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tant factor under heterogeneous variance conditions when a main-effects model applies. This paper improves
the CSB procedure in two aspects. First, a new fully sequential hypothesis-testing procedure is introduced that
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1. Introduction
Screening experiments are designed to investigate the
controllable factors in an experiment aimed at elim-
inating the unimportant ones. Controlled sequential
bifurcation (CSB) has been proposed as an effec-
tive and efficient factor-screening method for com-
puter simulation experiments (Wan et al. 2006). CSB
emphasizes situations that often occur in simulation
experiments (but occur less frequently in physical
experiments). These situations include having a large
number of factors including, easy switching between
factor-level combinations, and the use of common
random numbers (CRN) to reduce the variances of
estimated effects.
CSB extends the basic sequential bifurcation

(SB) procedure (Bettonvil 1990, 1995; Bettonvil and
Kleijnen 1997; Cheng 1997) to provide error con-
trol for random responses. By incorporating a multi-
stage hypothesis-testing approach into SB, CSB is the
first screening strategy to simultaneously control the
Type I error for each factor and power for each bifur-
cation step under heterogeneous variance conditions.
The methodology is easy to implement and is more
efficient than traditional designs in many situations,
making it attractive for a wide variety of simulation
applications.

The error control property of CSB depends on the
hypothesis testing procedure used at each step. Wan
et al. (2006) proposes two hypothesis testing proce-
dures that have the desired error control properties:
the two-stage testing procedure takes N0 observations
at the first stage; if no conclusion can be reached,
another N −N0 observations will be taken. The fully
sequential testing procedure takes one observation
at a time after the first N0 observations and stops
as soon as a conclusion can be reached. Numeri-
cal evaluation shows that the fully sequential test-
ing procedure is much more efficient, but it is only
applicable for certain levels of Type I error and power.
In this paper, we improve the efficiency of CSB by
substantially generalizing the fully sequential test-
ing procedure introduced in Wan et al. (2006). The
original fully sequential testing procedure applies to
only a very specific setting—when the required Type
I error equals one minus the power, which is rarely
encountered in practice; the new test presented here
is general. When variances are large, the two-stage
hypothesis testing procedure in Wan et al. (2006)
may require many observations to achieve the desired
error control. The extended fully sequential procedure
introduced here can save as much as two-thirds of the
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computational effort relative to the two-stage hypoth-
esis testing procedure.
Wan et al. (2006) assume that the simulation output

can be represented by a main-effects model

Z= �0+
K∑
i=1

�ixi + � (1)

with all �i ≥ 0� 0 < i ≤ K. The error term, �,
is assumed to be a Nor
0��2
x�� random vari-
able where �2
x� is unknown and may depend on
x = 
x1�x2�    � xK�, and Z is the simulation output
response of interest. Unfortunately, it is not always
realistic to assume that there are no interactions (and
it is very unusual to know that there are none, as
shown in §6). Furthermore, even when subject matter
experts can specify the directions of the main effects,
the signs of the interactions may still be unknown. As
we will demonstrate in §§5 and 6, if interactions are
present and we ignore them, the results given by the
original CSB can be misleading even when the inter-
actions themselves are not important. Kleijnen et al.
(2006) proposed a fold-over design for SB in which a
more general model that includes all two-factor inter-
actions and quadratic terms is assumed:

Z= �0+
K∑
i=1

�ixi +
K∑
i=1

K∑
j=i

�ijxixj + �� (2)

where �i ≥ 0, 0 < i ≤ K is the main effect of fac-
tor i, and �ij is the interaction between factors i
and j . When i = j , �ii represents the quadratic effect
of factor i. The error term � has the same proper-
ties as in the main-effects model. This paper shows
the implementation of the fold-over design in CSB,
termed CSB-X. The resulting CSB-X method retains
the error control property of CSB in the presence of
two-factor interactions. Even though the number of
design points is doubled, the number of observations
required is about the same, if not less, than CSB in
many situations.
The goal of screening with CSB-X is still to iden-

tify the factors with important main effects, so the
strategy is to include new design points that allow us
to eliminate the bias in the main-effects estimators as
a result of the second-order terms. The signs of the
interactions and quadratic terms are irrelevant and
do not influence the final result, so no prior knowl-
edge about the interactions is needed. Because the
method does not estimate the interactions themselves,
it will miss those factors with small main effects but
big interactions with other factors. For the purpose of
screening, however, it is often reasonable to assume
that only the main effects are of interest. Specifically,
if one accepts the heredity property (Wu and Hamada
2000), then for an interaction to be important at least

one of its parent factors should be important; there-
fore, the pursuit of important interactions can focus
on interactions that involve at least one of the impor-
tant main effects after the screening experiment.
The rest of this paper is organized as follows: In §2,

we give a thorough review of the CSB method and its
performance guarantees. The extended fully sequen-
tial testing procedure is discussed in §3, and the
potential savings of computational effort is demon-
strated numerically. In §4, we discuss the new CSB-X
procedure based on fold-over designs. The perfor-
mance is proven, and the screening efficacy and effec-
tiveness of the original CSB and CSB-X are compared.
Further evaluation of CSB and CSB-X both employ-
ing the newer, more general, fully sequential testing
procedure is provided in §5. A realistic example, first
presented in Wan et al. (2006), is reevaluated with
CSB-X in §6, and §7 concludes the paper.

