Combined Screening and Selection of the Best
with Control Variates

Shing Chih Tsai, Barry L. Nelson and Jeremy Staum

Abstract Nelson and Staum derived ranking-and-selection (R&S) procedures that
employ control-variate (CV) estimators instead of sample means to obtain greater
statistical efficiency. However, control-variate estimators require more computa-
tional effort than sample means, and effective controls must be identified. In this
paper, we present a new CV screening procedure to avoid much of the computation
cost along with a better paired CV model than that of Nelson and Staum. We also
present a two-stage CV combined procedure that captures the ability to eliminate
inferior systems in the first stage and the statistical efficiency of control variates for
selection in the second stage. Some guidelines about control-variate selection and
an empirical evaluation are provided.

1. Introduction

In simulation research and applications, ranking-and-selection procedures (R&S;
see for instance Bechhofer, et al. 1995) have proven to be quite useful for find-
ing the system design that is the best, or near the best, where the “best” system is
the one with the largest or smallest expected performance measure. However, R&S
procedures are only recommended when the number of alternative designs is rel-
atively small and the designs are not functionally related. For instance, the typical
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indifference-zone (12) selection procedure will require large numbers of observa-
tions to deliver the desired correct-selection guarantee when output variances or the
number of systems are large. To solve this problem, Nelson et al. (2001) proposed
a combined procedure that uses the subset selection approach to eliminate some
noncompetitive systems in the first stage; it then applies a standard IZ selection
procedure in the second stage. In this way, sampling cost can be saved while still
maintaining the ease of implementation and statistical efficiency.

In almost all R&S procedures, sample means of the outputs are used as the esti-
mators of the expected performance. Nelson and Staum (2006) derived R&S proce-
dures that employ control-variate estimators instead of sample means. Controls are
random variables in the simulation that are correlated with the output of interest,
but whose expected values are known (Lavenberg and Welch 1981). These control-
variate procedures can be more statistically efficient than the sample-means-based
procedures. However, control-variate estimators require more computational effort
than sample means, and effective controls must be identified.

One of our goals is to propose a new control variate (CV) screening procedure to
decrease the computation cost and still obtain the statistical efficiency. A superior
paired CV model is provided and compared to the paired model in Nelson and Staum
(2006). We also propose a two-stage procedure that captures the ability to screen
out inferior systems and the statistical efficiency of CVs for selection: We use a
screening procedure with CVs to eliminate obviously noncompetitive systems in
the first stage and then apply a selection-of-the-best-with-control-variates procedure
to the surviving subset of systems in the second stage. Nelson and Staum (2006)
showed that the screening threshold with CVs is expected to be tighter than with
sample means when the correlation between the output and control is not too small.
Therefore, the expected subset size is correspondingly smaller. For the selection-of-
the-best-with-control-variate procedure, Nelson and Staum (2006) also showed that
we can expect a smaller sample size than Rinott’s (1978) procedure even when the
correlation between the output and control is modest. Thus the sample size of the
CV selection procedure is typically smaller than that of Rinott’s (1978) procedure,
which is based on sample means. Since the CV screening procedure is better than
the standard screening procedure based on sample means, and the CV selection
procedure is better than the selection procedure based on sample means, we can
expect that a combined CV procedure is better than a combined procedure based on
sample means. In this paper we develop the theory and procedures to support such
a combined approach.

The paper is organized as follows: In Section 2, we outline the generic combined
procedure. Sections 3-5 review CV estimators and several CV R&S procedures. We
present the improved paired CV model and a new CV screening procedure in Sec-
tion 4. Section 6 contains some guidance for selecting control variates in this con-
text. In Section 7, we present the CV combined procedure in detail. The paper ends
with an empirical evaluation, including a queueing example, performed to compare
the two combined procedures (Sections 8 and 9), and conclusions in Section 10. All
proofs are relegated to the Appendix.
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2. Generic Combined Procedure

In the CV combined procedure, we apply the CV selection-of-the-best procedure to
the subset of systems chosen by the CV screening procedure to acquire both statisti-
cal and computational efficiency. The generic combined procedure is as follows. In
the remainder of the paper we fill in specific pieces of this procedure.

1. For each system, obtain a small number of observations of the system perfor-
mance measure and the controls. Then form CV estimators of each system'’s
mean and calculate an estimator of the variance of each CV estimator.

2. Apply a CV screening procedure to eliminate inferior systems based on the in-
formation acquired in the first step.

3. If only one system survives, then stop and return that one as the best system.
Otherwise, calculate the total number of observations needed for each system
to detect a specified practically significant difference in performance with the
desired confidence level.

4. Take additional observations from each surviving system and form CV estima-
tors. Then select the system with the best CV estimator.

3. Screening Procedure with Individual Control Variates

In this section we briefly provide the definitions and notation that will be used
throughout the paper and review the screening procedure with individual control
variates in Nelson and Staum (2006). The following description is based on Nelson
and Staum (2006).

3.1 Individual Control-Variate Estimators

Let X;j be thejth simulation observation from systemfori =1,2,...,k. We as-
sume it can be represented as

Xij = i+ (Cij — &)'Bi +nij s (1)

where theg; x 1 vectorC;j; is called thecontrol and is assumed to be multivari-
ate normal, while{n;;, i =1,2,....k, j =1,2,...,n} are mutually independent
and{nij, j =1,2,...,n} is a set of independent and identically distributed (i.i.d.)
N(0, t2) random variables. For each systém 1,2, ...k, the controls{Cjj, j =
1,2,...,n} are also i.i.d., are independent{gfi;, j = 1,2,...,n}, and have known
expected valué;. TheX;; are therefore i.i.d. N1i,0i2) random variables, with both
i and g2 unknown and (perhaps) unequal. The multipfBgris ag; x 1 vector of
unknown constants that captures the relationship between the oGurd the con-
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trol Cij, while nj; represents that part of the variability ¥g; that is not explained
by the controls.

A control-variate estimator of; can be much more statistically efficient than
the sample mean of th§;. We review some basic properties of the CV estimator
under Model (1) below. The development is based on Nelson (1990), Nelson and
Hsu (1993), and Nelson and Staum (2006).

Let
Xil Cill
Xi2 Cl
Xiinj=1 . | andCi(n)=| .
Xin Ci/n

be vectors of the outputs and controls across atbservations from systemDefine
the sample means of the outputs and controls as

Xi(n) = Xij andC;(n) =

1 ]

Cij.
1

Sl
]
Sl
]

]

We append (n)” to quantities defined acrossobservations.
To define the CV point estimator, let

L{(n) = [(Ci1— Ci(n)), (Ci2— Ci(n)), ..., (Cin— Ci(n))] .

