALTERNATIVE APPROACHES

Much of the previous work on generating synthetic file reference traces has
been done with the purpose of stress testing or performance comparison of
file system servers. The load as seen by a file server is quite unlike the load
generated by users; the caching at client machines filters out most of the
locality of reference that is typically present in the users’ access patterns. A
file that a user accesses once is likely to be accessed again, but the server
will only see the first reference, with subsequent references served out of
the client cache [Willick et al. 1993; Froese and Bunt 1996]. Hence the kind
of burstiness in the per-file trace that motivates this work does not appear
in the load presented to file servers.

An example of a synthetic workload generator for file servers is found in
Bodnarchuk and Bunt [1991]. In this work, Bodnarchuk and Bunt have
monitored a network using a passive tap in promiscuous mode to gather a
trace of network file system (NFS) operations on their network. They pick
the NFS operation type according to the fraction observed in their trace
data, pick the designated file system from a discrete distribution, and then
pick the designated file at random, choose a data size (for read and write
requests) by sampling from three uniform distributions, and select an
interarrival time using a hyperexponential distribution. A tool was then
built that generated NFS operations in real-time.

Much of the modeling of distributed filing and database systems assumes
arrivals are generated by a Poisson process for purposes of analytic
tractability (see, e.g., Singhal [1990]). Since the load at a server is the
superposition of the workloads generated by a large number of (perhaps)
independent loads, the assumption may be justified (although most mea-
surements show excessive variance). However, when the goal is to model
overall system load (where the probe is placed between the user and the
workstation and not between the workstation and the server), the assump-
tions are not warranted and successive accesses are indeed highly corre-
lated, giving rise to this research.

This article addresses the situation where the input modeler is in
possession of trace data and wishes to construct a synthetic “equivalent.” In
other situations, one may not have access to traces, but instead have some
idea of how users of a file system will behave. This latter case is addressed
by the SynRGen File Reference Generator by Ebling and Satyanarayanan
[1994]. Their primary goal is to develop synthetic workloads to stress the
Coda File System [Satyanarayanan et al. 1990] and to compare alternative
UNIX file systems at their common level of abstraction, the UNIX file
system API. Hence, SynRGen is appropriate for generating loads as pre-
sented to clients and not just servers. Their approach is to build micromod-
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els that capture the behavior of particular classes of users. They can then
instantiate user models in a very flexible manner to build a workload for an
anticipated environment given only a notion of how that environment is
populated with user behaviors. SynRGen is therefore a useful framework
for implementing load generators; but the actual models that it uses to
generate synthetic traces are left up to modelers. Their approach differs
fundamentally from ours in that SynRGen models the behavior of the
users, whereas this work models the behavior of the data.

Thekkath et al. [1994] propose characterizing file system workload from
limited sets of trace data using an approach, borrowed from statistics,
known as bootstrapping [Diaconis and Efron 1983]. They treat the trace
data as samples of size N from an unknown distribution and generate new
samples by selecting at random, with replacement, elements from the
original trace. Thus, NN different new samples of size N can be generated
on the fly and used to drive a simulation, or a new sample of any size can
be generated by continuing to resample. Assuming that the original trace is
representative of the true population, they conclude that the synthetic
traces will also be good representations.

Applied blindly to our data, the bootstrapping approach is equivalent to
modeling the time between file access events by the empirical cdf of the
observed times between events. This implicitly assumes that the interevent
times are independent and identically distributed (i.i.d.) random variables,
since the next interevent time is sampled from the same empirical cdf as
the previous interevent time, without reference to the value of the previous
interevent time. However, in much of our data there is a physical basis for
the presence of clusters or bursts of file activity, which induces dependence
between interevent times. Taking an extreme case, it is easy to see that the
access pattern for a file that consistently experiences clusters of exactly
four events, followed by a long intercluster time, then another four events,
and so on, will never be well represented by an i.i.d. sequence of interevent
times. (Such a pattern actually occurs in our data set, a fact that should not
be surprising since many of the events are the result of the execution of
deterministic programs accessing files within loops.)

A more refined bootstrapping approach applied to our data might break
the trace up into segments of an intercluster time and the following cluster,
and then resample these segments with replacement. This would be better
than resampling interevent times independently, but would tie particular
clusters to particular intercluster times, limiting the possibility of viewing
new combinations not present in the data. A further refinement would be to
cluster the data, as we have, then use the empirical cdfs of the intercluster
times, intracluster times, and cluster sizes to resample from a two-level
process. Our method, which fits distributions to these data rather than
using the empirical cdfs, simply goes one step further to what statisticians
call a “parametric bootstrap.” The advantage of this extra step is that it
smooths the data by filling in gaps that naturally appear in any finite
sample, but are typically not real features of the process. In addition,
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parametric families can be used to create input models when no data are
available.

