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Fully sequential selection procedures have been developed in the field of stochastic simulation to find the simulated system with
the best expected performance when the number of alternatives is finite. Kim and Nelson proposed the KN procedure to allow for
unknown and unequal variances and the use of common random numbers. KN approximates the raw sum of differences between
observations from two systems as a Brownian motion process with drift and uses a triangular continuation region to decide the
stopping time of the selection process. In this paper new fully sequential selection procedures are derived that employ a more effective
sum of differences, which is called a controlled sum. Two provably valid procedures and an approximate procedure are described.
Empirical results and a realistic illustration are provided to compare the efficiency of these procedures with other procedures that
solve the same problem.

[Supplemental materials are available for this article. Go to the publisher’s online edition of IIE Transactions for the following
supplemental resources: Proofs and guidelines to choose appropriate parameters.]
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1. Introduction

In the stochastic simulation community, ranking and selec-
tion (R&S; see, for instance, Bechhofer et al. (1995)) pro-
cedures have been proposed to select the simulated system
with the largest or smallest expected performance measure
when the number of alternative designs is finite. There are
many R&S procedures providing different types of guaran-
tees. In this paper we focus on extending one well known
and effective procedure due to Kim and Nelson (2001),
which we will call procedure KN , which is a fully sequen-
tial R&S procedure. Such procedures take a single basic
observation from each system still in contention at each
stage, and eliminate systems whenever they are statistically
inferior. This sort of elimination has been shown to greatly
reduce the computational effort required to find the best
system relative to two-stage procedures.
KN guarantees to select the best system with a prespec-

ified Probability of Correct Selection (PCS) when the true
expectations satisfy an indifference-zone requirement. To
accomplish this, KN approximates the sum of differences
between observations from each pair of systems as a Brown-
ian motion process with drift, and uses a triangular contin-

∗Corresponding author

uation region to decide the stopping time of the selection
process. Figure 1 shows the continuation region for this
procedure for systems i and k. Either system i or system k
will be eliminated depending on which direction the sum
of differences exits this region. KN requires independent
and identically distributed (i.i.d.) normal data but it allows
unknown and unequal variances and the use of Common
Random Numbers (CRN). CRN is a technique that tries
to generate a positive correlation between the outputs of
different systems, and therefore reduce the variance of the
difference between them, by using the same pseudorandom
numbers to simulate each system.

Recently, more adaptive or cost-effective procedures have
been derived from KN to address a variety of situations
that are encountered in the stochastic simulation context.
For instance, Goldsman et al. (2001) and Kim and Nelson
(2006) proposed two R&S procedures that extend KN to
steady-state simulation experiments. Many simulation op-
timization algorithms try to move from a current solution
to an improved solution on each iteration by choosing the
best from a set of neighbors. Pichitlamken et al. (2006)
proposed fully sequential procedures that can provide a
statistical guarantee on each iteration of an optimization
even if the initial sample sizes are unequal. Although KN
can decrease the expected total number of samples nec-
essary to achieve a decision, it needs to repeatedly switch
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Fig. 1. Continuation region for the fully sequential, indifference-zone procedure KN .

among the different simulated systems to reduce the cost
of sampling. Hong and Nelson (2005) proposed sequential
procedures that attempt to balance the cost of sampling
and switching to minimize the total computational cost.
In practice it is possible that the number of systems is not
fixed at the beginning of the experiment; instead the sys-
tems are revealed sequentially during the experiment. Hong
and Nelson (2007) presented procedures to select the best
each time new systems are revealed and provide the desired
statistical guarantee whenever the experiment terminates.
All of these fully sequential selection procedures mentioned
above are based on the raw sum of differences between two
systems’ outputs.

The Control Variates (CV) approach is a variance re-
duction technique. Controls are random variables in the
simulation that are correlated with the output of inter-
est, but whose expected values are known (Lavenberg and
Welch, 1981). Nelson and Staum (2006) derived two-stage
R&S procedures that employ CV estimators, and Tsai et al.
(2009) added screening in the first stage. These CV proce-
dures can be more statistically efficient than their sample-
mean-based counterparts since the CV estimator has a
smaller variance than the conventional sample-mean es-
timator.