If 1541 is a column vector whose elements all equal one, then the CV point esti-
mator ofy; is

() = |21, (Ci(m) — &) (LinLi(n)

n
= X(m—(Ci(m - &)'B,
(Nelson 1990). It is known that under Model (1)

_ 2
el = and Va) - (7225 )

wheret? = (1- R?)o? andR? is the square of the multiple correlation coefficient
betweerX;; andC;; (Lavenberg and Welch 1981).

We need to know the distribution qfij(n) and an estimator of its variance to
derive R&S procedures. For each systeml, 2. .. k, let

1(Cin—&)
1(Ciz— &)
Aiin)=1 . )

1(Cn—&)'
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If 1 is the identity matrix of ranlg;, then define

w(n) = Wli_lxi(”)/ [I —Ai(n) (A{(n)Ai(n))*lA;(n)] Xi(n)
1 n R s 2
EErEPY (%)~ () — (Cy — &)'Bi(m)] @
as the residual variance estimator. Further, let
B =+ (@0 £) S50 G &) ®

whereSc, (n) is the sample variance-covariance matrix@jf. Then we have the
following key result:

Lemma 1 (Nelson and Hsu 1993, Theorem 4.1). If Model (1) pertains, then con-
ditional on
C1(n),Cz(n),...,Ck(n), the following properties hold:

PL: i(n) ~ N(u, AA(M)T2),i=1,2,.. k.
X g1 - :
qul and is independent ofij(n), for i = 1,2,...,k, where
—qgi—
Xﬁfqifl is a chi-squared random variable with-ag; — 1 degrees of freedom.
P3: If {nj,i=1,2,....k j=1,2,...,n} are mutually independent, theii(n),

72(n),i = 1,2,...,k} are mutually independent.

P2: T2(n) ~

Property P3 requires that thg; are independent for all systemsas well as
for all observationg. In practice P3 will hold either if all systems are simulated
independently, or if common random numbers (CRN) are used but the dependence
due to CRN is entirely explained by the controls. CRN is a technique that tries
to induce a positive correlation between the outputs of different systems by using
the same pseudorandom numbers to simulate each alternative system and therefore
reduce the variance of the difference between them.

3.2 Screening with Individual Control Variates

We will assume that unknown to yg > g1 > --- > 1 and that bigger is better.

The goal of the procedure is to find a subk#tat contains systemwith prespeci-

fied confidence. We also assume that Model (1) holds but relax the assumption that
Cij has to be multivariate normal. L&, represent the quantile of the t distribu-

tion with v degrees of freedom.

Procedure 1 (Individual CV Screening Procedure)
1. Choose the confidence levdet a > 1/k.
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2. Obtain n > @ + 2 observations from system=1,2, ...,k and form CV estima-

torsfi(n), i=12,... k.
3. Let{ =ty gk pn_g-1 and create the subset

lingiv = {i : i (ni) — He(ng) > —Wg, VE#£ i}, (4)

where

W = Q242 2(m) + R A2(n) ().

Nelson and Staum (2006) proved that{ReE ljngv} > 1 — a when Model (1)
holds even if we relax the assumption ti@&j} is multivariate normal. Nelson and
Staum (2006) also showed that very little correlation between the output and control
is required for the subset size with CVs to be smaller than that with sample means.

The advantage of this procedure is that we just need to conpQiés. Its dis-
advantage is that the assumption in Model (1) that there is no dependence between
residuals across systems induced by CRN will not hold in practice. Therefore Nel-
son and Staum (2006) proposed a screening procedure with paired control variates,
which we improve upon in the next section.

4. Screening Procedureswith Paired Control Variates

In this section we briefly review the paired control variate model of Nelson and
Staum (2006) and propose a more-general model on which a new procedure is
based. An adjustment is also provided to reduce the computation cost and retain
the benefit of paired CV estimators.

Nelson and Staum (2006) use a paired CV model to avoid the assumption that
the controls entirely explain the dependence induced by CRN. To do this, they form
pairwise differences across systemg|i, /) = Xij — X, Cj(i, ) = Cij — Cyj, Hir =
Hi — e andé;, = &, — &, fori # £. Since they need the outputs and the controls to
be paired across systems, the number of observations must be equal for each system
in the same pair, and the number of controls for each system in the same pair should
also be equal. For convenience werldte the common number of replications and
g be the common number of controls for each system. Then we assume that a model
like Model (1) holds:

Xj (I ) é) = Hi¢ + (CJ (I ) é) - Elf)/B(l ) é) + SJ(I ) é)v (5)

where{g;(i,?), j =1,2,...,n}is a set of i.i.d. NO, ri%) random variables. The x
1 vectorCi(i,¢) is assumed multivariate normal. For each pair of systgms-
1,2,...,ki#¢, the control{Cj(i,¢),j=1,2,...,n} are also i.i.d., are independent
of {¢j(i,¢),j =1,2,...,n}, and have known expected valég.

Unlike Model (1), Model (5) can hold even whep; and rn,; are dependent.
However, this model may break down when CRN cauBgs= C; for all j, which
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cancels the controls. To avoid this, we present a different model to explain the rela-
tionship between the controls and the outputs. We assume the following new model
holds:

XJ(Ivé) = Hig+ (Cll - Ei)/Bi - (Cfl - ff)lﬁf'i_r’j(ivé)v (6)

wheren; (i, ¢) = nij — ne; and{n;j(i,¢), j=1,2,...,n}is a set of i.i.d. NO, g2) ran-
dom variables. Theg; + ) x 1 vector(Cj;, C;;)" is assumed multivariate normal.
For each pair of systenis¢ = 1,2,...,k,i # ¢ the controls{Ci;,j = 1,2,...,n} and
{Cyj, 1 =1,2,...,n} are also i.i.d., are independent{ofj(i,¢),j = 1,2,...,n} and
have known expected valué€s and&,. Like Model (5), Model (6) can also hold
even whem;j andn;; are dependent. For alt~ ¢, we letfij,(n) be the correspond-

ing CV estimator ofuj, under Model (6), and defing,(n) andAAi%(n) in analogy to
Equations (2) and (3).

We now assume that Model (6) holds in order to execute the all-pair screening
procedure. Before describing the procedure, we present an argument for the superi-
ority of Model (6) over Model (5):

» Model (6) is a more-general model that is equivalent to Model (5) wBiea 3,.