The two-level model used here is closely related to Jain and Routhier’s
[1986] “Packet Train” model for local area network traffic. A burst of
packets on the “track” between a pair of nodes in a network is viewed as a
group of packets that travel together, analogous to the cars in a train.
Thus, one is led to decompose the arrival process into intercar gaps and
intertrain gaps. If no events are observed on the track for a specified
maximum allowed intercar gap (MAIG), the previous train is considered
ended and the next event is deemed the locomotive of the next train.

A critical step remains: how are we to select the MAIG? In Jain and
Routhier [1986], a value of 500 ms was chosen via visual inspection and
experimentation. This value worked well for the network traffic data used
in their work. The mean intercar gap was an order of magnitude less than
500 ms, and the mean intertrain gap was several orders of magnitude
larger. Most important, the data were relatively homogeneous; the same
value of MAIG worked well across all of the node pairs. However, we find
the file system trace data to be far more heterogeneous. In other words, a
value for MAIG that is appropriate for one file is totally inappropriate for
another. Therefore, a method for automatically clustering the data with a
dynamic stopping rule is required.

Recent work has shown that many types of aggregate network traffic
exhibit long-range dependence (LRD), in the sense that the autocorrelation
between measurements diminishes very slowly as a function of their
separation (or lag) in sequence (e.g., as a hyperbolic function of the lag).
Empirical examples of this phenomenon include local-area networks [Le-
land et al. 1994], metropolitan-area networks [Cinotti et al. 1994], wide-
area networks [Paxson and Floyd 1994; Klivansky et al. 1994], and variable
bit rate coded video traffic [Beran et al. 1995]. With respect to the
preceding Packet Train model, LRD implies that there may exist no natural
MAIG.

Statistically self-similar processes are a special case of covariance sta-
tionary LRD processes in which the autocorrelation function is undimin-
ished by averaging nonoverlapping subsequences of measurements. A char-
acteristic of self-similar network traces is that they appear equally bursty
when viewed over a wide range of different time scales. Leland et al. [1994]
have detected the presence of self-similarity (not merely LRD) in Ethernet
traces. Willinger et al. [1995] show that aggregating many packet train
sources whose distributions of train lengths and intertrain gaps exhibit
infinite variance (e.g., using certain Pareto distributions) results in aggre-
gate traffic that is statistically self-similar. They further show that the
degree of self-similarity (the Hurst parameter) is predictable given a
measure of the tail-heaviness of the component distributions. Several
studies suggest that self-similar traffic models do a better job of represent-
ing LRD workloads [Adas and Mukherjee 1995; Leland et al. 1994; Paxson
and Floyd 1994] than do traditional traffic models such as Poisson, batch
Poisson, Markov arrival processes, and ARMA processes that do not cap-
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ture the slow decay of the autocorrelation function. Queueing simulations
conducted using these traditional traffic models tend to be optimistic with
respect to congestion and delay as compared to simulations driven by
recorded trace data [Adas and Mukherjee 1995; Narayan et al. 1995].
Simulations driven by self-similar models that capture long-range depen-
dence provide more accurate results [Garroppo et al. 1995; Giordano et al.
1996].

Although long-range dependence had considerable effect on the maxi-
mum queue occupancies in the referenced network queueing models, this
correlation at larger time scales plays no significant role in our file conflict
simulation studies. The file conflict experiments are highly sensitive to the
short-range dependence within individual files. The need for a good match
to the bursty behavior on the smallest time scale leads to the approach
taken in this article in which we identify the first level of clustering. Any
long-range dependence in either the individual file traces, or the aggregate
traffic, is irrelevant to our evaluation models. In fact, we do find some
evidence of LRD in the aggregate trace data (all files aggregated), but (not
surprisingly) little LRD present in the individual file traces.

None of the related work known to us addresses the issue of creating a
synthetic workload model that matches the burstiness characteristics of a
given set of trace data on a file-by-file basis. This is what is required to
drive discrete event simulation studies such as the one detailed in the next
section. This simulation application is both the motivation behind this
workload model, and the means by which we evaluate the effectiveness of
the model at capturing the burstiness in the recorded traces.