2. Review of CSB
In this section, we review the CSB method proposed
by Wan et al. (2006). Let �� �� �0, and �1 be user-
specified parameters with 0 < � < 05� 05 < � < 1,
and �1 > �0 > 0. The primary objective of CSB is
to divide the factors into two groups: those that are
unimportant, which means �i ≤�0, and those that are
important, meaning �i ≥ �0. For those factors with
effects ≤ �0, we want to control the Type I error of
declaring them important to be ≤ �; for effects that
are ≥ �1, we want to provide power for identify-
ing them as important to be ≥ �. For those factors
with effects between �0 and �1, the procedure should
have reasonable power to identify them. Wan et al.
(2006) propose a cost model that connects both the
thresholds of importance (�0 and �1) and factor lev-
els with the cost to change them to guarantee a fair
comparison. More generally, these parameters should
be determined by the goal and properties of the spe-
cific problem. Both the CSB procedure and the CSB-X
procedure described in this paper are independent of
how the factor levels and thresholds of importance
are determined.
A formal description of CSB appears in Figure 1. In

each step of this sequential procedure, the cumulative
effect of a group of factors is tested for importance.
The first step begins with all K factors of interest in
a single group and tests that group’s effect. If the
group’s effect is important (indicating that at least one
factor in the group may have an important effect),
then the group is split into two subgroups (“bifurca-
tion”). The cumulative effects of these two subgroups
are then tested in subsequent steps, and each sub-
group is either classified as unimportant or split into
two subgroups for further testing. As the experiment
proceeds, the groups become smaller until eventually
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Initialization: Create an empty LIFO queue for groups.
Add the group �1�2�    �K� to the LIFO queue.
While queue is not empty, do
Remove: Remove a group from the queue.
Test:
Unimportant: If the group is unimportant, then
classify all factors in the group as unimportant.

Important (size = 1): If the group is important and
of size 1, then classify the factor as important.

Important (size > 1): If the group is important
and size is greater than 1, then split it into two
subgroups such that all factors in the first
subgroup have smaller index than those in the
second subgroup. Add each subgroup to the
LIFO queue.

End Test
End While

Figure 1 Structure of CSB

all factors that have not been classified as unimpor-
tant are tested individually. The method assumes a
main-effects model with normal errors and all factor
effects �i ≥ 0.
More specifically, suppose the group to be tested

contains factors �k1 + 1� k1 + 2�    � k2� with k1 < k2.
The Test step in Figure 1 tests the following hypothe-
sis to determine if the group might contain important
factors:

H0�
k2∑

i=k1+1
�i ≤�0 versus H1�

k2∑
i=k1+1

�i > �0

Let xi represent the setting of factor i. An experiment
at level k is defined as the following factor settings:

xi
k�=
{
1� i= 1�2�    � k�
0� i= k+ 1� k+ 2�    �K (3)

Thus, “level k” indicates an experiment at which fac-
tors 1�2�    � k are at their high settings and factors
k + 1� k + 2�    �K are at their low settings. We use
Z
k� to represent the response at level k so that Z
k�=
�0 +

∑k
i=1�i + �
k�, given model (1). Let Zl
k� denote

the lth simulation replication of an experiment at
level k, 0≤ k≤K. Therefore,

Dl
k1� k2�=Zl
k2�−Zl
k1� (4)

is an unbiased estimator of the group effect
∑k2

i=k1+1�i.
Define a qualified hypothesis test as a test that guar-

antees
• Pr�Declare a group effect

∑k2
i=k1+1�i important

∣∣∑k2
i=k1+1�i ≤�0�≤ �, and
• Pr�Declare a group effect

∑k2
i=k1+1�i important

∣∣∑k2
i=k1+1�i ≥�1�≥ �.

Given a qualified hypothesis testing procedure and
assuming model (1) holds, we can prove the following
two theorems for CSB (Wan et al. 2006).

Theorem 1. CSB with a qualified testing procedure
guarantees that

Pr�Declare factor i important � �i ≤�0�≤ �

for each factor i individually.

Theorem 2. CSB with a qualified testing procedure
guarantees that

Pr
{

Declare a group effect

k2∑
i=k1+1

�i important
∣∣∣∣

k2∑
i=k1+1

�i≥�1

}
≥�

for each group tested.

The Type I error control, described in Theorem 1,
holds for each factor individually. We will briefly dis-
cuss the experiment-wide Type I error control of CSB
by evaluating the expected number of factors that are
falsely classified as important, denoted E�FK�, for two
extreme cases. To simplify the analysis, we assume
that there are K = 2L factors, where L is an integer, and
all tests are independent. Then we have the following
two theorems (Wan et al. 2006):

Theorem 3. If model (1) holds and
∑K

i=1�i ≤�0, then
CSB with a qualified testing procedure guarantees that
E�FK�≤ �

Theorem 4. If model (1) holds and �i ≤ �0� i = 1�2�
   �K, but �i + �j ≥ �1 for all i �= j , then CSB with a
qualified testing procedure guarantees that E�FK�≤K�.

Realistic problems should be between these two
extreme cases, but closer to Theorem 3. Therefore,
CSB provides strong control of the “false-positive”
rate, regardless of the number of factors.
Wan et al. (2006) proposed two qualified tests:

a two-stage testing procedure and a fully sequential
testing procedure for a very special case (�= 1− �).
The two-stage testing procedure takes a small number
of observations in the first stage. If no conclusion can
be reached, more samples are collected in the second
stage. The sample size depends on the estimated vari-
ances in the first stage. The fully sequential testing
procedure also has a first stage with a small number
of observations, but then it takes one observation at
a time until a conclusion can be reached. The fully
sequential testing procedure is usually more efficient
than the two-stage test when applicable.
In summary, CSB is a sequential screening method

for stochastic simulation experiments. Given an ap-
propriate hypothesis testing procedure, the method
controls the Type I error for each factor and power
for each bifurcation step. The sequential property of
the method makes it well suited for simulation exper-
iments. Examples show that CSB is highly efficient
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for large-scale problems when there are only a few
important factors and they are clustered, because CSB
can eliminate unimportant factors in groups (assum-
ing �i ≥ 0 for all i).