« Suppose Model (5) holds, but we compyig(n) assuming Model (6) holds.
Thengi,(n) is still unbiased. However, Viu;,(n)] will be inflated because of the
loss of degrees of freedom (from- g — 1 ton—2q— 1). The resulting inflation
of variance will not be substantial whemis not too small.

 Suppose Model (6) holds witB; # 3,, but we computgi;,(n) assuming Model
(5) holds. Therpi, (n) will be biased and Vdgi,(n)] will be increased, especially
when; is very different fromg, (see the Appendix).

» Under Model (6) the number of controls for each system in the same pair is
not required to be equal. Therefore, we gain potential benefits in terms of CV
selection (notice that the degrees of freedom-sq; — g, — 1 in general).

* Model (6) makes the all-pair screening procedure below more compatible with
the CV selection procedure (see Section 5) that relies on Model (1). In fact
Model (1) implies Model (6). Therefore we do not have to be concerned about
any incongruity in the CV combined procedure.

We form the following all-pair screening procedure based on Model (6).

Procedure 2 (All-Pair Screening Procedure)

1. Choose the confidence levdet a > 1/k.

2. Obtain n>max..¢(q; + 0, + 2) observations from each system and form tfle-k
1)/2 CV estimatorgi,(n) for alli # ¢.

3. Let{,=t1_4/(k-1)n-q-q-—1 and create the subset

| Allpair = {i L hio(n) > —tig i (M) Tig(n), VL # i}-

Nelson and Staum (2006) proved thafRE lapar} > 1 — o when Model (5)
holds. This procedure is also valid when Model (6) pertains @&igl, C;;)" is not
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required to be multivariate normal. The advantage of this procedure is that we do not
have to be concerned about the dependence remaining in the residuals due to CRN.
Its disadvantages are that we have to compuke- 1) /2 CV estimators and that
the procedure uses the conservative Bonferroni inequality. Therefore, we propose a
new procedure that requires less computation and creates a subs$gfpair, and
therefore we can guarantee thafRrc | } > 1— a. To accomplish this we choose
some systerK* that is very likely to be the best system, and then perform screening
with paired CVs just againg{*.

In the following “Best Bet” screening procedure, we use Model (6) and denote
the system with the largegk(n) asK*.

Procedure 3 (Best Bet Screening Procedure)

1. Choose the confidence levdet a > 1/k.

2. Obtain n> max..(q; + g, + 2) observations from each system and form the k
CV estimatorgii(n), i =1,2,... k.

3. LetK* be the index of the system with the largggh), thatis, K = arg miaxﬁi (n),

and then form the k 1 paired CV estimatorgii - (n) for all i # K*.
4. Create the subset

Igestser= {1 Bl (M) = —tic: Bic: (Wi () UL K" }.

The advantage of this procedure is that it can decrease the computation cost and
achieve the desired statistical efficiency as well. The subset size will be close to
that of the all-pair screening procedure, because there is a large correlation between
Hi¢(n) and i (n) — Hy(n). The disadvantage is that it needs to compite-2 CV
estimators, which is more than the individual CV screening procedgréiowever,
it still saves computation cost compared with the all-pair screening procékiike
1)/2), when the number of alternatives is large, and it avoids the assumption that
CVs explain all the dependence induced by CRN.

Remark 4.1 The system with the largest sample mean is also a potential best sys-
tem, so we could let K= argmaxX; (n), and then do screening with paired CVs just
I

against K. This procedure can save a great deal of computation cost because we
only need to computek 1 paired CV estimators. Unfortunately, the subset formed
by this procedure may be much larger than that formed by the all-pair screening
procedure, because there is not necessarily much correlation betpg@n and

%(n) = X(n).

5. Selecting the Best with Control Variates

In this section we briefly review the selection-of-the-best-with-control-variates pro-
cedure in Nelson and Staum (2006). The following description is based on Nelson
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and Staum (2006). Under Model (1), we adopt the indifference-zone (1Z) formula-
tion in which we require a guaranteed probability of selecting sydtemhenever

the differencely, — px_1 > 9, where the indifference-zone paramedes 0 is set to

the smallest difference the analyst feels is worth detecting. We also assume that all
systems have the same number of controlBhe procedure is as follows:

Procedure 4 (Selecting the Best with Controls)

1. Choose the indifference-zone parameler 0, confidence level — a > 1/k and
chooseng, a1 > 0 such thata = ag+ a1.

2. For each system= 1 2,... k, obtain rh > g+ 2 observations and calculate
Z(no).

3. For each system= 1,2, ... Kk, set the total sample size

i (n—q no? v
N = : — —-1)>%."
! n”l'n?{” ( q )(th?mo) )‘ an-d

where h= hy 1_q, ny—q—1 iS Rinott’s (1978) constant?q(};),q is they quantile of
the F distribution with(q, n — q) degrees of freedom, and

_J(1-ao %, if the systems are simulated independently
y_
1—ap/k, otherwise.

4. Collect N—ng observations from system i and form the CV estimafipfls;) for
i=12....k

5. Select systemB argmax i (N;), and form the(1— a)100%simultaneous con-
fidence intervals

Hi — nglele

(7)

e [— ()~ —5 ) () — mac() + 6)+

fori =1,2,....k, where—y~ = min{0,y} and y" = max{0,y}. Furthermore,
Pr{ua—fn}axkuez—é}zl—a, (8)

that is, with high confidence, the mean of the selected system is Withiirthe
mean of the truly best system.

Nelson and Staum (2006) proved thaf Br=k} > 1— a whenever Model (1)
holds anduy — pux_1 > 8. Regardless of the configuration of the true means, the
confidence intervals (7) have coverage probability at leasiolby Theorem 1 of
Nelson and Matejcik (1995), while Inequality (8) follows from Corollary 1 of Nel-
son and Goldsman (2001).
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6. Control-Variate Selection for Screening

In this section we provide some guidance for selecting control variates. When CRN
is involved in the screening procedure, can we take advantage of CRN when choos-
ing control variates, or should we just select favorable control variates to minimize
the variance of each CV point estimator individually? For the screening procedure
with individual control variates, we use the screening threshigldn Equation (4)

as the measure of chosen subset size. The sn¥gllas, the more difficult it is

for systemi to survive in the subset. To make the expected subset size as small as
possible, we select favorable control variates to minimij&# becaus&\V, is non-
negative. To simplify the analysis, suppose we choose first-stage sample sizes and
controls for each system such timat= n andq; = g, for all i. Consequently, for all
i=12,...,kt =t, and we know that

EM] = E [t?4%(m)T2(n) +7A2(n)2(ny)|
— E[2A%(mT ()] +E PR m)|

= t2 (Var[fi(n)] + Var[fi,(n)]).