3. THE APPLICATION

Distributed file systems and database systems sometimes maintain multi-
ple copies of a single data object. Keeping multiple replicas can improve
availability (in the face of machine or network failures) and reduce access
latency (by increasing the probability that there is a replica “near” where it
is needed). However, when there is an update, something must be done to
maintain the consistency of the different replicas. Consistency control
approaches can be partitioned into conservative schemes, which prevent
any violation of single copy semantics by performing updates atomically to
all copies, and optimistic schemes, which take advantage of the fact that
concurrent update is rare. Optimistic approaches can have superior avail-
ability and much reduced update latency. However, they allow the occa-
sional occurrence of a conflicting update. That is, it is possible for two
different replicas to be updated concurrently before either update has had
the opportunity to propagate to the other replicas. If this occurs, no replica
contains the unique “most recent data” and a conflict is said to have
occurred.

The impetus for our work is the desire to answer the question, “How
frequently do conflicting updates occur in a replicated data system using
optimistic concurrency control?” A number of systems have been built with
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this principle (see, e.g., Bayou from Xerox PARC [Terry et al. 1995], Coda
from CMU [Satyanarayanan et al. 1990], and Ficus from UCLA [Guy et al.
1990; Page et al. 1998]). However, due to differing architectures and
environments, it has proved difficult to answer this question in a very
general way using the actual systems. Hence, a flexible simulation was
undertaken. Since the focus of this article is the input model, rather than
the file system model, we present a very simple optimistic replication model
here and use it to test the effectiveness of the synthetic trace generation
scheme. In a full-scale study of optimistic replication we will use a more
detailed file system model.

We model a replicated data object with n copies as a finite state machine
with n “normal” states and one “conflict” state (see Figure 4). In state n, all
replicas are mutually consistent; that is, all updates to the object have been
applied to all replicas (in the same order) and hence the replicas contain
the same value. If an update (write) operation occurs while the object is in
state n, the update is initially applied to one of the replicas, and the model
transitions to state 1. State 1 models the situation where only one replica
contains the most recent data value. The update then propagates to the
other replicas asynchronously, and the model transitions up through states
2, 3, and so on, as each additional replica is informed, until mutual
consistency is restored and the model returns to state n. In any state i: 1 #

i # n, i of the n replicas contain the most up-to-date data, whereas n 2 i
contain stale data.

If an update arrives while the object is in any state i: i , n, two
possibilities result: the update is applied either to one of the replicas that

Fig. 4. State transition diagram for an n-replica file. Note that all transitions to states 1 and
C are triggered by arrival events (writes to the data). All other transitions are triggered by
update propagation events.
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already contains the latest version, or to one that does not.1 If the replica
selection algorithm chooses one of the i replicas that is already up to date,
then the state transitions back to 1 and update propagation resumes
spreading knowledge of the new update. However, if one of the n 2 i
replicas containing an old version is selected, then a state exists in which
there is no longer a total ordering of file versions, an update-update conflict
exists and the model transitions to the conflict state. When in the conflict
state, C, update propagations cannot in general restore a correct,2 mutu-
ally consistent replicated data value. Any further updates to the object
while in the conflict state will leave the file in the conflict state. Another
type of operation, called “repair,” is required to restore a new dominant
version which must then be propagated to all of the replicas before the file
is once again mutually consistent. For purposes of this article, state C is an
absorbing state (we ignore conflict repair here). A statistic of interest is
then the expected time to absorption from a start state of n.

Consider the following assumptions: initial updates arrive according to a
Poisson process with rate l; any one of the replicas is equally likely to be
chosen for the initial update; and the time to propagate this update to any
other individual site is exponentially distributed with mean 1/m. Under
these conditions the model becomes Markovian and is easily analyzed
analytically. As we have seen, however, a Poisson process is a poor model of
the bursty arrival process typical of file system access, and it is precisely
the pattern of rapid updates that makes conflicts more likely. If we relax
the assumption of a Poisson arrival process and drive a simulation of this
model with trace data, then we obtain a model that is sensitive to the
burstiness in the trace. Comparing the resulting behavior of this trace-
driven model to a model driven by a synthetic input process provides a good
basis on which to judge whether a synthetic trace reflects this critical
characteristic of the actual file access patterns. Section 6 details the use of
such a simulation to validate our method for analyzing and generating
trace data.

This section has described a replicated file system model that is driven
either via file access traces or a synthetic workload input model. This
model serves the dual role of motivating the synthetic trace generation
work, and evaluating its success. The next section details our method for
automatic analysis of the file system traces.

