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Abstract Nelson and Staum derived ranking-and-selection (R&S) procedures that
employ control-variate (CV) estimators instead of sample means to obtain greater
statistical efficiency. However, control-variate estimators require more computa-
tional effort than sample means, and effective controls must be identified. In this
paper, we present a new CV screening procedure to avoid much of the computation
cost along with a better paired CV model than that of Nelson and Staum. We also
present a two-stage CV combined procedure that captures the ability to eliminate
inferior systems in the first stage and the statistical efficiency of control variates for
selection in the second stage. Some guidelines about control-variate selection and
an empirical evaluation are provided.

1. Introduction

In simulation research and applications, ranking-and-selection procedures (R&S;
see for instance Bechhofer, et al. 1995) have proven to be quite useful for find-
ing the system design that is the best, or near the best, where the “best” system is
the one with the largest or smallest expected performance measure. However, R&S
procedures are only recommended when the number of alternative designs is rel-
atively small and the designs are not functionally related. For instance, the typical
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indifference-zone (IZ) selection procedure will require large numbers of observa-
tions to deliver the desired correct-selection guarantee when output variances or the
number of systems are large. To solve this problem, Nelson et al. (2001) proposed
a combined procedure that uses the subset selection approach to eliminate some
noncompetitive systems in the first stage; it then applies a standard IZ selection
procedure in the second stage. In this way, sampling cost can be saved while still
maintaining the ease of implementation and statistical efficiency.

In almost all R&S procedures, sample means of the outputs are used as the esti-
mators of the expected performance. Nelson and Staum (2006) derived R&S proce-
dures that employ control-variate estimators instead of sample means. Controls are
random variables in the simulation that are correlated with the output of interest,
but whose expected values are known (Lavenberg and Welch 1981). These control-
variate procedures can be more statistically efficient than the sample-means-based
procedures. However, control-variate estimators require more computational effort
than sample means, and effective controls must be identified.

One of our goals is to propose a new control variate (CV) screening procedure to
decrease the computation cost and still obtain the statistical efficiency. A superior
paired CV model is provided and compared to the paired model in Nelson and Staum
(2006). We also propose a two-stage procedure that captures the ability to screen
out inferior systems and the statistical efficiency of CVs for selection: We use a
screening procedure with CVs to eliminate obviously noncompetitive systems in
the first stage and then apply a selection-of-the-best-with-control-variates procedure
to the surviving subset of systems in the second stage. Nelson and Staum (2006)
showed that the screening threshold with CVs is expected to be tighter than with
sample means when the correlation between the output and control is not too small.
Therefore, the expected subset size is correspondingly smaller. For the selection-of-
the-best-with-control-variate procedure, Nelson and Staum (2006) also showed that
we can expect a smaller sample size than Rinott’s (1978) procedure even when the
correlation between the output and control is modest. Thus the sample size of the
CV selection procedure is typically smaller than that of Rinott’s (1978) procedure,
which is based on sample means. Since the CV screening procedure is better than
the standard screening procedure based on sample means, and the CV selection
procedure is better than the selection procedure based on sample means, we can
expect that a combined CV procedure is better than a combined procedure based on
sample means. In this paper we develop the theory and procedures to support such
a combined approach.

The paper is organized as follows: In Section 2, we outline the generic combined
procedure. Sections 3–5 review CV estimators and several CV R&S procedures. We
present the improved paired CV model and a new CV screening procedure in Sec-
tion 4. Section 6 contains some guidance for selecting control variates in this con-
text. In Section 7, we present the CV combined procedure in detail. The paper ends
with an empirical evaluation, including a queueing example, performed to compare
the two combined procedures (Sections 8 and 9), and conclusions in Section 10. All
proofs are relegated to the Appendix.
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2. Generic Combined Procedure

In the CV combined procedure, we apply the CV selection-of-the-best procedure to
the subset of systems chosen by the CV screening procedure to acquire both statisti-
cal and computational efficiency. The generic combined procedure is as follows. In
the remainder of the paper we fill in specific pieces of this procedure.

1. For each system, obtain a small number of observations of the system perfor-
mance measure and the controls. Then form CV estimators of each system’s
mean and calculate an estimator of the variance of each CV estimator.

2. Apply a CV screening procedure to eliminate inferior systems based on the in-
formation acquired in the first step.

3. If only one system survives, then stop and return that one as the best system.
Otherwise, calculate the total number of observations needed for each system
to detect a specified practically significant difference in performance with the
desired confidence level.

4. Take additional observations from each surviving system and form CV estima-
tors. Then select the system with the best CV estimator.

3. Screening Procedure with Individual Control Variates

In this section we briefly provide the definitions and notation that will be used
throughout the paper and review the screening procedure with individual control
variates in Nelson and Staum (2006). The following description is based on Nelson
and Staum (2006).

3.1 Individual Control-Variate Estimators

Let Xi j be the j th simulation observation from systemi, for i = 1,2, . . .,k. We as-
sume it can be represented as

Xi j = µi +(Ci j − ξ i)
′β i +ηi j , (1)

where theqi × 1 vectorCi j is called thecontrol and is assumed to be multivari-
ate normal, while{ηi j , i = 1,2, . . .,k, j = 1,2, . . .,n} are mutually independent
and{ηi j , j = 1,2, . . .,n} is a set of independent and identically distributed (i.i.d.)
N(0, τ2

i ) random variables. For each systemi = 1,2, . . .,k, the controls{Ci j , j =
1,2, . . .,n} are also i.i.d., are independent of{ηi j , j = 1,2, . . .,n}, and have known
expected valueξ i . TheXi j are therefore i.i.d. N(µi ,σ2

i ) random variables, with both
µi andσ2

i unknown and (perhaps) unequal. The multiplierβ i is a qi × 1 vector of
unknown constants that captures the relationship between the outputXi j and the con-
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trol Ci j , while ηi j represents that part of the variability inXi j that is not explained
by the controls.

A control-variate estimator ofµi can be much more statistically efficient than
the sample mean of theXi j . We review some basic properties of the CV estimator
under Model (1) below. The development is based on Nelson (1990), Nelson and
Hsu (1993), and Nelson and Staum (2006).

Let

Xi(n) =




Xi1

Xi2
...

Xin


 andCi(n) =




C′
i1

C′
i2
...

C′
in




be vectors of the outputs and controls across alln observations from systemi. Define
the sample means of the outputs and controls as

X̄i(n) =
1
n

n

∑
j=1

Xi j andC̄i(n) =
1
n

n

∑
j=1

Ci j .

We append “(n)” to quantities defined acrossn observations.
To define the CV point estimator, let

L′
i(n) =

[
(Ci1− C̄i(n)), (Ci2− C̄i(n)), . . ., (Cin− C̄i(n))

]
.

If 1n×1 is a column vector whosen elements all equal one, then the CV point esti-
mator ofµi is

µ̂i(n) =
[

1
n

1′n×1−
(
C̄i(n)− ξ i

)′ (
L′

i(n)Li(n)
)−1

L′
i(n)
]

Xi(n)

= X̄i(n)−
(
C̄i(n)− ξ i

)′ β̂ i

(Nelson 1990). It is known that under Model (1)

E[µ̂i(n)] = µi and Var[µ̂i(n)] =
(

n−2
n−qi −2

)
τ2

i

n

whereτ2
i = (1−R2

i )σ2
i andR2

i is the square of the multiple correlation coefficient
betweenXi j andCi j (Lavenberg and Welch 1981).

We need to know the distribution of̂µi(n) and an estimator of its variance to
derive R&S procedures. For each systemi = 1,2, . . .,k, let

Ai(n) =




1 (Ci1− ξ i)
′

1 (Ci2− ξ i)
′

...
...