3. Extended Fully Sequential
Testing Procedure

A key feature of CSB is that it provides strong statis-
tical inference (Theorems 1–4) relative to other factor-
screening methods. There is, however, a price to be
paid for such strong inference (particularly the power
guarantee) in terms of the simulation effort required
to attain it. Although the structure of CSB makes it
efficient when there are a small number of important
factors, the efficiency of the testing procedure used in
each step is just as critical to the overall computational
cost to run CSB.
Wan et al. (2006) described a fully sequential test-

ing procedure for the special case when the exper-
imenter is willing to set � = 1 − �, where � is the
required probability of Type I error and � is the
required power. The procedure is based on a ranking-
and-selection procedure described by Kim (2005); it
adds one replication at a time and terminates as soon
as a conclusion can be reached, and in most cases
it is much more efficient than their two-stage test-
ing procedure that does not link Type I error and
power. However, the requirement that �= 1− � lim-
its the fully sequential test’s usefulness. For example,
the experimenter may require high power (have low
probability of missing important factors)—say, 095—
and �= 01 may be a sufficient level of Type I error.
In this section, we generalize the fully sequential test-
ing procedure so that it can be used when � �= 1 −
�. This is a nontrivial extension that requires a sig-
nificantly different development. The extended fully
sequential testing procedure is a qualified test for CSB
and is invoked each time the Test step is encountered
in Figure 1.

3.1. Procedure
Unlike the two-stage testing procedure for which the
second-stage sample size is based on the worst-case
scenario (Wan et al. 2006), the extended fully sequen-
tial testing procedure adds one replication at a time
to both the upper and lower levels of the group being
tested. It will reach a conclusion as soon as the infor-
mation is sufficient. We use r to represent the current
number of replications at levels k1 and k2 (the replica-
tions are always paired for the upper and lower levels
of the testing group). The initial experiment at any
level consists of N0 replications, but more generally,
nk denotes the number of replications that have been
taken at level k. For a specific selected group with fac-
tors �k1+ 1� k1+ 2�    � k2�, it is easy to see that given

Number of samples

N0

(Dl (k1, k2)–r0)
r

Σ
l=1

M(k1, k2)

TB 1

TB 2

Important

Unimportant

TB1: Termination boundary 1

TB2: Termination boundary 2

Figure 2 Fully Sequential Test

model (1), E�Dl
k1� k2��=
∑k2

i=k1+1�i, which is the sum
of the main effects of the group. The test also uses

S2
k1� k2�=
1

N0− 1
N0∑
l=1


Dl
k1� k2�− D̄
k1� k2��
2�

the first-stage (initial N0 observations) sample vari-
ance of the paired differences (see Equation 7 in §4).
The fully sequential test takes paired observations
from each level, one pair at a time, and checks
whether

∑r
l=1
Dl
k1� k2�− r0� crosses one of two termi-

nation boundaries, where r0 is a drift parameter (see
Figure 2). If Termination boundary 1 is crossed, the
group is declared unimportant. If Termination bound-
ary 2 is crossed, the group is declared important. The
maximum number of paired observations that will
be taken is one more than M
k1� k2� = 	a
k1� k2�/$
,
where a
k1� k2� and $ are parameters described below.
The procedure is illustrated in Figure 2, where the

dots represent the observed value of the test statis-
tic as a function of the number of paired observa-
tions. The algorithm is presented in Figure 3. After
the initial N0 replications, the test adds one replica-
tion at a time to both the upper and lower levels of
the group being tested until a decision is made. The
critical region for the extended fully sequential test is
a function of the following quantities:
• ±a
k1� k2�=±a0S

2
k1� k2�, the intercepts of the tri-
angular region in Figure 2; and
• ±$=±
�1−�0�/4, the slopes of the sides of the

triangular region.
The constants a0 and r0 are the solutions of the fol-
lowing equations:

∫ �

0

∫ �

−�
%
x�

&
y�

1− &
y�
(

(
y%
x�− 
r0−�0�

%
x�

)
·f 
x�N0− 1�dxdy = � (5)
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0. Set r = nk1
= nk2

.
1. If r >M
k1� k2� then

(a) If
∑r

l=1 
Dl
k1� k2�− r0�≤ 0, then stop
and classify the group as unimportant.

(b) Else stop and classify the group as important.
2. Else (i.e., r ≤M
k1� k2��

(a) If
∑r

l=1 
Dl
k1� k2�− r0�≤−a
k1� k2�+$r

(Termination boundary 1), then classify the
group as unimportant.

(b) Else if
∑r

l=1 
Dl
k1� k2�− r0�≥ a
k1� k2�−$r

(Termination boundary 2), then classify the
group as important.

(c) Else take one more replication at both levels
k1 and k2, set r = r + 1, and go to Step 1.

Figure 3 Extended Fully Sequential Test

and ∫ �

0

∫ �

−�
%
x�

&
y�

1− &
y�
(

(
y%
x�− 
�1− r0�

%
x�

)
f 
x�N0− 1�dxdy = 1−�� (6)

where

&
y�= e−2$y� (
x�= e−x2/2

√
2+

� %
x�=
√
N0− 1√
xa0/$

�

and

f 
x�n�=




1
2n/2,
n/2�

xn/2−1e−x/2� x≥ 0�

0� x < 0�

which is the -2 distribution with n degrees of free-
dom, and ,
n/2�= ∫ �

0 xn/2−1e−x dx.
If � = 1 − � (the symmetric case), then a0 =

2.
N0 − 1�/
�1−�0� and r0 = 
�1 +�0�/2, where . =

e−2 ln
2��/
N0−1� − 1�/2 (Hartmann 1991, Kim 2005). Our
contribution is to extend the procedure to the asym-
metric case 
� �= 1− ��. Because achieving both high
power and small Type I error often requires a very
large number of replications, our effort to decou-
ple the choice of � and � improves the efficiency
of the fully sequential testing procedure in practical
applications.
As in Wan et al. (2006), replications are obtained

whenever new groups are formed: when form-
ing a new group containing the factors �k1 + 1,
k1 + 2�    � k2� with k1 < k2, the number of observa-
tions at levels k1 and k2 are equalized in the following
way before beginning the test:
If nk1

= 0, then collect N0 observations at level k1
and set nk1

=N0;
If nk2

= 0, then collect N0 observations at level k2
and set nk2

=N0;
If nk1

<nk2
, then make nk2

−nk1
additional replica-

tions at level k1 and set nk1
= nk2

; and

If nk2
<nk1

, then make nk1
−nk2

additional replica-
tions at level k2 and set nk2

= nk1
.