12 (niaiz) (Var[nij]:Var[nej])_

Clearly we would like to minimize the variance of each CV point estimator. In other
words, we should choose control variates for each system to obtain the greatest
variance reduction individually. Notice th&{W?] is unaffected by CRN; therefore,
CRN is irrelevant with respect to the individual CV screening procedure. Afionuevo
and Nelson (1988), Nelson (1989) and Bauer and Wilson (1992) give algorithms for
selecting good control variates individually. However, CRN can affect[@ipw,;],
which represents the benefits of CRN that we cannot capture in the individual CV
screening procedure. This is the disadvantage inherent in the screening procedure
with individual control variates.

For the screening procedure with paired control variates under Model (6), the
expectation of the square of the screening threshold from Step 3 of Procedure 2 is

E[t2 4 ()% (n)?] =t Varlfie(n)]

n—2 Var[n;(i, )]
=t (n—Zq—Z) rJ1

n-2 Var[nij — Nei)
=t (n—Zq—Z) Jn :

(n _nz—qZ_ 2) (Var[ﬂij] +Var[f7€i]] —2Covnij, fm])
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which directly incorporates the reduced variance by applying CVs to the paired
observations. The more positive correlation that remains in the residuals across sys-
tems induced by CRN, the larger Gaw;, n¢;] will be. The paired CV procedure
exploits this dependence so that it can perform better than the individual CV screen-
ing procedure, especially whers much larger thag. Therefore, we should choose
control variates that can be paired across systeand/ to minimize the variance of
Hi¢(n), and these may be different than we would choose to minimize the variance of
each individual CV estimator. As a result it is possible that the CVs chosen for sys-
temi could be different when systenis paired with each system=1,2,... k¢ #I
(inwhich case Model (6) would be modified to allow the selected controls to depend
on the pairi, £)).

7. Combined Procedure

In the combined procedure, we apply a screening procedure with control variates to

eliminate noncompetitive systems in the first stage. Then in the second stage the CV
selection-of-the-best procedure is applied to the surviving systems to pick the best

system, while still gaining the desired overall confidence level. Here are some key

observations:

* We spendxg of the overall allowable erroo for incorrect selection on the first
screening stage, amd + a, on the second selection-of-the-best stage.

 If we use the individual CV screening procedure in the first stage, then a multi-
plicative approach is applied, i.e.,

l-a=(1-ap)(1—a1—ay).

» If we use the paired CV screening procedure in the first stage, then an additive
approach is applied, i.e.,

l-a=1-ap— a1 —a>.

» We set the appropriate critical constgmf each system=1,2,...,kinthe CV
screening procedure frsystemsn; first-stage samples control variates, and
confidence level 1 ag.

» We set the appropriate critical constdmf each system= 1,2, ..., kin the CV
selection-of-the-best procedure forsystemsn; first stage samplesy; control
variates, and confidence level-lo;.

» We set the appropriate critical constanin the CV selection-of-the-best proce-
dure fork systems, confidence levelHa,, and depending on whether or not the
systems are simulated independently or with CRN.

In the procedure below we assume that q; is the same for each systdm-
1,2,...,kand mention the necessary adjustment for unegualg; in Remark 7.1.
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The following is a procedure that combines the individual CV screening procedure
with the CV selection-of-the-best procedure.

Procedure 5 (Individual CV Combined Procedure)

1.

4,

5.

Select overall confidence leviel- a > 1/Kk, indifference-zone parametér> 0,
number of systems k, and first-stage sample size @ + 2 from system
1,2,...,k. Sett= t(l—ao)1/<k*1>,ni—qi—l and h= hy 1_q, n—q—1, Which is Rinott's
constant (see Wilcox 1984 or Bechhofer et al. 1995 for tables).

. Obtain n observations from each system and calcufate ), AAiZ(ni) and72(m;),

i=12, ..., k. We also create the subset

I={i : Hi(m) — He(ne) > =W, VE# i},
where

W = 2 A2(m) T2 (n) + 2 A2(n) T2(n).

. If I contains a single index, then stop and return that system as the best. Other-

wise, for all i€ I, compute the second-stage sample size
. n—a nd? )
L —m : _ > Z
N nzqui1 {n ( Qi ) (hzﬁz(ni) 1) Zan-g

_JA-az %, if the systems are simulated independently
y_
1—ay/k, otherwise.

where

Notice:1—a = (1— ap)(1— a1 — az) (multiplicative approach

Take N— n; additional observations from all systems il and form the CV esti-
matorsi (N;) fori € 1.

Select the system=Bargmax Li(N;) as best from all systemszil.

Theorem 1. If Model (1) holds, then the individual CV combined procedure selects
a system B such th@r{B = k} > 1— a whenevey — 1 > 9. For any config-
uration of the means, the following hold with probability greater than or equal to
1-a:

Foralli e,

Hi — Q% He
) [ (v - v =)

.
; (ﬁi(Ni) — max ﬁf(Ng)-i-é) .(9)

The mean of the system we select will be withiaf the mean of the truly best
system in | with probability> 1 — a, that is
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Pr —max gy >-0,>1—aqa. 10
{ho— max >3} > (10)
Remark 7.1 Suppose thatin- q; is different across systems. This causes the first-
stage residual-variance estimators(ni), 75(ny), ..., 172(nk) to have different de-
grees of freedom. One approach is to use the adjusted constant

h= h2a(1*01)1/<k’1) ;ming {n; —q; —1}

which is valid when the degrees of freedom are unequal (Boesel, Nelson and Kim
2003).

Remark 7.2 We can combine the paired CV screening procedure with the CV
selection-of-the-best procedure. When we use the best bet screening procedure, we
need to change Step 2 to the following:

2. Obtain n> max_.(q + g, + 2) observations from each system and form the k
CV estimatorgii(n), i = 1,2,...,k. Let K be the index of the system with the
largest [i; (n), that is, K* = argmax{i(n), and then form the k 1 paired CV

I

estimatorsfix - (n) for all i # K*. Then we letik: = 1 ao/(k—1),n—g—gg-—1 @nd
create the subset

Isestsec= {1+ A (n) = —tic B ()i (M) JU{ K},

An additive approach is appliefl —a = 1—dap— a1 — ap).