1 (Cin − ξ i)
′


 .
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If I is the identity matrix of rankqi , then define

τ̂2
i (n) =

1
n−qi −1

Xi(n)′
[
I−Ai(n)

(
A′

i(n)Ai(n)
)−1

A′
i(n)
]

Xi(n)

=
1

n−qi −1

n

∑
j=1

[
Xi j − µ̂i(n)− (Ci j − ξ i)

′β̂ i(n)
]2

(2)

as the residual variance estimator. Further, let

∆̂2
i (n) =

1
n

+
1

n−1

(
C̄i(n)− ξ i

)′
S−1

Ci
(n)
(
C̄i(n)− ξ i

)
(3)

whereSCi (n) is the sample variance-covariance matrix ofCi j . Then we have the
following key result:

Lemma 1 (Nelson and Hsu 1993, Theorem 4.1). If Model (1) pertains, then con-
ditional on
C1(n),C2(n), . . .,Ck(n), the following properties hold:

P1: µ̂i(n) ∼ N(µi, ∆̂2
i (n)τ2

i ), i = 1,2, . . .,k.

P2: τ̂2
i (n) ∼

τ2
i χ2

n−qi−1

n−qi −1
and is independent of̂µi(n), for i = 1,2, . . .,k, where

χ2
n−qi−1 is a chi-squared random variable with n−qi −1 degrees of freedom.

P3: If {ηi j , i = 1,2, . . .,k, j = 1,2, . . .,n} are mutually independent, then{µ̂i(n),
τ̂2

i (n), i = 1,2, . . .,k} are mutually independent.

Property P3 requires that theηi j are independent for all systemsi as well as
for all observationsj . In practice P3 will hold either if all systems are simulated
independently, or if common random numbers (CRN) are used but the dependence
due to CRN is entirely explained by the controls. CRN is a technique that tries
to induce a positive correlation between the outputs of different systems by using
the same pseudorandom numbers to simulate each alternative system and therefore
reduce the variance of the difference between them.

3.2 Screening with Individual Control Variates

We will assume that unknown to usµk ≥ µk−1 ≥ ·· · ≥ µ1 and that bigger is better.
The goal of the procedure is to find a subsetI that contains systemk with prespeci-
fied confidence. We also assume that Model (1) holds but relax the assumption that
Ci j has to be multivariate normal. Lettp,ν represent thep quantile of the t distribu-
tion with ν degrees of freedom.

Procedure 1 (Individual CV Screening Procedure)

1. Choose the confidence level1−α > 1/k.
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2. Obtain ni > qi +2 observations from system i= 1,2, . . .,k and form CV estima-
tors µ̂i(ni), i = 1,2, . . .,k.

3. Let ti = t(1−α )1/(k−1) ,ni−qi−1 and create the subset

IIndiv = {i : µ̂i(ni)− µ̂`(n`) ≥ −Wi`,∀` 6= i} , (4)

where

Wi` =
√

t2
i ∆̂2

i (ni)τ̂2
i (ni)+ t2

` ∆̂2
` (n`)τ̂2

` (n`).

Nelson and Staum (2006) proved that Pr{k ∈ IIndiv} ≥ 1− α when Model (1)
holds even if we relax the assumption thatCi j is multivariate normal. Nelson and
Staum (2006) also showed that very little correlation between the output and control
is required for the subset size with CVs to be smaller than that with sample means.

The advantage of this procedure is that we just need to computek CVs. Its dis-
advantage is that the assumption in Model (1) that there is no dependence between
residuals across systems induced by CRN will not hold in practice. Therefore Nel-
son and Staum (2006) proposed a screening procedure with paired control variates,
which we improve upon in the next section.

4. Screening Procedures with Paired Control Variates

In this section we briefly review the paired control variate model of Nelson and
Staum (2006) and propose a more-general model on which a new procedure is
based. An adjustment is also provided to reduce the computation cost and retain
the benefit of paired CV estimators.

Nelson and Staum (2006) use a paired CV model to avoid the assumption that
the controls entirely explain the dependence induced by CRN. To do this, they form
pairwise differences across systems,Xj(i, `) = Xi j −X` j ,C j(i, `) = Ci j −C` j ,µi` =
µi −µ` andξ i` = ξ i − ξ `, for i 6= `. Since they need the outputs and the controls to
be paired across systems, the number of observations must be equal for each system
in the same pair, and the number of controls for each system in the same pair should
also be equal. For convenience we letn be the common number of replications and
q be the common number of controls for each system. Then we assume that a model
like Model (1) holds:

Xj (i, `) = µi` +(C j (i, `)− ξ i`)
′B(i, `)+ ε j(i, `), (5)

where{ε j(i, `), j = 1,2, . . .,n} is a set of i.i.d. N(0, τ2
i`) random variables. Theq×

1 vectorC j(i, `) is assumed multivariate normal. For each pair of systemsi, ` =
1,2, . . .,k, i 6= `, the controls{C j(i, `), j = 1,2, . . .,n} are also i.i.d., are independent
of {ε j(i, `), j = 1,2, . . .,n}, and have known expected valueξ i`.

Unlike Model (1), Model (5) can hold even whenηi j and η` j are dependent.
However, this model may break down when CRN causesCi j = C` j for all j , which
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cancels the controls. To avoid this, we present a different model to explain the rela-
tionship between the controls and the outputs. We assume the following new model
holds:

Xj (i, `) = µi` +(Ci j − ξ i)
′β i − (C` j − ξ `)

′β ` +η j(i, `), (6)

whereη j(i, `)= ηi j −η` j and{η j(i, `), j = 1,2, . . .,n} is a set of i.i.d. N(0,σ2
i`) ran-

dom variables. The(qi +q`)×1 vector(C′
i j ,C′

` j)
′ is assumed multivariate normal.

For each pair of systemsi, ` = 1,2, . . .,k, i 6= ` the controls{Ci j , j = 1,2, . . .,n} and
{C` j, j = 1,2, . . .,n} are also i.i.d., are independent of{η j(i, `), j = 1,2, . . .,n} and
have known expected valuesξ i andξ `. Like Model (5), Model (6) can also hold
even whenηi j andη` j are dependent. For alli 6= `, we letµ̂i`(n) be the correspond-

ing CV estimator ofµi` under Model (6), and definêτ2
i`(n) and∆̂2

i`(n) in analogy to
Equations (2) and (3).

We now assume that Model (6) holds in order to execute the all-pair screening
procedure. Before describing the procedure, we present an argument for the superi-
ority of Model (6) over Model (5):

• Model (6) is a more-general model that is equivalent to Model (5) whenβ i = β `.
• Suppose Model (5) holds, but we computeµ̂i`(n) assuming Model (6) holds.

Thenµ̂i`(n) is still unbiased. However, Var[µ̂i`(n)] will be inflated because of the
loss of degrees of freedom (fromn−q−1 ton−2q−1). The resulting inflation
of variance will not be substantial whenn is not too small.

• Suppose Model (6) holds withβ i 6= β `, but we computêµi`(n) assuming Model
(5) holds. Then̂µi`(n) will be biased and Var[µ̂i`(n)] will be increased, especially
whenβ i is very different fromβ ` (see the Appendix).

• Under Model (6) the number of controls for each system in the same pair is
not required to be equal. Therefore, we gain potential benefits in terms of CV
selection (notice that the degrees of freedom isn−qi −q`−1 in general).

• Model (6) makes the all-pair screening procedure below more compatible with
the CV selection procedure (see Section 5) that relies on Model (1). In fact
Model (1) implies Model (6). Therefore we do not have to be concerned about
any incongruity in the CV combined procedure.

We form the following all-pair screening procedure based on Model (6).

Procedure 2 (All-Pair Screening Procedure)

1. Choose the confidence level1−α > 1/k.
2. Obtain n> maxi 6=`(qi +q`+2) observations from each system and form the k(k−

1)/2 CV estimatorŝµi`(n) for all i 6= `.
3. Let ti` = t1−α/(k−1),n−qi−q`−1 and create the subset

IAllPair =
{

i : µ̂i`(n) ≥−ti` ∆̂i`(n)τ̂i`(n),∀` 6= i
}

.