4. CLUSTERING

The hypothesis is that file access data (and other types of bursty workload)
are effectively modeled by two levels of processes—the first generating
bursts, and the second generating events within bursts. In order to model
these processes for a given data set, it is necessary to “cluster” the data into

1Conventional algorithms prevent conflicts by restricting updates to one of the up-to-date
replicas. However, the cost of doing so may exceed the cost of dealing with the occasional
conflict, if conflicts are sufficiently rare and/or easy to repair.
2Where “correct” is defined as one-copy-serializable.
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bursts. We consider a form of agglomerative hierarchical clustering, as
described in Jain [1991], but simplified by the fact that our application
requires clustering in the time dimension only.

The data are in the form of an arrival process. Thus, each event has a
time at which it occurs, and the events are totally ordered by their time.
Let T1, T2, . . . , Tn be the sequence of access times for a particular file.
The basic algorithm for agglomerative clustering is as follows.

(1) Start with each event T1, T2, . . . , Tn in a cluster by itself and
initialize the iteration counter i to 0.

(2) Construct the intercluster distance array in which the jth element is
the distance between cluster j and cluster j 1 1.

(3) Find the smallest element of the distance array (if the smallest value is
not unique, randomly choose one from the set of smallest distances).
Say the kth distance is chosen. Combine clusters k and k 1 1.

(4) Increment i.
(5) Repeat Steps 2 to 4 until all events are part of a single cluster (we

examine earlier termination conditions in the following).

The preceding method produces a sequence of clusterings starting with
each event in a cluster by itself, and terminating with all events in a single
cluster. If a two-level model is a good representation of the data set, then in
between these degenerate cases lie one or more appropriate clusterings.
The difficulty lies in automatically deciding which intermediate clustering
is the best one. If we can determine that we have reached the point where
any further iterations would combine clusters that should remain distinct,
then we should terminate the algorithm and report the resulting clusters.

A second issue is how to compute distances between clusters. The
statistical literature provides a large number of distance measures that are
reasonable in various situations [Kaufman and Rousseeuw 1990]. We
employ one of the oldest measures, known as single linkage or nearest
neighbor: the distance between two clusters is the minimum distance
between any member of one cluster and any member of the other. Trans-
lated into our context, the “distance” between two clusters is the absolute
value of the difference between the two closest event times. For example, if
cluster j is {Tm, Tm11, . . . , Tm1r}, and cluster j 1 1 is {Tm1r11, Tm1r12,
. . . , Tm1r1s}, then the distance between them is Tm1r11 2 Tm1r. Notice
that employing single linkage implies that clusters will always be formed
from sequential event times, a property that we obviously desire. In fact,
the single linkage distance measure is criticized in the clustering literature
for its tendency to form clusters that look like chains, but this is precisely
the type of clusters for which we search.

4.1 Terminating the Algorithm

Define the random variable H to be the smallest value of the distance array
chosen in each iteration. That is, Hi is the distance between the two
clusters selected for merging in the ith iteration of the clustering algo-
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rithm; it is nondecreasing in i as the distance is always positive. Thus, the
slope of the Hi curve is always nonnegative.

Intuitively, if the data are truly bursty, the early elements of the Hi

sequence should be relatively small since we are combining clusters that
are part of the same burst. At some step we will merge the last pair of
clusters that are indeed part of the same burst. The next value of Hi

represents an attempt to combine two clusters that are separated by an
intercluster gap that should be very much larger than the greatest intra-
cluster gap. At that point the slope of the Hi curve turns dramatically
upward. We need to be able to recognize this point in an automated fashion.

Many clustering stopping rules have been proposed in the statistical and
application literature. For example, Milligan and Cooper [1985] describe
and test 30 such rules! Most of these rules are based on the relative
variability within clusters to between clusters. Our method exploits the fact
that our data form an arrival-counting process. Specifically, we compute a
finite-difference estimate of the second derivative of the Hi curve, and end
clustering when this derivative is significantly different from 0. The
following argument justifies this approach.

Suppose (for a moment) that no clusters exist in the file-access process.
Such a process is often well modeled as a Poisson process with arrival rate
l events per unit time. In other words, the interevent times Gi 5 Ti11 2
Ti, i 5 1, 2, . . . , n 2 1, are independent and identically exponentially
distributed random variables with mean 1/l. Because of the nature of the
single linkage distance measure, the heights H1, H2, . . . , Hn21 will
therefore be the order statistics (sorted values) of G1, G2, . . . , Gn21.
Thus, the smallest interevent gap will determine the first cluster, the
second smallest gap the next cluster, and so on. Using known results for
the order statistics of the exponential distribution (e.g., Devroye [1986]),
the expected increase (finite-difference first derivative) of Hi over Hi21 is

E@Hi 2 Hi21# 5
1

l~n 2 i!
. (1)

When n, the number of event times, is large, and i is not too close to n,
then (1) will be nearly constant for values of i close together. Therefore, the
local increase in Hi will be approximately linear, in expected value, and the
second derivative approximately 0, for a process without clusters.