Theorem 2. If Model (1) holds, then the paired CV combined procedure selects a
system B such th®r{B = k} > 1— a wheneveru — px_1 > 9, and statistical
inferences (9) and (10) still hold regardless of the configuration of the true means.

We prove that BfB = k} > 1— a with independence amongjij, i=1,2,.. .,k
i =1,2,...,n}in the Appendix. However, experiments showed that this paired CV
combined procedure can perform very well even whey, i =1,2,...,k} are
positively dependent.

8. Empirical Results

In this section we summarize the results of an empirical evaluation performed to
compare the following procedures:

1. The combined sample-means-based procedure (NSGS) due to Nelson et al.
(2001) that uses a screening procedure with sample means to eliminate noncom-
petitive systems after the first stage of sampling, and then applies Rinott’s 1Z
selection procedure in the second stage. This procedure allows for unknown and
unequal variances across systems, but CRN is not exploited.
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2. The individual CV combined procedure which we call TNS-I, and the paired CV
combined procedure which we call TNS-P. These procedures allow for unknown
and unequal variances across systems and the use of CRN, although TNS-I does
not exploit CRN.

The systems are represented by various configuratioksoifmal distributions;
in all cases, systetawas the best (had the largest true mean) X .éte a simulation
observation from systemfori =1,2,..., k. For simplicity, we assume that there is
g= 1 control variate. Then we assume the output can be represented as

X = Hi+(Ci—&)B+n,

where{n;, i=1,2,...,k} are NO, Gﬁ) random variables. ThéC;, i =1,2,... k}
are assumed to be(§, 02) random variables and independen{qf, i = 1,2, ..., k}.
The correlation between contrdls andC, for i # £ is p.. The correlation between
residualsn; andn, for i # ¢ is p,. The squared correlation coefficient betwegn
andG; is P(Zx‘c)-

We evaluated each procedure on different configurations of the systems, examin-
ing factors including the number of systeikghe practically significant difference
d, the initial sample sizeg, the variance of the controlﬂf, the variance of the
residualsa,%, the correlation of the controls., and the correlation of the residuals
pn- The largero? is compared Wiﬂ'D'%, the more of the variability in outputs can be
explained by the controls. Whepy, # 0, then Model (6) holds but Model (1) does
not hold. A largerp, means more dependence due to CRN is accounted for by the
residuals. The configurations, the experiment design, and the results are described
below.

8.1 Configurations and Experiment Design

We used the slippage configuration (SC) of the true means of the systems, in which
Uk was set tod, while u; = up = --- = 1 = 0. This is a difficult scenario for
screening procedures because all the inferior systems are close to the best system.
These experiments with the slippage configuration illustrated that CVs can make the
screening procedure more efficient even under the most difficult situation.

We chose the initial sample size tothg= 10, fori = 1,2, ..., k. The mean of the
controls,éj, issettobe 0, for=1,2,... k. We also sef§ tobe 1, fori=1,2,....k.
The number of systems in each experiment varied kve®, 5,10, 25, 100. The in-
difference zone paramete¥, was set t&d = , /(02 4 02)/no. For each configura-
tion, 500 macroreplications (complete repetitions) of the entire combined procedure
were performed. In all experiments, the nominal probability of correct selection was

setat I- o = 0.95. We tookop = a3 = a2 = a/3 in paired CV screening cases and
tookap =0a/3,a1 = a; = a/(3—a) inindividual CV screening cases. For NSGS,
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Table1 Effect of Number of Systems for NSGS and TNS-I when=4,0, =1,0c=pp =0
Number of Systems Procedure PCS ANS PSS

k=2 NSGS 0.9898 0.86
TNS-I 1 12 041

k=5 NSGS 0.98 186 0.96
TNS-I 1 19 0.76

k=10 NSGS 0.98 234 0.97
TNS-I 1 27 0.86

k=25 NSGS 0.98 306 0.99
TNS-I 1 34 0.92

k=100 NSGS 0.99 430 0.99

TNS-1 1 49 0.98

we setag = a1 = a /2. To compare the performance of the procedures we recorded
the estimated probability of correct selection (PCS), the average number of sam-

ples per system (ANS), and the percentage of systems that received second-stage
sampling (PSS).

8.2 Summary of Results

The PCS of the CV combined procedure was over 0.95 in all configurations. The
overall experiments showed that the CV combined procedure was superior to the
combined sample-means-based procedure under any configuration we examined.

We do not try to present comprehensive results from such a large simulation
study. Instead, we present selected results that highlight the key conclusions. Notice
that we apply Model (6) and the best bet screening procedure in TNS-P.

8.2.1 Effect of Number of Systems

See Table 1 for anillustration. Systems are simulated independently since NSGS and
TNS-1do not exploit CRN. The goal is to compare NSGS with TNS-1 when we have
different numbers of systems. Asincreases, the average number of samples per
system increases greatly in NSGS compared to TNS-I. The percentage of systems
that received second-stage sampling is smaller in TNS-I than in NSGS.

8.2.2 Effect of Control Variates

See Table 2 foran illustration. We know thaf, ., = 02/ 05 = 0¢/(0¢ + ), which
represents how good this CV is. In our experiments, wefixo be 16. For example,
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Table2 Effect of Control Variates for TNS-I in Comparison with NSGS whey= 0, p; =0, and
k=10

Procedure PCS ANS PSS

0Z=16 NSGS 1 235 007
Pe = 0.2 Individual CV 0.97 241 0.98

Ph.c) = 0-4 Individual CV 1~ 181 0.99
p(zm =0.6 IndividualCV 1 129 0.97

pfm =0.8 IndividualCV1 68 0.99

Table 3 Effect of Correlation for TNS-1 and TNS-P whem = 4,0, =1, andk = 10

Correlation Procedure PCS ANS PSS
pc=0 IndividualCV 1 34 0.80
pp =02 PairedCV 1 30 0.74
pc=0 IndividualCV 1 34 0.90
ppb =05 PairedCV 1 26 055
pc=0 IndividualCV 1 35 0.90
pp =08 PairedCV 1 13 0.10

Pfc) = 0.2 meansog = 16 andog = 3.2. We find that the performance of the
individual CV combined procedure is almost the same as NSGS w&gpis 0.2.
Whenp(zx’c) is larger than 0.2, the CV combined procedure can outperform NSGS.
Thus, very smalp(zx’c) is required for the CV combined procedure to beat NSGS.

Largerp(zx‘c) means the CVs can explain more variability of the outputs, and thereby
makes the CV combined procedure more efficient.