Nelson and Staum (2006) proved that Pr{k ∈ IAllPair} ≥ 1−α when Model (5)
holds. This procedure is also valid when Model (6) pertains and(C′

i j ,C′
` j)

′ is not
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required to be multivariate normal. The advantage of this procedure is that we do not
have to be concerned about the dependence remaining in the residuals due to CRN.
Its disadvantages are that we have to computek(k− 1)/2 CV estimators and that
the procedure uses the conservative Bonferroni inequality. Therefore, we propose a
new procedure that requires less computation and creates a subsetI ⊇ IAllPair, and
therefore we can guarantee that Pr{ k ∈ I } ≥ 1−α . To accomplish this we choose
some systemK∗ that is very likely to be the best system, and then perform screening
with paired CVs just againstK∗.

In the following “Best Bet” screening procedure, we use Model (6) and denote
the system with the largest̂µi(n) asK∗.

Procedure 3 (Best Bet Screening Procedure)

1. Choose the confidence level1−α > 1/k.
2. Obtain n> maxi 6=`(qi + q` + 2) observations from each system and form the k

CV estimatorŝµi(n), i = 1,2, . . .,k.
3. Let K∗ be the index of the system with the largestµ̂i(n), that is, K∗ = argmax

i
µ̂i(n),

and then form the k−1 paired CV estimatorŝµiK∗ (n) for all i 6= K∗.
4. Create the subset

IBest Bet=
{

i : µ̂iK∗ (n) ≥ −tiK∗ ∆̂iK∗ (n)τ̂iK∗ (n)
}
∪{ K∗ } .

The advantage of this procedure is that it can decrease the computation cost and
achieve the desired statistical efficiency as well. The subset size will be close to
that of the all-pair screening procedure, because there is a large correlation between
µ̂i`(n) and µ̂i(n)− µ̂`(n). The disadvantage is that it needs to compute 2k− 1 CV
estimators, which is more than the individual CV screening procedure(k). However,
it still saves computation cost compared with the all-pair screening procedure(k(k−
1)/2), when the number of alternatives is large, and it avoids the assumption that
CVs explain all the dependence induced by CRN.

Remark 4.1 The system with the largest sample mean is also a potential best sys-
tem, so we could let K∗ = argmax

i
X̄i(n), and then do screening with paired CVs just

against K∗. This procedure can save a great deal of computation cost because we
only need to compute k−1 paired CV estimators. Unfortunately, the subset formed
by this procedure may be much larger than that formed by the all-pair screening
procedure, because there is not necessarily much correlation betweenµ̂i`(n) and
X̄i(n)− X̄`(n).

5. Selecting the Best with Control Variates

In this section we briefly review the selection-of-the-best-with-control-variates pro-
cedure in Nelson and Staum (2006). The following description is based on Nelson
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and Staum (2006). Under Model (1), we adopt the indifference-zone (IZ) formula-
tion in which we require a guaranteed probability of selecting systemk whenever
the differenceµk−µk−1 ≥ δ, where the indifference-zone parameterδ > 0 is set to
the smallest difference the analyst feels is worth detecting. We also assume that all
systems have the same number of controlsq. The procedure is as follows:

Procedure 4 (Selecting the Best with Controls)

1. Choose the indifference-zone parameterδ > 0, confidence level1−α > 1/k and
chooseα0,α1 > 0 such thatα = α0 +α1.

2. For each system i= 1,2, . . .,k, obtain n0 > q+ 2 observations and calculate
τ̂2

i (n0).
3. For each system i= 1,2, . . .,k, set the total sample size

Ni = min
n≥n0

{
n :

(
n−q

q

)(
nδ2

h2τ̂2
i (n0)

−1

)
≥ F

(γ)
q,n−q

}

where h= hk,1−α1,n0−q−1 is Rinott’s (1978) constant,F (γ)
q,n−q is theγ quantile of

the F distribution with(q,n−q) degrees of freedom, and

γ =
{

(1−α0)
1
k , if the systems are simulated independently

1−α0/k, otherwise.

4. Collect Ni −n0 observations from system i and form the CV estimatorsµ̂i(Ni) for
i = 1,2, . . .,k.

5. Select system B= argmaxi µ̂i(Ni), and form the(1−α )100%simultaneous con-
fidence intervals

µi −max
` 6=i

µ`

∈

[
−
(

µ̂i(Ni)−max
` 6=i

µ̂`(N`)−δ
)−

,

(
µ̂i(Ni)−max

` 6=i
µ̂`(N`)+δ

)+
]

(7)

for i = 1,2, . . .,k, where−y− = min{0,y} and y+ = max{0,y}. Furthermore,

Pr

{
µB− max

`=1,...,k
µ` ≥ −δ

}
≥ 1−α , (8)

that is, with high confidence, the mean of the selected system is withinδ of the
mean of the truly best system.

Nelson and Staum (2006) proved that Pr{B = k} ≥ 1−α whenever Model (1)
holds andµk − µk−1 ≥ δ. Regardless of the configuration of the true means, the
confidence intervals (7) have coverage probability at least 1−α by Theorem 1 of
Nelson and Matejcik (1995), while Inequality (8) follows from Corollary 1 of Nel-
son and Goldsman (2001).
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6. Control-Variate Selection for Screening

In this section we provide some guidance for selecting control variates. When CRN
is involved in the screening procedure, can we take advantage of CRN when choos-
ing control variates, or should we just select favorable control variates to minimize
the variance of each CV point estimator individually? For the screening procedure
with individual control variates, we use the screening thresholdWi` in Equation (4)
as the measure of chosen subset size. The smallerWi` is, the more difficult it is
for systemi to survive in the subset. To make the expected subset size as small as
possible, we select favorable control variates to minimize E[W2

i`] becauseWi` is non-
negative. To simplify the analysis, suppose we choose first-stage sample sizes and
controls for each system such thatni = n andqi = q, for all i. Consequently, for all
i = 1,2, . . .,k, ti = t , and we know that

E[W2
i`] = E

[
t2
i ∆̂2

i (ni)τ̂2
i (ni)+ t2

` ∆̂2
` (n`)τ̂2

` (n`)
]

= E
[
t2 ∆̂2

i (n)τ̂2
i (n)

]
+E

[
t2 ∆̂2

` (n)τ̂2
` (n)

]

= t2 (Var[µ̂i(n)]+Var[µ̂`(n)]) .

= t2
(

n−2
n−q−2

)(
Var[ηi j ]+Var[η` j]

n

)
.

Clearly we would like to minimize the variance of each CV point estimator. In other
words, we should choose control variates for each system to obtain the greatest
variance reduction individually. Notice thatE[W2

i`] is unaffected by CRN; therefore,
CRN is irrelevant with respect to the individual CV screening procedure. Añonuevo
and Nelson (1988), Nelson (1989) and Bauer and Wilson (1992) give algorithms for
selecting good control variates individually. However, CRN can affect Cov[ηi j ,η` j],
which represents the benefits of CRN that we cannot capture in the individual CV
screening procedure. This is the disadvantage inherent in the screening procedure
with individual control variates.

For the screening procedure with paired control variates under Model (6), the
expectation of the square of the screening threshold from Step 3 of Procedure 2 is

E
[
t2
i` ∆̂i`(n)2τ̂i`(n)2

]
= t2

i` Var[µ̂i`(n)]

= t2
i`

(
n−2

n−2q−2

)
Var[η j(i, `)]

n

= t2
i`

(
n−2

n−2q−2

)
Var[ηi j −η` j ]

n

= t2
i`

(
n−2

n−2q−2

)(
Var[ηi j ]+Var[η` j]−2Cov[ηi j ,η` j]

n

)
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which directly incorporates the reduced variance by applying CVs to the paired
observations. The more positive correlation that remains in the residuals across sys-
tems induced by CRN, the larger Cov[ηi j ,η` j] will be. The paired CV procedure
exploits this dependence so that it can perform better than the individual CV screen-
ing procedure, especially whenn is much larger thanq. Therefore, we should choose
control variates that can be paired across systemsi and` to minimize the variance of
µ̂i`(n), and these may be different than we would choose to minimize the variance of
each individual CV estimator. As a result it is possible that the CVs chosen for sys-
temi could be different when systemi is paired with each system̀= 1,2, . . .,k, ` 6= i
(in which case Model (6) would be modified to allow the selected controls to depend
on the pair(i, `)).