Our goal is to develop new fully sequential R&S pro-
cedures by employing a more effective sum of differences,
which we called a controlled sum, instead of the raw sum
of differences used in all previous work. A controlled sum
of differences can be more statistically efficient than a raw
sum of differences because the Brownian motion process
based on it has reduced variance and the continuation re-
gion for the selection process has a smaller area, leading to
fully sequential procedures that are correspondingly more
efficient. In a controlled sum of differences, the raw sum

of differences is adjusted by a multiple β of the centered
sum of control variates that is correlated with the raw sum
of differences. This reduces the variance without changing
the drift. The vector of coefficients, β, is critical to the ef-
fectiveness of the controlled sum. When the optimal β is
known, then our procedure is equivalent to KN applied to
a lower-variance output process. In practice, however, the
optimal β is not known and choosing β arbitrarily may de-
grade our procedure. Therefore, the key issue is estimating
the optimal β.

The paper is organized as follows: In Section 2, we
present our CV model and a Generic Procedure from which
specific procedures are derived. In Section 3 we introduce a
fully sequential procedure assuming the optimal β, which
we denote as β∗, is known and use this procedure to show
the potential benefits of the controlled sum. Section 4 pro-
vides a statistically valid procedure when β∗ is unknown.
In Section 5 we present a procedure that combines the pro-
cedure in Section 4 and KN . An approximate procedure
which cannot be proven to obtain the PCS guarantee but
may require a smaller sample size is discussed in Section
6. Empirical results and a realistic illustration are provided
in Sections 7 and 8, respectively. The paper ends with con-
clusions in Section 9. The Appendix presents most details
of the procedures. All proofs are contained in the online
companion to this paper.

2. The generic procedure

In this section we present the CV model on which our
procedures are based, provide the definitions and notation
that will be used throughout the paper and introduce the
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Fully sequential selection in simulation 73

Generic Procedure utilizing a controlled sum. The descrip-
tion in Section 2.1 is based on Nelson and Staum (2006).

2.1. CV model

Let Xi j be the j th simulation observation from system i ,
for i = 1, 2, . . . , k. We assume that it can be represented as

Xi j = µi + (Ci j − ξi )
Tβ∗

i + ηi j , (1)

where the qi × 1 vector Ci j is called the control and is as-
sumed multivariate normal, while {ηi j , j = 1, 2, . . . , n} is a
set of i.i.d. N(0, τ 2

i ) random variables. For each system i =
1, 2, . . . , k, the controls {Ci j , j = 1, 2, . . . , n} are also i.i.d.,
are independent of {ηi j , j = 1, 2, . . . , n} and have known
expected value ξi . The Xi j are therefore i.i.d. N(µi , σ

2
i )

random variables, with both µi and σ 2
i unknown and (per-

haps) unequal. Furthermore, for each pair of systems i, � =
1, 2, . . . , k, i �= � the controls (CT

i j , CT
�j ) and the (ηi j , η�j ) are

assumed multivariate normal. The multiplier β∗
i is a qi × 1

vector of unknown constants that captures the relationship
between the output Xi j and the control Ci j , while ηi j repre-
sents that part of the variability in Xi j that is not explained
by the controls. As a consequence of these assumptions,
β∗

i = var[Ci j ]−1cov[Ci j , Xi j ] and τ 2
i = (1 − R2

i )σ 2
i , where

R2
i = cov[Xi j , Ci j ]var[Ci j ]−1cov[Ci j , Xi j ]/σ 2

i , the square of
the multiple correlation coefficient between Xi j and Ci j
(Lavenberg and Welch, 1981). Model (1) can be justi-
fied when (Xi j , CT

i j ) are themselves averages or standard-
ized averages of some input random variables (Wilson and
Pritsker, 1984), but of course it is always an approximation.

Remark 1. We could have arrived at the same conclusions by
starting with the assumption that (Xi j , CT

i j ) is multivariate
normal which implies the linear model (1), but we prefer to
emphasize Model (1) as the starting point.

A CV estimator of µi can be much more statistically
efficient than the sample mean of the Xi j . We now review
some basic properties of the CV estimator under Model
(1).