8.2.3 Effect of Correlation

See Table 3 for an illustration. Here we compare TNS-I and TNS-P under different
Pn. When the correlation between residuals is larger, TNS-P performs better and
beats TNS-I easily. In Table 3, we see that the PSS of TNS-P is as low as 0.10,
which shows the high efficiency of TNS-P whep is large. Notice that CRN does

not affect the screening threshold for TNS-I, but it does affect the point estimator,

which is why the performance of TNS-I in Table 3 varies when we have different

Pn-
9. Illustration

In this section we use a queueing example to illustrate the application of TNS-I,
TNS-P and NSGS. We use tM/M/s/c model which represents a queueing system
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Table4 The Five Queueing Systems and their Expected Waiting Times in Steady State
Systemi A s u EW]

415 088

4 25/2 0.98

4 35/3 1.10

4 45/4 1.24

45 1 138

abhwnNPE

Table5 Results for NSGS, TNS-1and TNS-P in 100 Trials with=0.1,ng =10, and :-a = 0.95

Procedure ~ PCS ANSHANS) PSS
NSGS 0.97 462 134 1
TNS-I 1 301 108 0.81

TNS-PwithCRN 1 207 104 0.68

with Poisson arrivals, exponentially distributed service tingeservers, a capacity

of ¢ customers, and a first-come, first-served queueing discipline. The customers
arrive with arrival rateX . The service rate for an individual serverisWe perform

each procedure on five different configurations of the systems in whjcku) =

4/5 where the performance measure is the steady-state mean of the waiting time in
system. The capacityis set as 15. The five configurations are shown in Table 4
along with their true expected waiting times. System 1 is obviously the best system.
Note that smaller is better here.

To mitigate the initial transient bias, we initialize the simulation in steady state.
That is, we calculate the steady-state distribution of the number of customers in the
system, then sample the initial conditions for each replication in accordance with
that steady-state distribution. An average waiting time for thirty customers is used
as the output on each replication. For TNS-I and TNS-P, we use the average service
time as the control on replicatiop which means

X” _ Zﬁ'lozlvvum andCij _ Zﬁ?:lSjm
30 30
whereWjm is the waiting time in system for customerof replicationj from system
i and Sjm is the service time for customen of replication j from systemi. The
initial sample sizeng is set as 10 for each system. We choose the indifference zone
d to be 0.1 and CRN is applied.

Table 5 shows the results of the TNS-I, TNS-P and NSGS procedures with 100
macroreplications and confidence level &r = 0.95. We also provide the estimated
standard error of ANS to show that there is a significant difference.

These three procedures all exceed the desired probability of correct selection.
NSGS is unable to screen out inferior systems in the first stage; therefore, its ANS
is much larger than that of the other procedures. We can eliminate more systems in
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TNS-P than in TNS-I to further reduce the average number of samples needed by
using CVs with CRN.

10. Conclusions

In this paper we presented a CV combined procedure that exploits the ability to
screen out inferior systems and the statistical efficiency of control variates. We also
proposed a more-general paired CV model and a new paired CV screening proce-
dure to reduce the algorithm overhead and retain the benefits of paired CVs as well.
As we showed in Sections 8 and 9, TNS-I is superior to NSGS for all the scenar-
ios we examined. NSGS is based on the assumption that all systems are simulated
independently, and TNS-I assumes that the dependence induced by CRN is entirely
explained by the controls. On the other hand, TNS-P is significantly more efficient
than TNS-I when the CVs do not explain all dependence due to CRN because lots
of sampling cost can be saved. However, computational experiments show that the
advantage of TNS-P over TNS-I diminishes with larger numbers of systems, and
TNS-P incurs more algorithm overhead than TNS-I. As a rough rule of thumb, we
use TNS-P when CRN is involved, but use TNS-I when all the systems are simulated
independently.

11. Appendix

For the individual and paired CV combined procedures, the proofs in this appendix
assume that Model (1) holds. We also assying py_1 > ---> iy andpg — g1 >
0.

11.1 Model (5) and Model (6)

Here we compare Model (5; Nelson and Staum paired CV model) and Model (6;
our new paired CV model) in terms of[E,(n)] and Vafgi,(n)]. We know that
Model (6) tends not to lose much when the true underlying model is Model (5)
becauselj,(n) is still unbiased and the inflation of Vi, (n)], due to the loss of
degrees of freedom from—q— 1 ton—2q— 1, will not be substantial when is
not too small. Therefore, we focus on the consequences of assuming that Model (5)
holds when in fact the true model is Model (6).

We first computeii,(n) under the assumption that Model (5) holds while Model (6)
is actually the true model wit; # 3,. The casey, = 1, for alli is sufficient to il-
lustrate the point. For convenience, let
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C={Gj,j=12,...,ni=12,..., k}

be the collection of all observed controls. Define

’ ZTzl(CJ(Ivé) _C(Iaé))z '

We know thali¢ (n) = X (i, £) — (C(i, ¢) — &)B(i, £), and Eifli¢ () |C] = E[X(i, ¢)|C] -
(C(i,¢) — &)E[B(i, ¢)|C]. Therefore,

~

Elfi(m)] = E[E[R(n)|C)] = s — E[(C(i,0) — &)EIB(,0)|C]

and B | N
EfB( 0[q) = DI EXIH0 ~ X0 OICIC(, 0 - € 0)

¥ 1-1(Cj(i,0) = C(i,0))?
Because Model (6) holds, we know that

E[Xj(i,6) = X(i,0)|C] = (Cij — &)B — (Cej — &)Be — (Ci— &)Bi+ (Ce — &)y
= (Gj—C)B - (Crj— Co)B:.

Thus, we obtain

371 ((Gj —C)Bi — (C1j —C)Br) (Cj(i,6) —C(i, 0))
ZT:l(CJ (I ’ é) _C(I ’ é))Z

57-1(Cej = Co) (C4(0,6) = C(i, )
Z?:l(cj (I ’ é) - C(I ’ é))Z

Therefore, the bias is[fi¢(n)] — His, which is equal to

E[B(i,0)|C] =

=B+ (B—B) (11)

—E[(Cli,0) - &)EB(,0)[C]]

314 (Ch-C) (Ci(.0-Cli,0)\ =
__EK(B'_B” IAG 0,0 -CLO? ><C<'af>—€w)] (12)

that is not equal to O in general § # ;.