7. Combined Procedure

In the combined procedure, we apply a screening procedure with control variates to
eliminate noncompetitive systems in the first stage. Then in the second stage the CV
selection-of-the-best procedure is applied to the surviving systems to pick the best
system, while still gaining the desired overall confidence level. Here are some key
observations:

• We spendα0 of the overall allowable errorα for incorrect selection on the first
screening stage, andα1+ α2 on the second selection-of-the-best stage.

• If we use the individual CV screening procedure in the first stage, then a multi-
plicative approach is applied, i.e.,

1−α = (1−α0)(1−α1−α2).

• If we use the paired CV screening procedure in the first stage, then an additive
approach is applied, i.e.,

1−α = 1−α0−α1−α2.

• We set the appropriate critical constantti of each systemi = 1,2, . . .,k in the CV
screening procedure fork systems,ni first-stage samples,qi control variates, and
confidence level 1−α0.

• We set the appropriate critical constanth of each systemi = 1,2, . . .,k in the CV
selection-of-the-best procedure fork systems,ni first stage samples,qi control
variates, and confidence level 1−α1.

• We set the appropriate critical constantγ in the CV selection-of-the-best proce-
dure fork systems, confidence level 1−α2, and depending on whether or not the
systems are simulated independently or with CRN.

In the procedure below we assume thatni − qi is the same for each systemi =
1,2, . . .,k and mention the necessary adjustment for unequalni −qi in Remark 7.1.
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The following is a procedure that combines the individual CV screening procedure
with the CV selection-of-the-best procedure.

Procedure 5 (Individual CV Combined Procedure)

1. Select overall confidence level1−α > 1/k, indifference-zone parameterδ > 0,
number of systems k, and first-stage sample size ni > qi + 2 from system i=
1,2, . . .,k. Set ti = t(1−α0)1/(k−1) ,ni−qi−1 and h= hk,1−α1,ni−qi−1, which is Rinott’s
constant (see Wilcox 1984 or Bechhofer et al. 1995 for tables).

2. Obtain ni observations from each system and calculateµ̂i(ni), ∆̂2
i (ni) andτ̂2

i (ni),
i = 1,2, . . .,k. We also create the subset

I = {i : µ̂i(ni)− µ̂`(n`) ≥ −Wi`,∀` 6= i} ,

where

Wi` =
√

t2
i ∆̂2

i (ni)τ̂2
i (ni)+ t2

` ∆̂2
` (n`)τ̂2

` (n`).

3. If I contains a single index, then stop and return that system as the best. Other-
wise, for all i∈ I, compute the second-stage sample size

Ni = min
n≥ni

{
n :

(
n−qi

qi

)(
nδ2

h2τ̂2
i (ni)

−1

)
≥ F

(γ)
qi ,n−qi

}

where

γ =
{

(1−α2)
1
k , if the systems are simulated independently

1−α2/k, otherwise.

Notice:1−α = (1−α0)(1−α1−α2) (multiplicative approach).
4. Take Ni −ni additional observations from all systems i∈ I and form the CV esti-

matorsµ̂i(Ni) for i ∈ I.
5. Select the system B= argmaxi µ̂i(Ni) as best from all systems i∈ I.

Theorem 1. If Model (1) holds, then the individual CV combined procedure selects
a system B such thatPr{B = k} ≥ 1−α wheneverµk−µk−1 ≥ δ. For any config-
uration of the means, the following hold with probability greater than or equal to
1−α :

• For all i ∈ I,

µi − max
`∈I,` 6=i

µ`

∈

[
−
(

µ̂i(Ni)− max
`∈I,` 6=i

µ̂`(N`)−δ
)−

,

(
µ̂i(Ni)− max

`∈I,` 6=i
µ̂`(N`)+δ

)+
]

. (9)

• The mean of the system we select will be withinδ of the mean of the truly best
system in I with probability≥ 1−α , that is
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Pr

{
µB− max

`∈I,` 6=B
µ` ≥ −δ

}
≥ 1−α . (10)

Remark 7.1 Suppose that ni −qi is different across systems. This causes the first-
stage residual-variance estimatorŝτ2

1(n1), τ̂2
2(n2), . . ., τ̂2

k(nk) to have different de-
grees of freedom. One approach is to use the adjusted constant

h = h2,(1−α1)1/(k−1) ,mini{ni−qi−1}

which is valid when the degrees of freedom are unequal (Boesel, Nelson and Kim
2003).

Remark 7.2 We can combine the paired CV screening procedure with the CV
selection-of-the-best procedure. When we use the best bet screening procedure, we
need to change Step 2 to the following:

2. Obtain n> maxi 6=`(qi +q` +2) observations from each system and form the k
CV estimatorŝµi(n), i = 1,2, . . .,k. Let K∗ be the index of the system with the
largest µ̂i(n), that is, K∗ = argmax

i
µ̂i(n), and then form the k− 1 paired CV

estimatorŝµiK∗ (n) for all i 6= K∗. Then we let tiK∗ = t1−α0/(k−1),n−qi−qK∗−1 and
create the subset

IBest Bet=
{

i : µ̂iK∗ (n) ≥ −tiK∗ ∆̂iK∗ (n)τ̂iK∗ (n)
}
∪{ K∗ } .

An additive approach is applied(1−α = 1−α0−α1−α2).

Theorem 2. If Model (1) holds, then the paired CV combined procedure selects a
system B such thatPr{B = k} ≥ 1− α wheneverµk − µk−1 ≥ δ, and statistical
inferences (9) and (10) still hold regardless of the configuration of the true means.

We prove that Pr{B= k} ≥ 1−α with independence among{ηi j , i = 1,2, . . .,k,
j = 1,2, . . .,n} in the Appendix. However, experiments showed that this paired CV
combined procedure can perform very well even when{ηi j , i = 1,2, . . .,k} are
positively dependent.

8. Empirical Results

In this section we summarize the results of an empirical evaluation performed to
compare the following procedures:

1. The combined sample-means-based procedure (NSGS) due to Nelson et al.
(2001) that uses a screening procedure with sample means to eliminate noncom-
petitive systems after the first stage of sampling, and then applies Rinott’s IZ
selection procedure in the second stage. This procedure allows for unknown and
unequal variances across systems, but CRN is not exploited.
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2. The individual CV combined procedure which we call TNS-I, and the paired CV
combined procedure which we call TNS-P. These procedures allow for unknown
and unequal variances across systems and the use of CRN, although TNS-I does
not exploit CRN.

The systems are represented by various configurations ofk normal distributions;
in all cases, systemk was the best (had the largest true mean). LetXi be a simulation
observation from systemi, for i = 1,2, . . .,k. For simplicity, we assume that there is
q= 1 control variate. Then we assume the output can be represented as

Xi = µi +(Ci − ξi)βi +ηi ,

where{ηi, i = 1,2, . . .,k} are N(0,σ2
η ) random variables. The{Ci, i = 1,2, . . .,k}

are assumed to be N(ξi ,σ2
c ) random variables and independent of{ηi , i = 1,2, . . .,k}.

The correlation between controlsCi andC` for i 6= ` is ρc. The correlation between
residualsηi andη` for i 6= ` is ρη . The squared correlation coefficient betweenXi

andCi is ρ2
(x,c).

We evaluated each procedure on different configurations of the systems, examin-
ing factors including the number of systemsk, the practically significant difference
δ, the initial sample sizen0, the variance of the controlsσ2

c , the variance of the
residualsσ2

η , the correlation of the controlsρc, and the correlation of the residuals
ρη . The largerσ2

c is compared withσ2
η , the more of the variability in outputs can be

explained by the controls. Whenρη 6= 0, then Model (6) holds but Model (1) does
not hold. A largerρη means more dependence due to CRN is accounted for by the
residuals. The configurations, the experiment design, and the results are described
below.