Define the sample mean of the outputs and controls as

X̄i (n) = 1
n

n∑
j=1

Xi j and C̄i (n) = 1
n

n∑
j=1

Ci j .

We append “(n)” to quantities defined across n observa-
tions.

Let

β̂i (n) = S−1
Ci

(n)SCi Xi (n)

where SCi (n) is the sample variance-covariance matrix of
Ci j and SCi Xi (n) is the sample covariance vector between
Ci j and Xi j .

Then the CV point estimator of µi is

µ̂i (n) = X̄i (n) − (C̄i (n) − ξi )
Tβ̂i (n)

= 1
n

n∑
j=1

[Xi j − (Ci j − ξi )
Tβ̂i (n)].

It is known under Model (1) that:

E[µ̂i (n)] = µi and var[µ̂i (n)] =
(

n − 2
n − qi − 2

)
τ 2

i

n
.

The term (n − 2)/(n − qi − 2) is known as the loss ratio,
and it quantifies the impact of the estimation of β∗

i .
The standard unbiased estimator of var[µ̂i (n)] is

τ̂ 2
i (n)�̂2

i (n), where:

τ̂ 2
i (n) = 1

n − qi − 1

n∑
j=1

[Xi j − µ̂i (n) − (Ci j − ξi )
Tβ̂i (n)]2

is the residual variance estimator and

�̂2
i (n) = 1

n
+ 1

n − 1
(C̄i (n) − ξi )

TS−1
Ci

(n)(C̄i (n) − ξi ).

2.2. The procedure

Suppose that a larger mean is better, and unknown to us
µk ≥ µk−1 ≥ · · · ≥ µ1. We want a procedure that guar-
antees to select system k with PCS ≥ 1 − α whenever
µk ≥ µk−1 + δ, where δ > 0 is a user-specified parameter
representing the smallest difference worth detecting. In this
section we present a Generic Procedure that, under certain
conditions, provides such guarantees.

For each system i = 1, 2, . . . , k, any non-negative inte-
gers a, b, with b > a + 1, and qi × 1 vector βi , the con-
trolled sum from the (a + 1)st sample to the bth sample is
defined as

Xi [a, b,βi ] =
b∑

j=a+1

[Xi j − (Ci j − ξi )
Tβi ].

We use the following controlled sum of differences between
systems i and � to construct the tracking process in our
procedure:

Xi [a, b,βi ] − X�[a, b,β�]

=
b∑

j=a+1

[Xi j − (Ci j − ξi )
Tβi − X�j + (C�j − ξ�)Tβ�]

=
b∑

j=a+1

[Xi j−X�j ]−
b∑

j=a+1

[(Ci j−ξi )
Tβi − (C�j − ξ�)Tβ�],

(2)

where the first sum on the right-hand side of Equation (2) is
the raw sum of differences used in KN , and the second sum
is a correction that depends on the centered controls and βi
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74 Tsai and Nelson

and β�. The correction term is employed to obtain a vari-
ance reduction. Although the continuation region is usually
presented in terms of the (controlled) sum of differences
Xi [a, b,βi ] − X�[a, b,β�], we will interchangeably work
with the sample mean difference X̄i [a, b,βi ] − X̄�[a, b,β�],
where:

X̄i [a, b,βi ] = 1
b − a

Xi [a, b,βi ].

For all i �= �, define the controlled sample variance,
S2

i�[a, b,βi ,β�], as

1
b − a − 1

b∑
j=a+1

{Xi j − (Ci j − ξi )
Tβi − X�j

+ (C�j − ξ�)Tβ� − X̄i [a, b,βi ] + X̄�[a, b,β�]}2.

Based on the notation above we present the Generic Pro-
cedure from which the procedures in Sections 3, 4 and 6
can be derived.

The Generic Procedure

Setup: Select confidence level 1/k < 1 − α < 1,
indifference-zone parameter δ > 0, preliminary-
stage sample size m0 > q + 2 (or m0 = 0 when there
is no preliminary stage), and first-stage sample
size n0 such that n0 − m0 ≥ 2. Let λ = δ/2 and
h2 = 2η × (n0 − m0 − 1), where:

η = 1
2

[(
2α

k − 1

)−2/(n0−m0−1)

− 1

]
.