We now examine the impact on variance. Notice that
Var(fi(n)] = Var[E i (n)|C]] + E[Var(Li(n)|C]]

= Var (G~ &)B — (G, — &) — (€0, 0) - &)EB(1,0[C]
+ E[Var(pi (n)|C]].
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20
Sinee X,(1,0)(C1(1,0 ~ €1, 1)
. 72?:11'“ i, €) — L,
B0 =S 00 —cio7
we have
. 31_4(Ci(i,0) —C(i, 0))? Var[X(i, ¢)|C]
V. C] = Var[X;(i,¢)|C n :
ar[B(i, ¢)|C] = Var[X;(i, 0)| ](zj (G0 -GG 4))2)2 >1-1(Cj(i, ) —C(i,0))?
Now
Var[fli(n)|C] = Var[X(i, £) — (C(i, ) — &)B(i, )|C]
= Var{X(i,)|C] + (C(i, ¢) — &)*Var[B(i, )|C]
_Z(C_( ’ é) - EIF)COV[)Z(I ) é)v B(I ) €)|C]
B p 1 (C(i, 0) — &0)?
= Var[X;(i,¢)|C] <ﬁ + ST LCi00) —C(i,é))2>
—2(C(i,¢) — &¢)Cov[X(i, £),B(i, ¢)|C].
Further,
B(i,0)|C] = Cov{pi — e+ (Ci — &)Bi — (Cr — &)B; + (i, £),B(i,0)[C)

CoviX(i, ¢), B(i,
i,0)[C].

= Cov[n(i,?),B(

Since
o 3 ((G —G) B — (Coj—Co) B+ (i, 0) —
o0 = TG0 —C(L D)2
PN ¥ e (T C) (Ci(i,0) —C(i,0)
=B B P = i n —cine
o)

N >i-1(n;(i,0) —n(i,0))(Ci(i,0)
ZT:l(CJ (I ’ é) _C(I ’ é))Z

we have
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Cov{i(i, £),B(i, 0)|C]

3 i=1(n;(i,0) = n(i,0)) (Cj(i, ) — (h@)’c
’ ZTZI(CJ(I ’ é) _C(I ’ é))Z

- TG <z S8 ar (.00~ 5 (1. V(i e)])
1= ? =1

(Notice :Var[n;(i,0)] = Gi%,Vj)
=0.
Then we take the expectation of Vg (n)|C] to yield
€ Nl (n)[C]) = Varlny .0)] 1
n(n—3)
(Lavenberg and Welch 1981). Further, from Equation (11)

Var (G~ &) — (Ci— &)B: — (€, /) - &E[B(,0)[C]|

= Varl(C_i —&)Bi — (Co—&)Br— (C(i,0) — &) B

— (B —Be) (C(i,0) — &)

571 (Cj—Cr) (Cj(i,0) = C(i, 0))
ZTZI(CJ(Ivé) _C(Iaé))z '

To simplify this expression, let

371 (Cej —Ce) (Cj(i,0) —C(i, 1))

A(C) = (C(i, 0) — &) STAC,0.0 G0

which is a function ofC. Then,
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Var [E[fi(n)|C]] = Var[(G — &) — (C: — &) — (€(1,0) - &)EBG.0)[C]]

= Var [(Gi— &)Bi — (C,— &)Br — (C(i,0) — &¢) B — (B — B)A(C)]
= Var[(Ci—&)B — (C/—&)Bi+ (C1— &)B — (Cr— &)By
— (Cli,6) = &) B — (B — B)A(C)]

= Var[(C,— &)Bi — (C, — &)Bi — (B — B)A(C)]
= (B — By)?Var[C,— A(C)].

So, when we assume that Model (5) holds but the true model is Model (6), the
variance of the CV estimator is

Var[fs(n)] = (B~ B2Var [G: ~ A(C)] +Varlny 1.} (5 ). (19

On the other hand, when we assume Model (6) holds and Model (6) is indeed the
true model,

Var(i ()] = Vi i.0] (1 ) (14)

In summary, if we computgi,(n) assuming Model (5) holds while Model (6) is
the true model wittB; # B, then Equation (12) shows us that(n) will be biased.
Further, from Equation (13) and (14) we see that[Ma(n)] will be increased, espe-
cially whenf; is very different fromg3,. This illustrates the inferiority of Model (5)
relative to Model (6).

11.2 CV Combined Procedure with Individual Screening

We prove the multiplicative approach for Theorem 1,
l-a=(1-ap)(1—a1—ay).

In the multiplicative approach, we assume that Model (1) holds. For convenience,
let
C:{Cij,j :1,2,...,ni,i :1,2,...,k}

be the collection of all observed controls, and let
=2 =2 =2 22
T2 = {11(n1), T5(M2), ..., T (k) }

be the collection of all observed residual-variance estimators. Define
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7 - Hi(n) — Fi(ni) — (ki — i) Vi — Fi(Ni) — Hi(ND) — (p— 1)
VBMTE + B3 () T2 VBRNOTZ + BN T2
A = D2 (n)TE + A7 ()2, Di = A (N TE + A2 (N T

The probability of correct selection is

Pr{ﬁk(nk) B > W, Vi £ K Bi(NQ) > Bi(ND, Vi€l }

_Pr{ﬁkmk)—m( ) ) W)
VBN T2+ A2 M)T2 \/AZ (N T2+ A2(ny) T2
A (Nk) — i (Ni) — <uk—u.> — (M~ 1) \ﬂe,}
VBRNYTZ + A2 (N \/AZ T2+ A2(N) T2
>Pr{z< W Vi< 0 Vi £k §15)
VBT + BT\ BRNG T+ B2(N)T

—elprlzc i ,
VA2 TR + B(ny) T2

5 .
Vi < Vi £k

VBN T2 + B2(N)T?

Wi

s -2
zE_Pr{Z.g\/KW;Ak’C }Pr{v.<\/—D_i,Vl#k’C,TH (16)

_el Wi - 5 . i
_E_E[Pr{z. \/Kw;ék’Cr}Pr{V. \/ﬁi,w;ék’C,THCH(l?)
> E:E[Pr{zig%,w;&klc,?z}’c]

X E[Pr{\/i <\/iD_i,Vi7Ak’C,?2}’CH. (18)

Inequality (15) holds becauge — i > d, {Vi € 1 } is a smaller set thafivi # k}
which makes the condition more restrictive, and because of the symmetry of the nor-
mal distribution. And Inequality (16) is an application of Slepian’s inequality (e.g.,
Tong 1980). Then since the first term in Inequality (17) is a nonnegative, real-valued
function and increasing in each §f2(n1), 73(n), . . ., 72(nk) }, and the second term
in Inequality (17) is nondecreasing in each{a?(n1), 72(ny), ..., 72(nk)}, and by
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Lemma 1{7%(n1),72(n2),...,72(nk)} are conditionally independent gived, we
can apply Lemma 2.4 in Tamhane (1977) to get Inequality (18). From Nelson and
Staum (2006), we know that

E[Pr{zi < %,Vi £ k’C,?ZHC] = Pr{Zi < %,Vi 7Ak’c} >1—ag

o o
E|E|PrqVi< —=Vi#KIC,T2}|C|| =PriVi< —=,Vi#k, > 1—a;—a,.
el < T Hemfle]] - efu < e -ane
So we can conclude from Inequality (18) that the probability of correct selection is

Pr{ () — 1 (ni) > —Wii, Vi £ ki Hie(N) > Fi(Ny), Vi € 1}
>(1-ap)(l—a1—az)=1—a.