8.1 Configurations and Experiment Design

We used the slippage configuration (SC) of the true means of the systems, in which
µk was set toδ, while µ1 = µ2 = · · · = µk−1 = 0. This is a difficult scenario for
screening procedures because all the inferior systems are close to the best system.
These experiments with the slippage configuration illustrated that CVs can make the
screening procedure more efficient even under the most difficult situation.

We chose the initial sample size to ben0 = 10, for i = 1,2, . . .,k. The mean of the
controls,ξi , is set to be 0, fori = 1,2, . . .,k. We also setβi to be 1, fori = 1,2, . . .,k.
The number of systems in each experiment varied overk = 2,5,10,25,100. The in-

difference zone parameter,δ, was set toδ =
√

(σ2
c +σ2

η )/n0. For each configura-

tion, 500 macroreplications (complete repetitions) of the entire combined procedure
were performed. In all experiments, the nominal probability of correct selection was
set at 1−α = 0.95. We tookα0 = α1 = α2 = α/3 in paired CV screening cases and
tookα0 = α/3, α1 = α2 = α/(3−α ) in individual CV screening cases. For NSGS,
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Table 1 Effect of Number of Systems for NSGS and TNS-I whenσc = 4,ση = 1,ρc = ρη = 0

Number of Systems Procedure PCS ANS PSS
k = 2 NSGS 0.98 98 0.86

TNS-I 1 12 0.41
k = 5 NSGS 0.98 186 0.96

TNS-I 1 19 0.76
k = 10 NSGS 0.98 234 0.97

TNS-I 1 27 0.86
k = 25 NSGS 0.98 306 0.99

TNS-I 1 34 0.92
k = 100 NSGS 0.99 430 0.99

TNS-I 1 49 0.98

we setα0 = α1 = α/2. To compare the performance of the procedures we recorded
the estimated probability of correct selection (PCS), the average number of sam-
ples per system (ANS), and the percentage of systems that received second-stage
sampling (PSS).

8.2 Summary of Results

The PCS of the CV combined procedure was over 0.95 in all configurations. The
overall experiments showed that the CV combined procedure was superior to the
combined sample-means-based procedure under any configuration we examined.

We do not try to present comprehensive results from such a large simulation
study. Instead, we present selected results that highlight the key conclusions. Notice
that we apply Model (6) and the best bet screening procedure in TNS-P.

8.2.1 Effect of Number of Systems

See Table 1 for an illustration.Systems are simulated independently since NSGS and
TNS-I do not exploit CRN. The goal is to compare NSGS with TNS-I when we have
different numbers of systems. Ask increases, the average number of samples per
system increases greatly in NSGS compared to TNS-I. The percentage of systems
that received second-stage sampling is smaller in TNS-I than in NSGS.

8.2.2 Effect of Control Variates

See Table 2 for an illustration. We know thatρ2
(x,c) = σ2

c /σ2
x = σ2

c /(σ2
c +σ2

η ), which

represents how good this CV is. In our experiments, we fixσ2
x to be 16. For example,
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Table 2 Effect of Control Variates for TNS-I in Comparison with NSGS whenρc = 0,ρη = 0, and
k = 10

Procedure PCS ANS PSS
σ2

x = 16 NSGS 1 235 0.97
ρ2

(x,c) = 0.2 Individual CV 0.97 241 0.98

ρ2
(x,c) = 0.4 Individual CV 1 181 0.99

ρ2
(x,c) = 0.6 Individual CV 1 129 0.97

ρ2
(x,c) = 0.8 Individual CV 1 68 0.99

Table 3 Effect of Correlation for TNS-I and TNS-P whenσc = 4,ση = 1, andk = 10

Correlation Procedure PCS ANS PSS
ρc = 0 Individual CV 1 34 0.80
ρη = 0.2 Paired CV 1 30 0.74
ρc = 0 Individual CV 1 34 0.90
ρη = 0.5 Paired CV 1 26 0.55
ρc = 0 Individual CV 1 35 0.90
ρη = 0.8 Paired CV 1 13 0.10

ρ2
(x,c) = 0.2 meansσ2

x = 16 andσ2
c = 3.2. We find that the performance of the

individual CV combined procedure is almost the same as NSGS whenρ2
(x,c) is 0.2.

Whenρ2
(x,c) is larger than 0.2, the CV combined procedure can outperform NSGS.

Thus, very smallρ2
(x,c) is required for the CV combined procedure to beat NSGS.

Largerρ2
(x,c) means the CVs can explain more variability of the outputs, and thereby

makes the CV combined procedure more efficient.

8.2.3 Effect of Correlation

See Table 3 for an illustration. Here we compare TNS-I and TNS-P under different
ρη . When the correlation between residuals is larger, TNS-P performs better and
beats TNS-I easily. In Table 3, we see that the PSS of TNS-P is as low as 0.10,
which shows the high efficiency of TNS-P whenρη is large. Notice that CRN does
not affect the screening threshold for TNS-I, but it does affect the point estimator,
which is why the performance of TNS-I in Table 3 varies when we have different
ρη .

9. Illustration

In this section we use a queueing example to illustrate the application of TNS-I,
TNS-P and NSGS. We use theM/M/s/cmodel which represents a queueing system
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Table 4 The Five Queueing Systems and their Expected Waiting Times in Steady State

Systemi λ s µ E[W]
1 4 1 5 0.88
2 4 2 5/2 0.98
3 4 3 5/3 1.10
4 4 4 5/4 1.24
5 4 5 1 1.38

Table 5 Results for NSGS, TNS-I and TNS-P in 100 Trials withδ = 0.1,n0 = 10, and 1−α = 0.95

Procedure PCS ANŜse(ANS) PSS
NSGS 0.97 462 13.4 1
TNS-I 1 301 10.8 0.81

TNS-P with CRN 1 207 10.4 0.68

with Poisson arrivals, exponentially distributed service times,s servers, a capacity
of c customers, and a first-come, first-served queueing discipline. The customers
arrive with arrival rateλ . The service rate for an individual server isµ. We perform
each procedure on five different configurations of the systems in whichλ /(sµ) =
4/5 where the performance measure is the steady-state mean of the waiting time in
system. The capacityc is set as 15. The five configurations are shown in Table 4
along with their true expected waiting times. System 1 is obviously the best system.
Note that smaller is better here.

To mitigate the initial transient bias, we initialize the simulation in steady state.
That is, we calculate the steady-state distribution of the number of customers in the
system, then sample the initial conditions for each replication in accordance with
that steady-state distribution. An average waiting time for thirty customers is used
as the output on each replication. For TNS-I and TNS-P, we use the average service
time as the control on replicationj , which means

Xi j =
∑30

m=1Wi jm

30
andCi j =

∑30
m=1Si jm

30

whereWi jm is the waiting time in system for customermof replicationj from system
i andSi jm is the service time for customerm of replication j from systemi. The
initial sample sizen0 is set as 10 for each system. We choose the indifference zone
δ to be 0.1 and CRN is applied.

Table 5 shows the results of the TNS-I, TNS-P and NSGS procedures with 100
macroreplications and confidence level 1−α = 0.95. We also provide the estimated
standard error of ANS to show that there is a significant difference.

These three procedures all exceed the desired probability of correct selection.
NSGS is unable to screen out inferior systems in the first stage; therefore, its ANS
is much larger than that of the other procedures. We can eliminate more systems in
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TNS-P than in TNS-I to further reduce the average number of samples needed by
using CVs with CRN.

10. Conclusions

In this paper we presented a CV combined procedure that exploits the ability to
screen out inferior systems and the statistical efficiency of control variates. We also
proposed a more-general paired CV model and a new paired CV screening proce-
dure to reduce the algorithm overhead and retain the benefits of paired CVs as well.
As we showed in Sections 8 and 9, TNS-I is superior to NSGS for all the scenar-
ios we examined. NSGS is based on the assumption that all systems are simulated
independently, and TNS-I assumes that the dependence induced by CRN is entirely
explained by the controls. On the other hand, TNS-P is significantly more efficient
than TNS-I when the CVs do not explain all dependence due to CRN because lots
of sampling cost can be saved. However, computational experiments show that the
advantage of TNS-P over TNS-I diminishes with larger numbers of systems, and
TNS-P incurs more algorithm overhead than TNS-I. As a rough rule of thumb, we
use TNS-P when CRN is involved, but use TNS-I when all the systems are simulated
independently.