When the group effect is significantly larger than �1
or smaller than �0, the test can be much more efficient
than a two-stage testing procedure because of possible
termination. The procedure proposed here is applica-
ble to both symmetric (i.e., �= 1−�) and asymmetric
cases (i.e., � �= 1 − �). When � = 1 − �, the parame-
ters a0 and r0 can be calculated directly; otherwise, the
closed forms are not available and numerical methods
must be used to solve Equations (5) and (6); see §3.2.

3.2. Determining Critical Values
The challenge of implementing the extended fully
sequential testing procedure lies in solving Equa-
tions (5) and (6) to get a0 and r0. Numerical
methods are used to evaluate the double inte-
grals, and a two-dimensional line search is then
required to find a solution. A Matlab (The Math-
works, Inc.) algorithm is presented in Appendix C in
the Online Supplement (available at http://joc.pubs.
informs.org/ecompanion.html). The following lem-
mas make the search relatively easy.

Lemma 1. For a0 fixed, both the power and the Type I
error are decreasing in r0.

Lemma 2. If �≤ 1/2 and � ≥ 1/2, then �0 ≤ r0 ≤�1.

The proofs of the lemmas are given in Appendix A
in the Online Supplement. Lemma 2 gives initial
upper and lower bounds for r0; based on the mono-
tonicity property of Lemma 1, the bounds can be
updated during the search process to close in on the
solution.

3.3. Performance of the Extended Fully
Sequential Testing Procedure

The extended fully sequential testing procedure con-
trols the Type I error and power for each bifurca-
tion step; i.e., it is a qualified testing procedure. More
specifically, we can prove the following theorem for
every single bifurcation step. The proof of the perfor-
mance of the entire CSB and CSB-X procedure then
follows as in Wan et al. (2006); see Theorems 1–4.

Theorem 5. Suppose the responses Dl
k1� k2� (Equa-
tion 4) are independent and identically distributed (i.i.d.)
normal random variables.
• If E�Dl
k1� k2�� ≤ �0, then Pr{Declare the group

important} ≤ �
• If E�Dl
k1� k2�� ≥ �1, then Pr{Declare the group

important} ≥ �

The proof is given in Appendix A in the Online
Supplement.
Figure 4 illustrates the potential for increased effi-

ciency by decoupling � and 1 − �. The outer tri-
angle is the continuation region for a case where
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Figure 4 Illustration of Efficiency Improvement with Reduced Type I
Error Requirements (the Smaller Triangular Region and the
“Relaxed �” Sample Path)

�= 1−�. The inner triangle is obtained when either
Type I error is relaxed (larger �� or power is decreased
(smaller �). A smaller continuation region leads to
earlier termination. Further enhancing this effect, the
drift parameter r0 (which is subtracted in the partial
sum) decreases as � increases, tending to make a sam-
ple path that drifts up exit the region more quickly,
as illustrated in Figure 4. An analogous effect occurs
when � decreases.
Another way to evaluate the potential improvement

is to compare the number of observations until the
tests terminate, assuming the partial sum follows the
expected value of its sample path:

E
[ r∑

l=1

Dl
k1� k2�− r0�

]
� r = 1�2�    

When E�Dl
k1� k2��= �0 or �1, it is easy to show that
the test terminates after

T 
�����0�=
⌈−a0S

2
k1� k2�

�0− r0−$

⌉

or

T 
�����1�=
⌈
a0S

2
k1� k2�

�1− r0+$

⌉

observations, respectively. In Table 1, we examine the
ratio

T 
������

T 
�0�1−�0���

for �0 = 2� �1 = 4 (so $ = 
�1 − �0�/4 = 005), �0 =
005 and N0 = 10 and 25, ignoring rounding (notice
that the ratio is free of S2
k1� k2�). We see that if we
relax either the Type I error or power, this ratio can
be substantially less than one.

Table 1 Triangle Region Width Comparison with Different � and �;
Ratio 1= T ��� ���0�/�T �0	05�0	95� �0���

Ratio 2= T ��� ���1�/�T �0	05�0	95� �1��

N0 = 25 N0 = 10

� � Ratio 1 Ratio 2 Ratio 1 Ratio 2

0.05 0	95 1 1 1 1
0.05 0	90 0	76 0	92 0	74 0	91
0.05 0	85 0	63 0	88 0	60 0	88
0.05 0	80 0	53 0	87 0	51 0	87
0.05 0	75 0	47 0	86 0	45 0	87
0.05 0	70 0	41 0	88 0	39 0	89
0.10 0	95 0	92 0	76 0	92 0	74
0.15 0	95 0	88 0	63 0	88 0	60
0.20 0	95 0	87 0	54 0	87 0	51
0.25 0	95 0	86 0	47 0	88 0	45
0.30 0	95 0	87 0	41 0	89 0	39

4. CSB with Fold-Over Designs
(CSB-X)

In this section, we introduce an improved CSB
methodology called CSB-X. The new procedure can
handle two-factor interactions and gives the same
error control for main-effect screening as the original
CSB. This work exploits the fold-over design for SB of
Kleijnen et al. (2006) (also see Bettonvil 1990, Bettonvil
and Kleijnen 1997). Notice that the fold-over design
presented here requires three levels of each factor to
eliminate both quadratic effects and two-factor inter-
actions. The fold-over design can be conducted with
two levels if we code the low levels at “−1” and
high levels as “+1”. The number of design points for
CSB-X in that case will be one less (the center point),
and the design will eliminate the two-factor interac-
tions but not quadratic effects. The difference is small.
We use the three-level setting to be consistent with
the coding of the CSB procedure in Wan et al. (2006).
When quadratic effects and two-factor interactions