We need to verify that Slepian’s inequality can be applied for Inequality (16).
It is easy to show that the C{, Z;|C, 7%] and CoWM, V;|C,T?] are nonnegative
for any systeni £ j (Nelson and Staum 2006). So here we only need to examine

COV[Zi,Vj |C, fz]
c,f2]

Wheni # j,
wherea; = /A, d; =,/Dj. We can factor ows; andd; since they are both constants
when we condition orC. And we know
1 !

() = [n—k i (Cln) — & (L'k<nk>Lk<nk>)lL’k<nk>] Xi()

Cov|z,V,|C,T?
_ Coy | Pl — Fi(m) — (p— ) Fi(N) — Bi(N}) — (Hie — K1)
VBT +BH MR \JBR(NOTE +A2(N))T?

1 ~ ~ ~
= —Cov [[ik(nK), ik(Ni)[C, 7]
a;d;

= a'Xk(n)

(N = [Nik frr— (CelN) &) (LL(N@Lk(Nk))lL'k(Nk)] Xi(No)

= b’ Xy (Nk).

It follows that
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-~ 1 ~ ~ =
COV[Zian |Ca TZ] = ECOV [uk(nk)a uk(Nk)|Cv TZ]
]

= ia’Qb
aid;
where
Q = (E F) ) E = Var[xk(nk)]? F = [O]nkx(Nkfnk)-

SinceE is a diagonal matrix with positive elements aadlj is positive, we can
conclude that Colz;, V;j|C, 7] is nonnegative i/ B is nonnegative, where the vector
B is composed of the first, elements of the vectdr. We know

5= Nik et = (CilNQ) = €)' (LINQLK(N) (L) + mic(ne))

where

mi(Mk) = {Cik(Mk) — Ci(Nk), Ci(nk) — Ci(Nk); - - -, Ck(Mic) — Cie(Nie) ¢ -

Then
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1 1

@B = -~ T LK) (LKNOLK(N) ™ (Gl — £

e [ (LNOLN) (Gl — )]

+ (Ck(m) — &) (LML k(M) L (nk)

- Nik - niklﬁkxl [mf((nk)(Lf((Nk)Lk(Nk))il (Gl — Ek)}
+(Culng - &) [(LNOLKN) * (G -] (29)

= Nik+ (Cu(NK) — &)’ [(L;((Nk)Lk(Nk))*l (Ci(Ni) — gk)} (20)

1 (G = &) S TGN — &)
-t N1 (21)

1 T?
—t = >0 22
Ne ~ Ne(Nk—1) (22)
where S is the sample covariance matrix of controls from systkmrhat is,
Li(N)Lk(Nk) = (N — 1)S. And T2 is the generalized 2-statistic of controls from

systemk, s0T2 = Ny (Ck(Nk) — &)' S~ (Ck(Nk) — &) (Anderson, 1984). Equal-
ity (19) holds becausé, , ;Lk(n) =0, (L{((nk)Lk(nk))71L|’((nk)Lk(nk) =1, and
Li(ni)mi(ng) = 0. Equality (20) holds becausl/nk)1y, , ;mi(nk) = (Ck(nk) —
Ck(Nk))'. Equality (21) and Equality (22) hold because of the definitionSof and
T2. Therefore, Cofz;,V;|C, 72| is positive wheri # j.

Wheni = j,

~ 1 ~ ~ ~ —~ —~ ~
Coviz,Vj|C, 77 = [COV[Hk(nk)a fik(N)|C, T2] + Cov [ (nj), {(N;)|C, 7] } :

it

We can also obtain Cdyij(n;j), 11j(N;)|C, %] > 0. Therefore, Co\Z;,V;|C, 7] is
positive when = j.
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11.3 CV Combined Procedure with Paired Screening

Theorem 2 is proven here. We can apply the additive approach to the CV combined
procedure with paired screening. We assume that Model (1) holds. The probability
of correct selection is

Pr{ﬁki(n) > i Ai(M) T (N), Vi 2 k; Fie(Ne) > T (ND), Vi € |}

Pr{ ﬁki(n) > —tkiﬁki(n)?ki(n),Vi #k;

Fi(N) — i (N:) — o), __Gom) ,}
VBR(NYTZ + A2(N) T \/AZ T2+ A2(N:) T2
> Pr{ Hii () > —ti Awi(n) Tai(n), Vi # k;

o)
Vi > —— — Vie |} (23)
VBRNOTZ +A2(N) T

> Pr{ Hii () > —ti Awi(n) Tai(n), Vi # k;

Vi < —= 0 — Vi £k AZ(N )_%Vi} (24)
VBR(NYTZ + A2 (N)T? PP

> Pr{ Hii(n) > —ti A (M) Tii(n), Vi 2 k; Vi <

2
A (N.)_hz%() Vi}

>1-po—p1—P2 (25)

where
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po = 1 Pr{ () > ~tZ(n)7(n)., ¥i £k} and

pr=1-PrqVi<

~ 52
= 1-Pr{ A2(N) < ——— Vi }.
p2 r{ | ( I) = hzriz(ni)’VI}

By Lemma 1, the conditional distribution & given {72, C} is standard normal.
Inequality (23) holds becauspy — 1 > . Inequality (24) holds because of the
symmetry of the normal distribution and the probability is smaller if we require a
bound on the value (ﬁiz(Ni), while Inequality (25) is an application of the Bonfer-
roni inequality.

We know thatpg < ap, p1 < a1, p2 < a2 (Nelson and Staum 2006). So we can
conclude that the probability of correct selection is

Pr{fki(n) > —ti Ai(M)Tui(n), Vi # k; Bc(N) > Bi(Ni), Vi€ 1}
>1-ap—a1—oax=1—aq.
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