Initialization: Let I = {1, 2, . . . , k} be the set of systems
still in contention.
If m0 > 0, then

obtain (Xi j , Ci j ), i = 1, 2, . . . , k, j = 1, 2, . . . , m0
(preliminary stage),

compute the estimator β̂i (m0) of β∗
i and set βi =

β̂i (m0), i = 1, 2, . . . , k.
Else

set βi = β∗
i or 0 or to an arbitrary value as desired,

for i = 1, 2, . . . , k.
Endif
Obtain (Xi j , Ci j ), i = 1, 2, . . . , k, j = m0 + 1, m0 +
2, . . . , n0 (first stage).
Compute S2

i� [m0, n0,βi ,β�], for all i �= �.
Set the observation counter r = n0 and go to Screen-
ing.

Screening: Set Iold = I. Let

I = {i : i ∈ Iold and X̄i [m0, r,βi ] ≥ X̄�[m0, r,β�]
−Wi�[m0, n0,βi ,β�, r ], ∀� ∈ Iold, � �= i},

where

Wi�[m0, n0,βi ,β�, r ]

= max
{

0,
h2S2

i�[m0, n0,βi ,β�]
2δ(r − m0)

− λ

}
.

Stopping Rule: If |I| = 1, then stop and select the system
whose index is in I as the best.
Otherwise, take one additional observation
(Xi,r+1, Ci,r+1) from each system i ∈ I, set r = r + 1
and go to Screening.

Remark 2. There is a family of triangular continuation re-
gions indexed by an integer parameter that is called c by
Kim and Nelson (2001). We have only presented the region
obtained when c = 1, which Kim and Nelson showed to be
a good compromise.

In the sections that follow we specialize the Generic Pro-
cedure in various ways, prove its validity where possible,
and examine design parameters that can affect its perfor-
mance.

3. A procedure for known β∗

In this section we assume that β∗ is known to demon-
strate the potential benefits of the controlled sum in fully
sequential selection procedures. The case of unknown β∗

is discussed in Sections 4 to 6. Notice that the Generic
Procedure presented above becomes KN when m0 = 0 and
βi = 0, ∀i . Assuming Model (1) holds, when m0 = 0 and
we know β∗ or use arbitrary but fixed β, then this pro-
cedure is KN applied to a new normal random variable,
X′

i j = Xi j − (Ci j − ξi )Tβi . Therefore, the test statistic in
the Screening step is exactly the sum of differences between
two normal random variables with means µi and µ�, so it
satisfies the requirements for the validity of KN and the
desired PCS guarantee is still provided.

We next show that the procedure for known β∗ is bet-
ter than KN . Notice that this procedure will tend to have
smaller S2

ik which narrows and shortens the continuation
region. We expect the continuation region of the procedure
with known β∗ to be completely contained within the re-
gion of KN , therefore the area of the continuation region
is a good basis for comparison because we have more op-
portunities to eliminate inferior systems earlier when the
procedure has a smaller continuation region, provided the
process drift is unchanged, as it is here. To simplify the re-
sult for the purpose of illustration, we assume that Model
(1) holds and the systems are simulated independently. For
KN we know the area of the continuation region A in Fig. 1
is (ignoring rounding):(

h2S2
ik

2δ

)(
h2S2

ik

δ2

)
= h4S4

ik

2δ3
,

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
0
0
 
5
 
M
a
y
 
2
0
1
1



Fully sequential selection in simulation 75

(Kim and Nelson, 2001). For normally distributed data:

E
[
S4

ik

] = σ 4
ik × (n0 + 1)

(n0 − 1)
.

Therefore, we obtain:

E[A]KN = E
[

h4S4
ik

2δ3

]
= h4

2δ3
× (n0 + 1)

(n0 − 1)
× σ 4

ik,

where σ 2
ik = var[Xkj − Xi j ] = σ 2

k + σ 2
i .