exist (model 2), then

Z
k�= �0+
k∑

i=1
�i +

k∑
i=1

k∑
j=i

�ij + �
k� and

E�Dl
k1� k2��=
k2∑

i=k1

�i +
k1∑
i=1

k2∑
j=k1+1

�ij +
k2∑

i=k1+1

k2∑
j=i

�ij 

Therefore, the group main effect is biased by the two-
factor interactions. Specifically, when large negative
interactions exist, important main effects may get can-
celed and the screening result is misleading. To elim-
inate the influence of the quadratic effects and inter-
actions, new design points called mirror levels will be
run. For each level k≥ 0, the mirror level of the exper-
iment at level k, denoted by level −k, is defined by
the following factor settings (also see Equation 3):

xi
−k�=
{
−1� i= 1�2�    � k�
0� i= k+ 1� k+ 2�    �K
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Therefore, Z
−k�= �0−
∑k

i=1�i+
∑k

i=1
∑i

j=1�ij+�
−k�.
The initial experiment at any level consists of N0

replications, but more generally, nk denotes the num-
ber of replications that have been taken at level k. If
we define Yl
k� = 
Zl
k� − Zl
−k��/2�0 ≤ k ≤ K, and
redefine the difference Dl
k1� k2� as

Dl
k1� k2� = Yl
k2�−Yl
k1��

l= 1�2�    � min�nk1
�nk2

�� (7)

then it is easy to see that given model (2) E�Yl
k��=∑k
i=1�i and E�Dl
k1� k2�� is

∑k2
i=k1+1�i, which is the sum

of the main effects of the group. The effects of inter-
actions and quadratic terms are eliminated. This is
the main improvement of CSB-X over CSB and it is
accomplished through a simple data transformation
from the Zs to the Y s. With this data transformation,
CSB-X is exactly the same as CSB. In CSB-X, whenever
data are collected at any level k, the same amount of
data is also collected at level −k. All of the definitions
and notations from Wan et al. (2006) carry over to the
new Yl
k�. Given model (2), both Yl
k� in CSB and
Yl
k� in CSB-X are normally distributed estimators of∑k

l=1�i; hence, the data transformation introduced in
CSB-X does not influence the validity of the statisti-
cal test, so both the two-stage testing procedure intro-
duced in Wan et al. (2006) and the fully sequential
testing procedure described above are qualified proce-
dures and can be implemented directly. The error con-
trol of CSB-X is the same as in CSB (Theorems 1–4).
Specifically, CSB-X with a qualified hypothesis test-
ing procedure controls the Type I error for each fac-
tor individually, and guarantees the power for each
step. The screening procedure does not require an
equal variance assumption and is valid with or with-
out CRN when using our tests (Wan et al. 2006).
It should be noted that although CSB-X doubles

the number of design points, the variance of the test
statistics is reduced compared with the test statistics
of CSB. It can be shown that in homogeneous vari-
ance cases, the expected number of runs required for
CSB-X and CSB are the same (see Appendix B in the
Online Supplement). Therefore CSB-X can achieve the
same level of efficiency as CSB while avoiding mis-
takes in the presence of interactions.

5. Numerical Evaluation of Extended
CSB and CSB-X in the Presence of
Interactions

In this section, we present numerical evaluations of
CSB-X in comparison with original CSB and fractional
factorial designs.

5.1. Comparison of CSB-X and CSB in the
Presence of Interactions

To illustrate the influence of interactions on the
screening results of CSB and CSB-X, three cases with
K = 10 were explored with �0 = 2 and �1 = 4. The
response follows model (2):

Y = �0+
K∑
i=1

�ixi +
K∑
i=1

K∑
j=i

�ijxixj + ��

where the error � is normally distributed with
mean zero and a standard deviation equal to 1 +
�expected response�. We also set � = 005 and � =
090. The main effects �i 
i = 1�2�    �K� are fixed,
and interactions �ij 
0< i� j ≤K� are randomly gener-
ated from a normal distribution with mean zero and
variance four. This allows for a substantial number
of important interactions thus stressing the method’s
ability to estimate the main effects. For each case
considered, CSB and CSB-X are applied 1,000 times
(macro replications), using the fully sequential test-
ing procedure described in §3. So as not to overuse
a particularly favorable interaction set, a new interac-
tion set (�ij ) is generated for each trial. The fraction
of trials in which each factor is declared important,
�Pr�DI�, is recorded, which is an unbiased estimator of
Pr�factor i is declared important�.
In Case 1, we set 
�1��2�    ��10�= 
0�0�0�0�0�0�

0�0�0�0�; the observed frequency that each factor
is declared important should be close to zero; in
Case 2, 
�1��2�    ��10� = 
2�2�2�2�2�2�2�2�2�2�;
the observed frequency that each factor is declared
important should be no larger than 0.05; in Case 3,

�1��2�    ��10� = 
2�244�288�332�376�42�464�
508�552�6�; the observed frequency that �1 is
declared important should be no larger than 0.05,
but for �6� �7�    ��10 it should be near 0.90. Case 3
is clearly not a typical screening situation because
all factors are important. However, it is included to
demonstrate the error and power control of CSB-X.
The results of the experiments are given in Table 2.
We can see that CSB-X gives the desired screen-

ing results with appropriate Type I error and power
control. CSB, on the other hand, loses the control of
both Type I error and power when the interactions are
present. For example, in Case 3 the observed �Pr�DI� of
�1 is 0.17 in CSB, much larger than the desired Type I
error 0.05. In CSB-X, the �Pr�DI� is 0. For a large factor
effect such as �10 =�0+�1 = 6, the power of identify-
ing the factor as important in CSB is only 0.46, which
means that more than half of the time the factor is
misclassified. On the other hand, factor 10 is always
identified as important by CSB-X.
Because CSB gives misleading results in these cases,

it is meaningless to compare the number of replica-
tions required by the two methods. The absolute num-
ber of replications required by CSB-X can be large,
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Table 2 Screening Results � �Pr�DI�� for CSB and CSB-X with
Interactions Present