Of course, we anticipate that there are clusters and the process is not
Poisson. However, until that point at which we begin combining clusters
that represent distinct bursts, the interarrival gaps should be Poisson-like.
Thus, our stopping rule ceases combining clusters when the behavior of Hi

departs significantly from what is expected for a Poisson process. At that
point we assume that we are no longer combining intracluster event times,
and have started to combine clusters. Using the second derivative test
avoids the need to specify a value of l. Based on empirical results, we chose
to terminate clustering when the estimated second derivative exceeded 2.
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The resulting clusters were not very sensitive over a range from 2 to 10
adding only several iterations to the preceding algorithm.

However, since our traces are very heterogeneous, we may have file
access traces without clusters. If we apply the stopping rule to a Poisson
event process, then it is likely to break the data up into a small number of
very large clusters, since (1) does change rapidly for i near n. This implies
that we should first subject our data sets to a Poisson-process test to
determine if clustering is needed. If the hypothesis of a Poisson process is
rejected, then we apply the clustering algorithm.

On the other hand, if we apply this rule to a deterministic, completely
regular process, it will place all observations in a single cluster, since the
second derivative will be zero at all stages. Therefore, a single-cluster
outcome should alert us to a data set that represents a regular process.
However, the methodology continues to work as the interarrival times
within one large cluster are fitted with a degenerate distribution.

4.2 Clustering Example

Consider again the trace for accesses to file 4863, as displayed in Figures 1
and 3. The clustering algorithm is initialized by defining each event to be in
a cluster by itself and the list of intercluster times is built and sorted in
ascending order. The algorithm then begins by combining the two closest
events into one cluster. In this case the minimum interevent time is 0.001
seconds. The distance between this newly created cluster and its nearest
neighbor on either side is created and the ordered list of intercluster times
is updated appropriately. The algorithm continues combining the nearest
neighbor clusters.

Figure 5 shows the value of Hi for each iteration of the clustering
algorithm for this file. The value of Hi is very small for small values of i,
reflecting the likelihood that the early steps are combining events that are
indeed part of the same burst. The curve is monotonically increasing with a
slope very nearly zero until it “takes off” for values of i in the mid-40s. We
interpret this knee in the curve as the point where we cease combining
events that are part of the same cluster and start combining separate
clusters. It is here that we wish to terminate clustering.

Fig. 5. Height curve and its second derivative for file 4863.
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Figure 5 also shows the value of the second derivative of the height
curve. We can see that it is nearly zero until the mid-40s at which point it
begins to jump. Our stopping rule detects that the second derivative has
exceeded the threshold (chosen to be 2 for this set of data) and terminates
clustering after 43 iterations. Notice that the first point at which the
second derivative differs significantly from zero is precisely the point where
the height curve turns sharply upward and hence successfully identifies
that point at which the clustering algorithm has finished combining events
within clusters and is about to combine distinct bursts. The resulting
clustering is illustrated in Figure 6.

5. MODELING AFTER CLUSTERING

Now that we have partitioned the interarrival times for each file into inter-
and intracluster times, we can proceed to model the processes that gener-
ated the clusters, and events within the clusters. For each separate file
accessed during the trace, let the random variables X, Y, and D denote the
intercluster time, the intracluster time, and the cluster size, respectively.
Note that D is discrete. There are then these steps in modeling and
generating data after the sample data are clustered:

(1) Data Analysis. Extract the observed intercluster times, intracluster
times, and cluster sizes, as represented by the random variables
{X̂1, . . . , X̂n} (X̂1 is the time to the first cluster), {Ŷ1, . . . , Ŷm}, and
{D̂1, . . . , D̂n}, respectively. Here n is the number of clusters and m 5
(i51

n D̂i 2 n.

Fig. 6. Clusters automatically detected for file 4863.
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(2) Modeling. Fit distributions to the observed intercluster times, intra-
cluster times, and cluster-size data. Our software uses the Fittr1 pack-
age [Swain et al. 1988] to determine the parameters of the Johnson
translation system [Ord 1972; Johnson 1949] for each of the random
variables.

(3) Generation.Use the parameters selected by Fittr1 for random-variate
generation of X, Y, and D. (Although D is discrete, we fit a continuous
distribution due to the lack of flexible families of discrete distributions,
and then round to the nearest integer to obtain the cluster size.)