For the procedure with known β∗:

E[A]β∗ = E
[

h4S4
ik[0, n0,β

∗
k,β

∗
i ]

2δ3

]
= h4

2δ3
× (n0 + 1)

(n0 − 1)
× τ 4

ik,

where

τ 2
ik = var[Xkj − (Ckj − ξk)Tβ∗

k − Xi j + (Ci j − ξi )
Tβ∗

i ]
= var[ηkj − ηi j ]

= (1 − R2
k)σ 2

k + (
1 − R2

i

)
σ 2

i ,

and R2
i is the square of the multiple correlation coefficient

between Xi j and Ci j . For simplicity, we assume that R2
i =

R2, for i = 1, 2, . . . , k. Then

E[A]β∗ = E[A]KN × (1 − R2)2.

Thus, the expected area of the continuation region for the
Generic Procedure with known β∗ is smaller than that for
KN , so we expect to be more efficient by applying con-
trolled sums instead of raw sums. Notice that larger cor-
relation between the outputs and the controls leads to a
smaller continuation region, so choosing effective control
variates is important. See Añonuevo and Nelson (1988),
Nelson (1989) and Bauer and Wilson (1992) for a general
discussion of selecting good control variates.

Also notice that an arbitrarily chosen β could increase
the expected area of the continuation region. This is eas-
iest to see if we simplify the analysis even further by

assuming that systems i and k are identical, but still
independently simulated. Then σ 2

ik = 2var[X] and τ 2
ik =

2(var[X] + βTvar[C]β − 2βTcov[C, X]). Therefore, τ 2
ik ≥

σ 2
ik if βTvar[C]β ≥ 2βTcov[C, X], which occurs, for in-

stance, if β = 3β∗. This motivates the need for the pro-
cedures in Sections 4 to 6 that estimate β∗.

4. A procedure for unknown β∗

In most stochastic simulation experiments β∗ is not known
in advance. Therefore, we need to spend some effort esti-
mating β∗, which is not required for KN . In this section
we introduce a fully sequential procedure that allows un-
known β∗ and also guarantees the PCS; some guidelines
for the design of this procedure are also discussed in the
online Supplement.

The Controlled Sequential Selection proce-
dure (CSS) collects preliminary-stage samples
(Xi j , Ci j ), j = 1, 2, . . . , m0 to compute β̂i (m0) for each
system, and then obtains an additional n0 − m0 first-stage
samples which are used to compute the controlled sample
variance, S2

i�[m0, n0, β̂i (m0), β̂�(m0)]. Figure 2 shows the
continuation region for CSS.

Why do we need a preliminary stage, since it would seem
to be more efficient to set m0 = 0 and compute both β̂i (n0)
and S2

i�[0, n0, β̂i (n0), β̂�(n0)] from the first-stage data? The
reason is that the sample variance will not have the statis-
tical properties we need to prove the validity of CSS, in
particular it is neither an unbiased estimator of

1
r

var[Xi [0, r, β̂i (n0)] − X�[0, r, β̂�(n0)]],

nor does it have a scaled chi-squared distribution condi-
tional on β̂i (n0) and β̂�(n0).
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Fig. 2. Continuation region for CSS.
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76 Tsai and Nelson

We already know the procedure is valid for known β∗

or arbitrary, fixed β. Therefore, it is natural to expect that
it is valid when β̂i (m0) is estimated from an independent
sample.

Theorem 1. If Model (1) holds, then CSS selects system k
with probability ≥ 1 − α whenever µk − µk−1 ≥ δ.

The proof is provided in the online Supplement.

Remark 3. This procedure is statistically valid with or with-
out the use of CRN. If the systems are simulated indepen-
dently, then we can replace the value of η in the Setup step
with

η = 1
2

[[2 − 2(1 − α)1/(k−1)]−2/(n0−m0−1) − 1].

In this case, the value of η is decreased which makes the
continuation region smaller, therefore the procedure may
be terminated more quickly. This result follows directly
from Theorem 2 of Kim and Nelson (2001).