�Pr�DI� �Pr�DI� �Pr�DI�
Factor no. Effect CSB CSB-X Effect CSB CSB-X Effect CSB CSB-X

1 0 0.01 0 2 0.14 0.00 2.00 0.17 0.00
2 0 0.07 0 2 0.25 0.03 2.44 0.33 0.10
3 0 0.09 0 2 0.30 0.04 2.88 0.39 0.34
4 0 0.12 0 2 0.28 0.03 3.32 0.40 0.62
5 0 0.15 0 2 0.32 0.04 3.76 0.44 0.84
6 0 0.13 0 2 0.27 0.03 4.20 0.40 0.95
7 0 0.16 0 2 0.27 0.05 4.64 0.43 0.98
8 0 0.17 0 2 0.28 0.04 5.08 0.50 1.00
9 0 0.15 0 2 0.28 0.04 5.52 0.46 1.00
10 0 0.17 0 2 0.32 0.04 6.00 0.46 1.00

No. of 1,781 971 6,106 21,408 10,464 19,793
replications

especially when response variances are large, but this
is necessary to provide the power guarantee. Table 3,
which revisits Case 3 from Table 2, shows that the
computational effort can be reduced by softening the
Type I error and power requirements. In the special
case when only Type I error control is required, a one-
sided t test suffices and the number of replications is
bounded above by 2N0
K+ 1� for CSB-X.

5.2. Comparison of CSB-X and Fractional
Factorial Designs for Large-Scale Problems

In this section we study screening problems with
200 factors and 500 factors, respectively, and compare
CSB-X to a standard unreplicated fractional factorial
design (i.e., an orthogonal array). For each case, only
2% of the factors are important. The important factors
have effects equal to five and the unimportant factors
have effects equal to zero. Normal errors are assumed
with mean zero and standard deviation one (equal
variances across different levels). The interactions �ij

are generated as in previous section from a normal
distribution with mean zero and variance four. The
threshold of importance, �0, is set to two; and the crit-
ical threshold, �1, is set to four. The initial number

Table 3 Screening Results for Case 3 with Different � and �

Factor �= 0	05 �= 0	05 �= 0	15 �= 0	30 �= 0	30
effect � = 0	80 � = 0	70 � = 0	90 � = 0	90 � = 0	70

2.00 0	00 0	00 0	01 0	10 0	04
2.44 0	07 0	05 0	26 0	45 0	28
2.88 0	27 0	20 0	51 0	63 0	47
3.32 0	46 0	41 0	72 0	79 0	56
3.76 0	71 0	60 0	86 0	88 0	65
4.20 0	86 0	78 0	93 0	93 0	77
4.64 0	95 0	91 0	97 0	97 0	84
5.08 0	98 0	97 0	99 0	99 0	88
5.52 0	99 0	98 1	00 0	99 0	90
6.00 1	00 0	99 1	00 1	00 0	94

No. of runs 17,307 15,216 12,757 8,458 4,238

of runs at each level, N0, is equal to five. The Type I
error is set to be �= 005 and the power requirement
is � = 090.
For each case, there are two scenarios. The first sce-

nario has all important factors clustered together with
the smallest indices so that the number of important
groups is as small as possible at each step. The second
scenario has the important factors evenly spread so
there are the maximum number of important groups
remaining at each step. Obviously, CSB-X is more
efficient with the first scenario than with the second
scenario.
For each case and scenario considered, CSB-X

with the fully sequential testing procedure is applied
1,000 times, and the average number of replications
required for screening is recorded. The lower bound
of the number of replications required for the frac-
tional factorial design (FFD) is the smallest num-
ber of design points required to estimate 200 or 500
main effects with a Resolution IV design (i.e., main
effects are not confounded with two-factor interac-
tions but two-factor interactions are confounded with
each other). This lower bound equals 2K + 1 for K
factors (Wu and Hamada 2000) and is not influenced
by the scenario. The comparison is demonstrated in
Table 4.
We can see that for both cases of K, CSB-X takes

only approximately 28% and 19% of the minimum
number of replications required by fractional facto-
rial designs, respectively, in the clustered scenario.
In the other scenario, CSB-X requires 77% and 75%
of the lower bounds, respectively. In addition, if the
conditions of Theorem 3 or Theorem 4 are satisfied,
the expected number of factors that will be falsely
classified as important 
E�FK�� for the fractional facto-
rial design always equals �K, which is greater than
or equal to that of CSB-X, especially for the condi-
tions of Theorem 3. Furthermore, the fractional fac-
torial design does not have power control. There-
fore, from the error control point of view, CSB-X is
superior. Moreover, the typical test implemented in a
fractional factorial design assumes equal variance
across design points, which CSB does not require.
However, the fractional factorial design does not

Table 4 Comparison of CSB-X and Fractional Factorial Design

No. of runs required

Scenarios CSB-X FFD (lower bound)

200 factors, {1, 2, 3, 4} important 111 401
200 factors, {1, 51, 101, 151} important 310 401
500 factors, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

important 186 1,001
500 factors, {1, 51, 101, 151, 201, 251,

301, 351, 401, 451} important 754 1,001
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require �i ≥ 0 
i > 0� and can directly estimate group
of interactions (Resolution IV designs) or individual
interactions (Resolution V design). CSB-X can only
eliminate quadratic effects and two-factor interactions
but not estimate them.