(4) Synthetic Trace. Use the generated values to form a two-level process.
After an intercluster gap interval Xi, a new process is started. This
process generates Di events with the time between events given by
Yj, . . . , Yj1Di

22, and then terminates. Note that for the ith cluster,
j 5 1 1 (k51

i21 (Dk 2 2) and if Di 5 1 (a singleton), then it does not
contribute to Y.

Figure 7 illustrates this two-level process. Figure 8 shows data generated
for file 4863. The synthetic trace is visually similar to the pattern found in
the original data shown in Figure 1.

6. VALIDATION EXPERIMENT

The goal of input modeling is to find a representation of the uncontrollable
process that captures the features that are most critical for the application
at hand. In our context, the file access patterns generated by the input
model must produce (very rare) file update conflicts in the same manner as
the actual file access data in the trace. Thus, we emphasize validation of
the input model in terms of the output of the simulation it drives, rather
than in terms of a feature-by-feature match with the original trace data.

But why not expect the input model to match the trace data across all
measurable features? Input modeling of real processes—processes for
which there is no “true” input model to find—always requires tradeoffs.
Ideally, these tradeoffs are made by a human analyst in conjunction with
appropriate statistical tools. In our application, however, the large number

Fig. 7. A two-level process: the ith process generates Di 5 4 events with the time between
events given by Yj, . . . , Yj12; the i 1 1st cluster is shown starting Xi11 time units later.
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of input models that are needed demands an algorithmic approach that can
be executed in a production mode. Any algorithmic approach will have an
Achilles’ heel in the form of a pathological or contrived data set that will
fool the algorithm. To demand foolproof performance of an input-modeling
algorithm is unreasonable; but to demand robust performance is essential.
Robust performance is secured by building the input model from flexible
components, structured to account for known features of the process. Our
two-level representation includes as extreme cases completely random
(Poisson-like) processes and completely regular (deterministic) processes,
as well as the clustered processes we typically expect to see. And the
Johnson translation system, which is used to represent intra- and inter-
cluster times, is a very flexible, four-parameter family of distributions that
can adopt any finite first four moments presented by the data. Robust
performance is verified via extensive validation against a large heteroge-
neous collection of data sets, as described in this section.

Another, more subtle, weakness of any algorithmic approach is that a
more refined input model might be obtained for each data set by a human
analyst tailoring a model to the specific characteristics of the data. How-
ever, the time required to develop individual input models for thousands of
files is prohibitive, and the end result is a collection of finely tuned, but
unrelated models that may not be easily altered to represent different load
levels or mixes of file types than those present in the data. A desirable
property for our applications is the ability to easily represent expanding
file systems, or file systems that do not yet exist. This capability is provided
by the generic input model proposed here.

The structure of our two-level model, and the use of the Johnson system,
implies that we are restricting ourselves to at most two levels, and we
cannot model the types of LRD that have been observed in some aggregate

Fig. 8. Generated data corresponding to file 4863 (see Figure 1).
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network traces. Using the Johnson translation system restricts us to
distributions with finite first four moments, and therefore we will never
realize inter- or intracluster distributions with the type of heavy tails that
are associated with LRD for the aggregate process. However, as a practical
matter any finite-length trace will have finite sample moments, so the
Johnson system is capable of modeling whatever actually occurred, with
moments that are arbitrarily large, but not infinite. Because we are
interested in burstiness on the smallest time scale, the existence of addi-
tional levels of clustering at longer time scales is not relevant to our
applications. Furthermore, we do not want to aggregate arrivals in differ-
ent time scales (we need the individual file accesses), so the self-similar
behavior that certain LRD processes exhibit is not required.

6.1 Method

The discrete event simulation model of a replicated file system that was
described in Section 3 served as the testbed for our validation. Correct
execution of the simulation program was verified by comparing simulation
results against the analytical solution obtained when the process is
Markov.

Trace data for the 567 files that were accessed more than 30 times during
the busiest two-hour period were extracted from the complete trace. For
each of these files, the clustering algorithm was run and distributions fit
for the three random variables that characterized the two-level arrival-
counting process. These distributions were used to generate synthetic
workloads for each file.

Simulation experiments were performed for each file: the first used file
accesses from the actual trace data, and the second used accesses generated
by the corresponding synthetic workload model. Each experiment consisted
of simulations at seven update rates, m (the rate at which updates are
propagated from the most up-to-date replica to other replicas, with the
actual time to update being exponentially distributed with mean 1/m)
ranging from 0.001 to 1,000. The number of replicas was fixed at 5, and the
replica to receive the initial update was equally likely to be any of the 5.