11. Appendix

For the individual and paired CV combined procedures, the proofs in this appendix
assume that Model (1) holds. We also assumeµk ≥ µk−1≥ ·· ·≥ µ1 andµk−µk−1≥
δ.

11.1 Model (5) and Model (6)

Here we compare Model (5; Nelson and Staum paired CV model) and Model (6;
our new paired CV model) in terms of E[µ̂i`(n)] and Var[µ̂i`(n)]. We know that
Model (6) tends not to lose much when the true underlying model is Model (5)
becausêµi`(n) is still unbiased and the inflation of Var[µ̂i`(n)], due to the loss of
degrees of freedom fromn−q−1 to n−2q−1, will not be substantial whenn is
not too small. Therefore, we focus on the consequences of assuming that Model (5)
holds when in fact the true model is Model (6).

We first computêµi`(n) under the assumption that Model (5) holds while Model (6)
is actually the true model withβ i 6= β `. The caseqi = 1, for all i is sufficient to il-
lustrate the point. For convenience, let
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C = {Ci j , j = 1,2, . . .,n, i = 1,2, . . .,k}

be the collection of all observed controls. Define

B̂(i, `) =
∑n

j=1(Xj (i, `)− X̄(i, `))(Cj(i, `)−C̄(i, `))

∑n
j=1(Cj(i, `)−C̄(i, `))2 .

We know that̂µi`(n) = X̄(i, `)−(C̄(i, `)−ξi`)B̂(i, `), and E[µ̂i`(n)|C] = E[X̄(i, `)|C]−
(C̄(i, `)− ξi`)E[B̂(i, `)|C]. Therefore,

E[µ̂i`(n)] = E[E[µ̂i`(n)|C]] = µi`−E
[
(C̄(i, `)− ξi`)E[B̂(i, `)|C]

]

and

E[B̂(i, `)|C] =
∑n

j=1E[Xj(i, `)− X̄(i, `)|C](Cj(i, `)−C̄(i, `))

∑n
j=1(Cj(i, `)−C̄(i, `))2

.

Because Model (6) holds, we know that

E[Xj(i, `)− X̄(i, `)|C] = (Ci j − ξi)βi − (C` j − ξ`)β` − (C̄i − ξi)βi +(C̄`− ξ`)β`

= (Ci j −C̄i)βi − (C` j −C̄`)β`.

Thus, we obtain

E[B̂(i, `)|C] =
∑n

j=1

(
(Ci j −C̄i)βi − (C` j −C̄`)β`

)
(Cj(i, `)−C̄(i, `))

∑n
j=1(Cj(i, `)−C̄(i, `))2

= βi +(βi −β`)
∑n

j=1

(
C` j −C̄`

)
(Cj(i, `)−C̄(i, `))

∑n
j=1(Cj(i, `)−C̄(i, `))2

. (11)

Therefore, the bias is E[µ̂i`(n)]−µi`, which is equal to

−E
[
(C̄(i, `)− ξi`)E[B̂(i, `)|C]

]

= −E

[(
(βi −β`)

∑n
j=1

(
C` j −C̄`

)
(Cj(i, `)−C̄(i, `))

∑n
j=1(Cj(i, `)−C̄(i, `))2

)
(
C̄(i, `)− ξi`

)
]

(12)

that is not equal to 0 in general ifβi 6= β`.

We now examine the impact on variance. Notice that

Var[µ̂i`(n)] = Var[E[µ̂i`(n)|C]]+E[Var[µ̂i`(n)|C]]

= Var
[
(C̄i − ξi)βi − (C̄` − ξ`)β` − (C̄(i, `)− ξi`)E[B̂(i, `)|C]

]

+ E[Var[µ̂i`(n)|C]].
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Since

B̂(i, `) =
∑n

j=1Xj(i, `)(Cj(i, `)−C̄(i, `))

∑n
j=1(Cj(i, `)−C̄(i, `))2 ,

we have

Var[B̂(i, `)|C] = Var[Xj(i, `)|C]
∑n

j=1(Cj(i, `)−C̄(i, `))2

(
∑n

j=1(Cj(i, `)−C̄(i, `))2
)2 =

Var[Xj(i, `)|C]
∑n

j=1(Cj(i, `)−C̄(i, `))2
.

Now

Var[µ̂i`(n)|C] = Var[X̄(i, `)− (C̄(i, `)− ξi`)B̂(i, `)|C]

= Var[X̄(i, `)|C]+ (C̄(i, `)− ξi`)2Var[B̂(i, `)|C]

−2(C̄(i, `)− ξi`)Cov[X̄(i, `), B̂(i, `)|C]

= Var[Xj(i, `)|C]

(
1
n

+
(C̄(i, `)− ξi`)2

∑n
j=1(Cj(i, `)−C̄(i, `))2

)

−2(C̄(i, `)− ξi`)Cov[X̄(i, `), B̂(i, `)|C].

Further,

Cov[X̄(i, `), B̂(i, `)|C] = Cov[µi −µ` +(C̄i − ξi)βi − (C̄` − ξ`)β` + η̄ (i, `), B̂(i, `)|C]

= Cov[η̄ (i, `), B̂(i, `)|C].

Since

B̂(i, `) =
∑n

j=1

((
Ci j −C̄i

)
βi −

(
C` j −C̄`

)
β` +η j(i, `)− η̄(i, `)

)
(Cj(i, `)−C̄(i, `))

∑n
j=1(Cj(i, `)−C̄(i, `))2

= βi +(βi −β`)
∑n

j=1

(
C` j −C̄`

)
(Cj(i, `)−C̄(i, `))

∑n
j=1(Cj(i, `)−C̄(i, `))2

+
∑n

j=1(η j(i, `)− η̄(i, `))(Cj(i, `)−C̄(i, `))

∑n
j=1(Cj(i, `)−C̄(i, `))2

we have
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Cov[η̄ (i, `), B̂(i, `)|C]

= Cov

[
η̄ (i, `),

∑n
j=1(η j(i, `)− η̄(i, `))(Cj(i, `)−C̄(i, `))

∑n
j=1(Cj(i, `)−C̄(i, `))2

∣∣∣∣C
]

=
1

∑n
j=1(Cj(i, `)−C̄(i, `))2Cov

[
η̄ (i, `),

n

∑
j=1

(η j(i, `)− η̄(i, `))Cj(i, `)
∣∣∣∣C
]

=
1

∑n
j=1(Cj(i, `)−C̄(i, `))2

(
Cov

[
η̄ (i, `),

n

∑
j=1

η j(i, `)Cj(i, `)
∣∣∣∣C
]

− Cov

[
η̄ (i, `), η̄(i, `)

n

∑
j=1

Cj(i, `)
∣∣∣∣C
])

=
1

∑n
j=1(Cj(i, `)−C̄(i, `))2

(
n

∑
j=1

Cj(i, `)
n

Var[η j(i, `)]−
n

∑
j=1

Cj(i, `)Var[η̄ (i, `)]

)

(
Notice : Var[η j(i, `)] = σ2

i`,∀ j
)

= 0.

Then we take the expectation of Var[µ̂i`(n)|C] to yield

E[Var[µ̂i`(n)|C]] = Var[η j(i, `)]
(

n−2
n(n−3)

)

(Lavenberg and Welch 1981). Further, from Equation (11)

Var
[
(C̄i − ξi)βi − (C̄`− ξ`)β` − (C̄(i, `)− ξi`)E[B̂(i, `)|C]

]

= Var

[
(C̄i − ξi )βi − (C̄`− ξ`)β`−

(
C̄(i, `)− ξi`

)
βi

− (βi −β`)
(
C̄(i, `)− ξi`

) ∑n
j=1

(
C` j −C̄`

)
(Cj(i, `)−C̄(i, `))

∑n
j=1(Cj(i, `)−C̄(i, `))2

]
.