6. Semiconductor Case Study
Revisited

Wan et al. (2006) implemented CSB to study a simpli-
fied semiconductor manufacturing system to identify
the important machines and transporters that are wor-
thy of investment. In this section we use CSB-X with
the extended fully sequential test to study the case
again. The results from CSB-X and CSB are compared.
The detailed description of the semiconductor man-

ufacturing system will not be repeated here. In sum-
mary, there are two main processes, diffusion and
lithography, each of which contains substeps. The
raw material will be released at the rate of one cas-
sette per hour and processed in single-cassette loads,
beginning with the CLEAN step of diffusion, and
after diffusion, proceeding to the lithography process.
The diffusion and lithography then alternate until
the product completes processing (see Figure 5). The
numbers of passes required are different among the
products. The time for the movement between each
process is negligible and the movement between dif-
fusion and lithography will be handled by a trans-
porter. The factors we are interested in are the number
of fast and slow machines at each substep and the
numbers of each kind of transporter, which are listed
in Table 5.
In addition to the high and low settings in CSB,

CSB-X (and the factorial design discussed later)
requires a mirror setting for each factor. To accommo-
date this requirement, the original low setting for each
factor is used as the mirror setting; the original high
setting for each factor is used as the low setting; and
a new high setting is determined by the cost model
in Wan et al. (2006). The new experimental design is
given in Table 6. The CSB procedure uses the mirror
settings and high settings as the low and high set-
tings to guarantee that the measured effects of CSB
and CSB-X are comparable.
The simulation programming of the manufactur-

ing system was done in simlib, a collection of ANSI-
standard C support functions for simulation (Law
and Kelton 2000). CRN was implemented by assign-
ing each station a separate stream of random num-
bers. CSB and CSB-X were implemented in C++ with
the extended fully sequential testing procedure. For
each replication, 365 days of operation were simu-
lated with a 300 hour warm-up period. The perfor-
mance measure was the long-run average cycle time
(hours) weighted by percentage of different products.
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Figure 5 Production Process of the Semiconductor Manufacturing
System

Thus, for this example it was more natural to define all
effects as negative instead of positive. Here, �0 was the
minimum acceptable decrease in long-run cycle time,
which we set to be one hour in this test; �1 was the
decrease in long-run cycle time that we do not want
to miss, which we set to be two hours in this test.
Both CSB and CSB-X are implemented with � =

005�� = 09� and N0 = 25. CSB consumed 500 replica-
tions identifying eight factors as important and CSB-X
consumed 950 replications identifying eight factors as
important (Table 7). Both CSB and CSB-X identify
factors 3� 5� 6� 16� and 20 as important. CSB identifies

Table 5 Mean Processing Time per Cassette for Each Step (Hours) and
Cost of Machines (Millions of Dollars)

Fast Cost Slow Cost
Stations machine per unit machine per unit

CLEAN 1	5 1	38 2	5 0	83
LOAD QUARTZ 0	19 0	63 0	31 0	38
OXIDIZE 3	5 3	25 5	4 1	95
UNLOAD QUARTZ 0	19 0	63 0	31 0	38
TEST 1 0	5 1	25 1	25 0	75
COAT 0	75 1	13 1	50 0	68
STEPPER 0	85 2	25 1	8 1	35
DEVELOP 0	38 0	25 0	63 0	15
TEST 2 0	5 1	25 1	25 0	75
AGV 0	028 1	05 NA NA
CONVEYOR NA NA 0	19 0	635

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Wan et al.: Improving the Efficiency and Efficacy of CSB for Simulation Factor Screening
INFORMS Journal on Computing 22(3), pp. 482–492, © 2010 INFORMS 491

Table 6 Factor Description and Settings (Unit Number)

Factor ID Factor description Mirror Low High

1 Number of slow machines in OXIDIZE 92 93 94
2 Number of fast machines in STEPPER 0 1 2
3 Number of fast machines in COAT 0 2 4
4 Number of slow machines in CLEAN 42 45 48
5 Number of fast machines in TEST 1 0 2 4
6 Number of fast machines in TEST 2 0 2 4
7 Number of slow machines in STEPPER 30 32 34
8 Number of slow machines in COAT 25 29 33
9 Number of fast machines in CLEAN 0 2 4
10 Number of slow machines in TEST 1 21 25 29
11 Number of slow machines in TEST 2 21 25 29
12 Number of slow machines in LOAD QUARTZ 5 13 21
13 Number of slow machines in UNLOAD QUARTZ 5 13 21
14 Number of fast machines in LOAD QUARTZ 0 5 10
15 Number of fast machines in UNLOAD QUARTZ 0 5 10
16 Number of AGVs 0 5 10
17 Number of slow machines in DEVELOP 10 31 52
18 Number of CONVEYORS 6 9 12
19 Number of fast machines in OXIDIZE 0 1 2
20 Number of fast machines in DEVELOP 0 13 26

factors 12� 13� and 17 as important, whereas CSB-X
does not; CSB-X identifies factors 14� 15� and 18 as
important whereas CSB does not.
To explain the different results between the two

methods, we performed an additional experiment
using a Resolution V central composite design with
553 design points (the mirror level is coded as “−1”
low level as “0” and high level as “+1”) and took
10 independent replications at each design point
(Sanchez and Sanchez 2005). Therefore, we can get 10
independent estimates of each �i and �ij . Regression
analysis shows that the model with two-factor interac-
tions and quadratic effects has R2 > 97% and R2
adj� >
96%, whereas the model with only main effects has
R2 around 079 and R2
adj� around 78%. This implies
that two-factor interactions and quadratic effects are
statistically significant (nonzero) and ignoring them
may lead to biased results, and that the second-
order model can predict the responses well. There are
both positive and negative interactions and quadratic
effects and most of them are small. In Table 8 the rela-
tively large interactions and quadratic effects (greater
than �0/2) are listed. We can see that the important
ones are sparse. With simple algebra, we can use the
estimated regression coefficients �̂F

i and �̂F
ij (F rep-

resents factorial design) to approximate the “main-
effect coefficient” if we assume a main-effects model
even though there are interactions, as CSB does (�CSBm ),
and the main-effect coefficients if we eliminate the
bias in the main-effects estimators because of the two-
factor interactions and quadratic terms, as CSB-X does
(�CSB-Xm ). Specifically, �CSBm = E�
Z
m�− Z
m− 1��/2� ≈
�̂F
m + ∑m−1

i=1 �̂F
im − ∑K

i=m+1 �̂
F
im, and �CSB-Xm = E�
Z
m� −

Z
−m�−Z
m− 1�+Z
−m+ 1��/4�≈ �̂F
m.