Each simulation run was terminated when the width of the 95% confi-
dence interval for the mean time to conflict (the mean time to absorption,
where conflicts are considered an absorbing state) was less than 5% of the
mean; simulations were also terminated when five million seconds of
simulated time had elapsed since the last conflict. Since the trace records
were not sufficiently long to obtain the desired precision with a single pass,
we treated each trace as a loop and cycled through it until the termination
criterion was met. The experiment required running over 8,500 indepen-
dent simulations, each of which took from several seconds to several hours
to complete (the average was five minutes) requiring over 32 CPU-days on
an HP9000/64 workstation. The independent simulations were distributed
to over 250 idle workstations, allowing a run to complete in one night.

The data that result from each pair of experiments consist of values for
the estimated conflict rate (1/estimated mean time to conflict) for each of
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the seven values of m, and for each file. The first element of the pair is
produced with the empirical trace data, and the second with the synthetic
data. This results in a pair of curves for each file as a function of the update
rate m. One such pair of curves, for our example file 4863, is shown in
Figure 9, and is discussed in the next section. In a later section we present
summary statistics across all files.

6.2 Single File Illustration

Figure 8 shows the results of generating file access times for file 4863.
Comparing this to Figure 1 suggests similar patterns of clustering. This file
turns out to be one of the most difficult for our methods to match. Most of
the intracluster gaps are very small (hundredths of a second), yet two are
around three seconds. Because the data set is so small, these two larger
gaps have considerable effect on the mean intracluster gap and cause, for
this file, the lower conflict rate. However, visually inspecting the results of
clustering shows that the automatic method did almost exactly what a
human would have done. The percentile values for intracluster times also
show the match to be quite good.

Figure 9 shows the results of running the simulation with both the
empirical trace and synthetic data for this file. We plot the conflict rate,
1/(mean time to conflict), because the mean time to conflict approaches
infinity for large values of update rate. The conflict rates, as a function of
update rate, are very close in absolute value for both data sets, lending
support to the hypothesis that the synthetic data capture important char-
acteristics of the empirical trace.

This experiment looks at the change in conflict rate as the update
propagation rate m increases. For a conflict to occur in this model, two
things must happen: an operation must follow a previous operation so

Fig. 9. Comparison of conflict rate for the original and generated data for file 4863. Number
of replicas is 5.
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closely that the first update has not had time to propagate to all of the
other replicas; and replica selection must choose one of the not-yet-up-to-
date replicas to serve the next write. When updates are propagated slowly,
conflicts occur frequently, since it is often the case that a not-yet-up-to-date
replica is selected for the next update. As updates propagate more quickly,
conflicts become rarer. Beyond some update rate no more conflicts are
observed within the limits of the available simulation time. The depen-
dence on update rate is clearly illustrated in Figure 9. This particular file
shows a fairly high conflict rate over the range of update propagation rates
tested due to the very small intracluster gaps; in other words, it is not
unusual for this file to experience back-to-back writes before update
propagation has spread the first write to all five replicas.

6.3 Experimental Results

Table I and Figures 10 and 11 summarize the results of running the
simulation experiment for all 567 files. The “mean relative error” reported
in this table for a given value of m is calculated as follows.

(1) For each file, compute the difference between the conflict rate obtained
using synthetic data and the conflict rate obtained using the trace data
at each value of m.

(2) For each file, divide the absolute difference in conflict rate for each
update rate m by the conflict rate obtained using the empirical trace at
the lowest update rate, m 5 0.001.

(3) Average these relative differences across all 567 files at each value of m.

Thus, the “relative error” is relative to the smallest update rate, which
implies the largest conflict rate, for each file using the trace data. We chose
this standardization because for many files the conflict rate approaches
zero for large update rates, causing the relative error to approach infinity
even when the absolute error is quite small. By standardizing on the
largest conflict rate we appropriately discount differences between the
simulations when the conflict rates are very, very small, and therefore
inconsequential.

Table I provides compelling evidence that the automated synthetic load
generator is representing the critical characteristics of the trace data as
they relate to conflict rate. The mean relative error across all files is in the
single digits, as a percent, and 50% of all files are within a 10% relative
error across all update rates, even though the models were generated
entirely without human tuning.