To simplify this expression, let

Λ (C) =
(
C̄(i, `)− ξi`

) ∑n
j=1

(
C` j −C̄`

)
(Cj(i, `)−C̄(i, `))

∑n
j=1(Cj(i, `)−C̄(i, `))2

,

which is a function ofC. Then,
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Var[E[µ̂i`(n)|C]] = Var
[
(C̄i − ξi)βi − (C̄`− ξ`)β`− (C̄(i, `)− ξi`)E[B̂(i, `)|C]

]

= Var
[
(C̄i − ξi)βi − (C̄`− ξ`)β` −

(
C̄(i, `)− ξi`

)
βi − (βi −β`)Λ (C)

]

= Var
[
(C̄i − ξi)βi − (C̄`− ξ`)βi +(C̄`− ξ`)βi − (C̄`− ξ`)β`

−
(
C̄(i, `)− ξi`

)
βi − (βi −β`)Λ (C)

]

= Var
[
(C̄`− ξ`)βi − (C̄` − ξ`)β` − (βi −β`)Λ (C)

]

= (βi −β`)2Var
[
C̄`−Λ (C)

]
.

So, when we assume that Model (5) holds but the true model is Model (6), the
variance of the CV estimator is

Var[µ̂i`(n)] = (βi −β`)2Var
[
C̄`−Λ (C)

]
+Var[η j(i, `)]

(
n−2

n(n−3)

)
. (13)

On the other hand, when we assume Model (6) holds and Model (6) is indeed the
true model,

Var[µ̂i`(n)] = Var[η j(i, `)]
(

n−2
n(n−4)

)
. (14)

In summary, if we computêµi`(n) assuming Model (5) holds while Model (6) is
the true model withβ i 6= β `, then Equation (12) shows us thatµ̂i`(n) will be biased.
Further, from Equation (13) and (14) we see that Var[µ̂i`(n)] will be increased, espe-
cially whenβ i is very different fromβ `. This illustrates the inferiority of Model (5)
relative to Model (6).

11.2 CV Combined Procedure with Individual Screening

We prove the multiplicative approach for Theorem 1,

1−α = (1−α0)(1−α1−α2).

In the multiplicative approach, we assume that Model (1) holds. For convenience,
let

C = {Ci j , j = 1,2, . . .,ni, i = 1,2, . . .,k}

be the collection of all observed controls, and let

τ̂2 = {τ̂2
1(n1), τ̂2

2(n2), . . ., τ̂2
k(nk)}

be the collection of all observed residual-variance estimators. Define
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Zi =
µ̂k(nk)− µ̂i(ni)− (µk−µi)√

∆̂2
k (nk)τ2

k + ∆̂2
i (ni)τ2

i

, Vi =
µ̂k(Nk)− µ̂i(Ni)− (µk−µi)√

∆̂2
k (Nk)τ2

k + ∆̂2
i (Ni)τ2

i

,

Ai = ∆̂2
k (nk)τ2

k + ∆̂2
i (ni)τ2

i , Di = ∆̂2
k (Nk)τ2

k + ∆̂2
i (Ni)τ2

i .

The probability of correct selection is

Pr
{

µ̂k(nk)− µ̂i(ni) ≥−Wki,∀i 6= k; µ̂k(Nk) > µ̂i(Ni),∀i ∈ I
}

= Pr

{
µ̂k(nk)− µ̂i(ni)− (µk−µi)√

∆̂2
k (nk)τ2

k + ∆̂2
i (ni)τ2

i

≥ −Wki− (µk−µi)√
∆̂2

k (nk)τ2
k + ∆̂2

i (ni)τ2
i

,∀i 6= k;

µ̂k(Nk)− µ̂i(Ni)− (µk−µi)√
∆̂2

k (Nk)τ2
k + ∆̂2

i (Ni)τ2
i

>
−(µk−µi)√

∆̂2
k (Nk)τ2

k + ∆̂2
i (Ni)τ2

i

,∀i ∈ I

}

≥ Pr



Zi ≤

Wki√
∆̂2

k (nk)τ2
k + ∆̂2

i (ni)τ2
i

,Vi <
δ√

∆̂2
k (Nk)τ2

k + ∆̂2
i (Ni)τ2

i

,∀i 6= k



(15)

= E


Pr



Zi ≤

Wki√
∆̂2

k (nk)τ2
k + ∆̂2

i (ni)τ2
i

,

Vi <
δ√

∆̂2
k (Nk)τ2

k + ∆̂2
i (Ni)τ2

i

,∀i 6= k

∣∣∣∣∣∣
C, τ̂2








≥ E

[
Pr

{
Zi ≤

Wki√
Ai

,∀i 6= k

∣∣∣∣C, τ̂2
}

Pr

{
Vi <

δ√
Di

,∀i 6= k

∣∣∣∣C, τ̂2
}]

(16)

= E

[
E

[
Pr

{
Zi ≤

Wki√
Ai

,∀i 6= k

∣∣∣∣C, τ̂2
}

Pr

{
Vi <

δ√
Di

,∀i 6= k

∣∣∣∣C, τ̂2
}∣∣∣∣C

]]
(17)

≥ E

[
E

[
Pr

{
Zi ≤

Wki√
Ai

,∀i 6= k

∣∣∣∣C, τ̂2
}∣∣∣∣C

]

× E

[
Pr

{
Vi <

δ√
Di

,∀i 6= k

∣∣∣∣C, τ̂2
}∣∣∣∣C

]]
. (18)

Inequality (15) holds becauseµk−µi ≥ δ, {∀i ∈ I} is a smaller set than{∀i 6= k}
which makes the condition more restrictive, and because of the symmetry of the nor-
mal distribution. And Inequality (16) is an application of Slepian’s inequality (e.g.,
Tong 1980). Then since the first term in Inequality (17) is a nonnegative, real-valued
function and increasing in each of{τ̂2

1(n1), τ̂2
2(n2), . . ., τ̂2

k(nk)}, and the second term
in Inequality (17) is nondecreasing in each of{τ̂2

1(n1), τ̂2
2(n2), . . ., τ̂2

k(nk)}, and by
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Lemma 1{τ̂2
1(n1), τ̂2

2(n2), . . ., τ̂2
k(nk)} are conditionally independent givenC, we

can apply Lemma 2.4 in Tamhane (1977) to get Inequality (18). From Nelson and
Staum (2006), we know that

E

[
Pr

{
Zi ≤

Wki√
Ai

,∀i 6= k

∣∣∣∣C, τ̂2
}∣∣∣∣C

]
= Pr

{
Zi ≤

Wki√
Ai

,∀i 6= k

∣∣∣∣C
}
≥ 1−α0

E

[
E

[
Pr

{
Vi <

δ√
Di

,∀i 6= k

∣∣∣∣C, τ̂2
}∣∣∣∣C

]]
= Pr

{
Vi <

δ√
Di

,∀i 6= k

}
≥ 1−α1−α2.

So we can conclude from Inequality (18) that the probability of correct selection is

Pr{µ̂k(nk)− µ̂i(ni) ≥ −Wki,∀i 6= k; µ̂k(Nk) > µ̂i(Ni),∀i ∈ I}
≥ (1−α0)(1−α1−α2) = 1−α .

We need to verify that Slepian’s inequality can be applied for Inequality (16).
It is easy to show that the Cov[Zi,Zj|C, τ̂2] and Cov[Vi,Vj |C, τ̂2] are nonnegative
for any systemi 6= j (Nelson and Staum 2006). So here we only need to examine
Cov[Zi,Vj |C, τ̂2].