Table 7 CSB, CSB-X, and Factorial Design Screening Results

Confidence interval �95%�

Factor ID �̂CSB �̂CSB-X from the factorial design

1 0	08 −0	00527 �−0	0057�0	0467�
2 −1	39 −1	269 �−1	333�−1	205�
3 −2	20 −2	006 �−2	070�−1	943�
4 −0	39 −0	162 �−0	206�−0	118�
5 −3	03 −2	772 �−2	812�−2	732�
6 −3	27 −2	784 �−2	815�−2	753�
7 −0	14 −0	239 �−0	283�−0	195�
8 −0	02 −0	295 �−0	344�−0	247�
9 −1	34 −1	404 �−1	471�−1	338�
10 0	19 −0	291 �−0	335�−0	247�
11 −0	14 −0	281 �−0	325�−0	238�
12 −1	62 −0	846 �−0	888�−0	804�
13 −1	56 −0	838 �−0	895�−0	781�
14 −0	83 −1	676 �−1	709�−1	644�
15 −0	74 −1	638 �−1	674�−1	603�
16 −4	14 −3	169 �−3	211�−3	126�
17 −1	78 −0	840 �−0	858�−0	822�
18 0	08 −1	00 �−1	053�−0	942�
19 −0	55 −0	569 �−0	607�−0	532�
20 −1	77 −2	476 �−2	566�−2	385�

Note. Identified important effects are in bold.

Table 8 Estimate of Large Interactions from the Factorial Experiments

Interactions Estimate Confidence interval (95%)

�5�5� 0	56 (0.17, 0.95)
�13�15� 0	83 (0.79, 0.88)
�14�14� 0	91 (0.58, 1.24)
�15�15� 0	64 (0.37, 0.91)
�16�16� 2	62 (2.38, 2.87)
�16�18� 1	00 (0.94, 1.04)
�17�20� 0	81 (0.75, 0.87)
�20�20� 1	81 (1.48, 2.15)

Table 7 shows the 95% confidence intervals for the
estimated main effects from the factorial design and
the implied values of �CSBm s and �CSB-Xm s (see above),
as well as the screening results for CSB, CSB-X, and
the factorial design (through confidence intervals). It
is clear that factors 12� 13� and 17 are actually not
important, and factors 14 and 15 are important. Factor
18 is on the boundary. This case study demonstrates
that even though most of the interactions are not
important, they can still bias the results of CSB. In this
sense, CSB-X is preferred. In addition, to achieve
confidence intervals for the estimated �s without an
equal variance assumption, we felt that a Resolu-
tion V central composite design would need at least
three replications per design point, a total of 1,659
observations (the results presented above are based
on 10 replications per design point, a total of 5,530
observations). CSB-X only takes a fraction of this, and
the results are satisfactory.
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7. Conclusion
In this paper, we extended the fully sequential test-
ing procedure proposed in Wan et al. (2006) to gen-
eral cases and applied it in factor screening. The
extended test does not enforce �= 1− � and can be
used as a stand-alone hypothesis testing procedure
with controlled Type I error rate and power in appli-
cations other than factor screening. Numerical eval-
uation shows that decoupling of Type I error and
power can significantly improve the efficiency of the
procedure.
In addition, we incorporated a fold-over design

into CSB to identify important main effects even
when two-factor interactions and quadratic terms are
present. The new CSB-X procedure doubles the num-
ber of design points compared to CSB; however, the
decrease of the variance of the test statistic typi-
cally compensates for this when a main-effects model
applies. When interactions exist, CSB is not appropri-
ate so sample size comparisons are irrelevant. Thus,
CSB-X provides all of the benefits of CSB with more
generality and without a loss of efficiency.

References
Bettonvil, B. 1990. Detection of Important Factors by Sequential Bifur-

cation. Tilburg University Press, Tilburg, The Netherlands.

Bettonvil, B. 1995. Factor screening by sequential bifurcation. Comm.
Statist.: Simulation Comput. 24(1) 165–185.

Bettonvil, B., J. P. C. Kleijnen. 1997. Searching for important
factors in simulation models with many factors: Sequential
bifurcation. Eur. J. Oper. Res. 96(1) 180–194.

Cheng, R. C. H. 1997. Searching for important factors: Sequen-
tial bifurcation under uncertainty. D. H. Withers, B. L. Nelson,
S. Andradóttir, K. J. Healy eds. Proc. 1997 Winter Simula-
tion Conf., Institute of Electrical and Electronics Engineers,
Piscataway, NJ, 275–280.

Hartmann, M. 1991. An improvement of Paulson’s procedure for
selecting the population with the largest mean from k nor-
mal populations with a common unknown variance. Sequential
Anal. 10(1–2) 1–16.

Kim, S.-H. 2005. Comparison with a standard via fully sequen-
tial procedures. ACM Trans. Modeling Comput. Simulation 15(2)
155–174.

Kleijnen, J. P. C., B. Bettonvil, F. Persson. 2006. Finding the impor-
tant factors in large discrete-event simulation: Sequential bifur-
cation and its applications. A. Dean, S. Lewis, eds. Screen-
ing: Methods for Experimentation in Industry, Drug Discovery, and
Genetics. Springer, New York, 287–307.

Law, A. M., W. D. Kelton. 2000. Simulation Modeling and Analysis,
3rd ed. McGraw Hill, New York.

Sanchez, S. M., P. J. Sanchez. 2005. Very large fractional factorial
and central composite designs. ACM Trans. Modeling Comput.
Simulation 15(4) 362–377.

Wan, H., B. E. Ankenman, B. L. Nelson. 2006. Controlled sequential
bifurcation: A new factor-screening method for discrete-event
simulation. Oper. Res. 54(4) 743–755.

Wu, J. C. F., M. Hamada. 2000. Experiments: Planning, Analysis, and
Parameter Design Optimization. John Wiley & Sons, New York.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.