Table I. Summary Statistics for the Trace Validation Experiment
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One can also see that there is a systematic difference between the results
obtained for each type of data: relative to the empirical trace data, the
synthetic data tend to cause overestimation of the conflict rate for small
update propagation rates, and underestimation of the conflict rate for large
update propagation rates. One possible explanation for this is the wrap-
around effect using empirical, and therefore finite, trace data. At large
update propagation rates, the simulation requires excessively long runs to
obtain a conflict, and the time to conflict is highly variable, meaning that
many conflicts must be observed to achieve a sufficiently narrow confidence
interval for the mean. Although the synthetic load generator is able to
continue producing statistically new loads for these long runs, the empiri-
cal trace must be repeatedly rewound and run again. Thus, the effect of
cutting off the last gap and joining the first gap in progress is repeated
with each iteration, amplifying its impact. This rewind effect, and its

Fig. 10. Summary of relative error for various values of propagation delay.
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distortion of the simulation results, is one of the reasons for preferring a
synthetic load generator in the first place.

7. CONCLUSIONS

This article presents a methodology for analyzing, modeling, and simulat-
ing certain arrival-counting processes. The method is appropriate when (1)
the number of such processes is too large to analyze manually, (2) the
processes are one- or two-level processes, and (3) the need is for individual
file rather than aggregate trace accuracy. Trace data from both computer
file systems and from communications networks typically fit these charac-
teristics. In the case of file system traces, the data are decomposed into
separate traces for each file accessed; for network traffic, communications
between distinct pairs of source and destination sites would constitute an
appropriate decomposition. The purpose of this input modeling effort is to
be able to generate synthetic traces that exhibit similar “burstiness” to the
original recorded data.

The method first uses hierarchical clustering to group arrivals into
bursts. A novel stopping rule is presented that allows the method to use
different clustering thresholds for each file. This is in contrast to previous
work (see, e.g., Jain and Routhier [1986]) which required a single thresh-
old, determined by inspection, to be applied to the whole data set.

The critical test for a synthetic trace generation facility is how well it
captures the characteristics of the load it is intended to model. In order to
assess the trace analysis and generation software, a simple simulation
modeling effort is described whose goal is to predict the frequency of
concurrent updates in a lazy-update propagation replicated distributed file
system. The model is very sensitive to the burstiness of the update traffic.

Fig. 11. Summary of relative error for all values of propagation delay.
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Hence it is a good test of the degree to which the method captures this
characteristic of the trace data. The results of the comparison experiment
lead us to conclude that the two-level approach presented here is successful
in this respect.

It should be noted that no attempt was made to model the time-varying
nature of the workload. It is well known that file system workloads are
nonstationary. For the purposes of our simulation application, however, we
are more interested in the worst case scenario which is represented by the
busiest sections of the trace. Implicit in this decision is the assumption that
the trace is stationary over the two-hour busy period chosen. Hence, no
work is planned towards addressing nonstationary workloads.

As of yet, we have not attempted to model the mix of file operations.
Further work is required to generate an appropriate distribution of event
types (read, write, lookup, create, etc.). Similarly, the identity of the site
making the file system access has been ignored to this point.

In the method described here, we model the intercluster, intracluster,
and cluster-size processes. A result of this approach is the potential to
create overlapping clusters in the synthetic trace. Referring to Figure 7, if
Xi11 , (h5j

j1Di Yh (where j 5 1 1 (k51
i21 (Dk 2 2) as before), then the ith

and i 1 1st clusters overlap, as the first event of cluster i 1 1 occurs
before the last event of cluster i. The result is a synthetic trace which, if
reclustered, would appear to have slightly larger than predicted clusters
and shorter than predicted intracluster gaps. This might result in more
conflicts (shorter mean time to conflict) in the validation experiment. Since
we do not see any tendency towards higher conflict rates with the synthetic
traces, we conclude that this effect is not large; at least not the largest
source of error present.

A longer range goal of this work is to produce a flexible file system load
generation tool. Given a set of trace data for an existing system, the tool
should be able to generate events that mimic the behavior of the existing
system. But further, it should be parameterized so that it can be tuned to
generate predictable workloads for file systems for which no trace data are
available, either because they do not yet exist, or because instrumenting
them to gather the traces is infeasible. For example, one might wish to
generate a trace for a file system that mimics an existing one, but has 10
times as many users accessing 5 times as many files. One technique for
accomplishing such a task is to sample from the set of individual file
models derived from a trace, as described here. The work presented is a
step along the path towards producing such a tool.

The results presented here should not be used to draw conclusions about
the likelihood of conflicts with optimistic replication algorithms. The ver-
sion of the file system model employed here is oversimplified, and used only
as motivation and as a metric to judge the synthetic trace generation. In
particular, the assumption in the file system model that the choice of the
site to be updated is random is clearly unfounded and tends to greatly
overestimate the occurrence of conflicts.
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