Wheni 6= j ,

Cov[Zi,Vj|C, τ̂2]

= Cov


 µ̂k(nk)− µ̂i(ni)− (µk−µi)√

∆̂2
k (nk)τ2

k + ∆̂2
i (ni)τ2

i

,
µ̂k(Nk)− µ̂ j(Nj)− (µk−µ j)√

∆̂2
k (Nk)τ2

k + ∆̂2
j (Nj)τ2

j

∣∣∣∣∣∣
C, τ̂2




=
1

aidj
Cov

[
µ̂k(nk), µ̂k(Nk)|C, τ̂2]

whereai =
√

Ai , dj =
√

D j . We can factor outai anddj since they are both constants
when we condition onC. And we know

µ̂k(nk) =
[

1
nk

1′nk×1−
(
C̄k(nk)− ξ k

)′ (L′
k(nk)Lk(nk)

)−1 L′
k(nk)

]
Xk(nk)

= a′Xk(nk)

µ̂k(Nk) =
[

1
Nk

1′Nk×1−
(
C̄k(Nk)− ξ k

)′ (L′
k(Nk)Lk(Nk)

)−1 L′
k(Nk)

]
Xk(Nk)

= b′Xk(Nk).

It follows that
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Cov[Zi,Vj|C, τ̂2] =
1

aidj
Cov

[
µ̂k(nk), µ̂k(Nk)|C, τ̂2]

=
1

aidj
a′Ωb

where
Ω =

(
E F

)
, E = Var[Xk(nk)], F = [0]nk×(Nk−nk).

SinceE is a diagonal matrix with positive elements andaidj is positive, we can
conclude that Cov[Zi,Vj |C, τ̂2] is nonnegative ifa′B is nonnegative, where the vector
B is composed of the firstnk elements of the vectorb. We know

B′ =
[

1
Nk

1′nk×1−
(
C̄k(Nk)− ξ k

)′ (L′
k(Nk)Lk(Nk)

)−1(L′
k(nk)+mk(nk)

)]

where

mk(nk) = {C̄k(nk)− C̄k(Nk), C̄k(nk)− C̄k(Nk), . . ., C̄k(nk)− C̄k(Nk)}1×nk .

Then
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a′B =
1

Nk
− 1

nk
1′nk×1

[
Lk(nk)

(
L′

k(Nk)Lk(Nk)
)−1(C̄k(Nk)− ξ k

)]

−
1
nk

1′nk×1

[
m′

k(nk)
(
L′

k(Nk)Lk(Nk)
)−1(

C̄k(Nk)− ξ k

)]

−
(
C̄k(nk)− ξ k

)′ (
L′

k(nk)Lk(nk)
)−1

L′
k(nk)

1
Nk

1nk×1

+
(
C̄k(nk)− ξ k

)′ (
L′

k(nk)Lk(nk)
)−1

L′
k(nk)

×
[
Lk(nk)

(
L′

k(Nk)Lk(Nk)
)−1(

C̄k(Nk)− ξ k

)]

+
(
C̄k(nk)− ξ k

)′ (L′
k(nk)Lk(nk)

)−1L′
k(nk)

×
[
m′

k(nk)
(
L′

k(Nk)Lk(Nk)
)−1(C̄k(Nk)− ξ k

)]

=
1

Nk
− 1

nk
1′nk×1

[
m′

k(nk)
(
L′

k(Nk)Lk(Nk)
)−1(C̄k(Nk)− ξ k

)]

+
(
C̄k(nk)− ξ k

)′ [(L′
k(Nk)Lk(Nk)

)−1(C̄k(Nk)− ξ k

)]
(19)

=
1

Nk
+
(
C̄k(Nk)− ξ k

)′ [(
L′

k(Nk)Lk(Nk)
)−1(

C̄k(Nk)− ξ k

)]
(20)

=
1

Nk
+

(
C̄k(Nk)− ξ k

)′ S−1
(
C̄k(Nk)− ξ k

)

Nk−1
(21)

=
1

Nk
+

T2

Nk(Nk−1)
> 0 (22)

where S is the sample covariance matrix of controls from systemk. That is,
L′

k(Nk)Lk(Nk) = (Nk−1)S. And T2 is the generalizedT2-statistic of controls from
systemk, soT2 = Nk

(
C̄k(Nk)− ξ k

)′ S−1
(
C̄k(Nk)− ξ k

)
(Anderson, 1984). Equal-

ity (19) holds because1′nk×1Lk(nk) = 0,
(
L′

k(nk)Lk(nk)
)−1

L′
k(nk)Lk(nk) = I, and

L′
k(nk)m′

k(nk) = 0. Equality (20) holds because(1/nk)1′nk×1m′
k(nk) = (C̄k(nk)−

C̄k(Nk))′. Equality (21) and Equality (22) hold because of the definitions ofS−1 and
T2. Therefore, Cov[Zi ,Vj|C, τ̂2] is positive wheni 6= j .

Wheni = j ,

Cov[Zi,Vj |C, τ̂2] =
1

aidj

[
Cov

[
µ̂k(nk), µ̂k(Nk)|C, τ̂2]+Cov

[
µ̂ j(nj), µ̂ j(Nj)|C, τ̂2]].

We can also obtain Cov
[
µ̂ j(nj), µ̂ j(Nj)|C, τ̂2

]
> 0. Therefore, Cov[Zi,Vj|C, τ̂2] is

positive wheni = j .
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11.3 CV Combined Procedure with Paired Screening

Theorem 2 is proven here. We can apply the additive approach to the CV combined
procedure with paired screening. We assume that Model (1) holds. The probability
of correct selection is

Pr
{

µ̂ki(n) ≥−tki ∆̂ki(n)τ̂ki(n),∀i 6= k; µ̂k(Nk) > µ̂i(Ni),∀i ∈ I
}

≥ Pr

{
µ̂ki(n) ≥−tki ∆̂ki(n)τ̂ki(n),∀i 6= k;

µ̂k(Nk)− µ̂i(Ni)− (µk−µi)√
∆̂2

k (Nk)τ2
k + ∆̂2

i (Ni)τ2
i

>
−(µk−µi)√

∆̂2
k (Nk)τ2

k + ∆̂2
i (Ni)τ2

i

,∀i ∈ I

}

≥ Pr

{
µ̂ki(n) ≥−tki ∆̂ki(n)τ̂ki(n),∀i 6= k;

Vi >
−δ√

∆̂2
k (Nk)τ2

k + ∆̂2
i (Ni)τ2

i

,∀i ∈ I

}
(23)

≥ Pr

{
µ̂ki(n) ≥−tki ∆̂ki(n)τ̂ki(n),∀i 6= k;

Vi <
δ√

∆̂2
k (Nk)τ2

k + ∆̂2
i (Ni)τ2

i

,∀i 6= k; ∆̂2
i (Ni) ≤

δ2

h2 τ̂2
i (ni)

,∀i

}
(24)

≥ Pr

{
µ̂ki(n) ≥−tki ∆̂ki(n)τ̂ki(n),∀i 6= k; Vi <

h√
τ 2
k

τ̂ 2
k (nk)

+ τ 2
i

τ̂ 2
i (ni )

,∀i 6= k;

∆̂2
i (Ni) ≤

δ2

h2 τ̂2
i (ni)

,∀i

}

≥ 1− p0− p1− p2 (25)

where
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p0 = 1−Pr
{

µ̂ki(n) ≥ −tki ∆̂ki(n)τ̂ki(n),∀i 6= k
}

and

p1 = 1−Pr





Vi <
h√

τ 2
k

τ̂ 2
k (nk)

+ τ 2
i

τ̂ 2
i (ni )

,∀i 6= k





and

p2 = 1−Pr

{
∆̂2

i (Ni) ≤
δ2

h2 τ̂2
i (ni)

,∀i

}
.

By Lemma 1, the conditional distribution ofVi given {τ̂2,C} is standard normal.
Inequality (23) holds becauseµk − µi ≥ δ. Inequality (24) holds because of the
symmetry of the normal distribution and the probability is smaller if we require a
bound on the value of̂∆2

i (Ni), while Inequality (25) is an application of the Bonfer-
roni inequality.

We know thatp0 ≤ α0, p1 ≤ α1, p2 ≤ α2 (Nelson and Staum 2006). So we can
conclude that the probability of correct selection is

Pr{µ̂ki(n) ≥−tki ∆̂ki(n)τ̂ki(n),∀i 6= k; µ̂k(Nk) > µ̂i(Ni),∀i ∈ I}
≥ 1−α0−α1−α2 = 1−α .
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