It is important to notice that the variance of
X̄i [m0, r, β̂i (m0)] is different from the variance of the usual
CV estimator µ̂i (r ). Under Model (1) it is known that:

E[X̄i [m0, r, β̂i (m0)]] = µi and var[X̄i [m0, r, β̂i (m0)]]

=
(

m0 − 2
m0 − qi − 2

)
τ 2

i

r − m0
,

(Ripley, 1987). Thus, the loss ratio contains the
preliminary-stage sample size m0 instead of the overall sam-
ple size r . Clearly it is important that m0 may not be too
small to make the loss insignificant.

The advantage of CSS is that we can exploit the CV
approach and preserve the required PCS, but the disadvan-
tage is that we need to collect some preliminary samples
to estimate β̂i (m0) before the screening process is initi-
ated. These preliminary-stage samples are acquired only

for the purpose of estimating β∗ and we cannot employ
them to eliminate systems. Furthermore, a suitable size for
the preliminary-stage samples needs to be determined. In
the online Supplement we provide an analysis that suggests
appropriate preliminary-stage sample sizes; for instance,
16 ≤ m0 ≤ 20 when there are three controls. In the online
Supplement we also show that if we follow these guide-
lines then there is little potential benefit from updating the
estimator β̂ after the preliminary stage.

5. A controlled sequential selection procedure combined
with KN

CSS is a statistically valid procedure that requires taking
preliminary-stage samples to calculate β̂i (m0) before we
enter the screening process; therefore these m0 samples are
wasted. In this section we propose a controlled sequential
procedure in which the preliminary-stage samples can be
exploited while still securing the required PCS. This proce-
dure is basically the combination of KN and CSS, so we
call it CSS-C.

In CSS-C the m0 preliminary-stage samples are collected
to compute β̂i (m0) and the raw sample variance is utilized
to set up the continuation region for KN . The KN proce-
dure is then performed from observation m0 to observation
n0 (first stage); meanwhile, the controlled sample variance
S2

ik[m0, n0, β̂i (m0), β̂k(m0)] is obtained and both KN and
CSS are implemented in parallel after the first stage (obser-
vation n0). A system is eliminated when either KN or CSS
eliminates it, and the procedure terminates when there is
only one system remaining. Figure 3 illustrates the contin-
uation region for CSS-C.

The advantage of CSS-C is that it gives us an opportunity
to eliminate inferior systems in the first stage. The disadvan-
tage is that it uses the conservative Bonferroni inequality to

)](ˆ,,[)](ˆ,,[ 0000 mrmXmrmX iikk ββ −
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Fig. 3. Continuation region for CSS-C.
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Fully sequential selection in simulation 77

combine KN and CSS to guarantee the overall PCS. This
procedure is more desirable when there are a large number
of systems whose means are expected to differ widely. In
that case, we expect the savings gained through eliminating
inferior systems in the first stage to more than offset the
losses incurred in applying the Bonferroni inequality. We
present CSS-C in detail in the Appendix.

In CSS-C we apply KN to screen out non-competitive
systems in the first stage; then, after the first stage KN and
CSS are applied to the surviving systems to select the best
system. We spend α0 of the overall allowable probability
of incorrect selection α on KN , and the other α − α0 on
CSS (typically we take α0 = α/2). The following analysis
investigates the effect of splitting α in CSS-C.

Let n1 = n0 − m0 be the number of samples between the
preliminary and first stages, and let N denote the maximum
number of samples that could be required for system i
to eliminate system k or vice versa for a fully sequential
procedure (see Fig. 2). Then

E[N]CSS = m0 + 2η1(n1 − 1)((m0 − 2)/(m0 − q − 2))τ 2
ik

δ2
,

where

η1 = 1
2

[(
2α

k − 1

)−2/(n1−1)

− 1
]
.

For CSS-C the maximum number of samples that the con-
trolled sum can take until the procedure stops is larger than
CSS because a smaller probability of incorrect selection is
specified. If we take α0 = α/2, then:

E[N]CSS−C=m0 + 2η2(n1 − 1)((m0 − 2)/(m0 − q − 2))τ 2
ik

δ2
,

where

η2 = 1
2

[(
α

k − 1

)−2/(n1−1)

− 1
]
.

We can show that:

E[N]CSS−C
E[N]CSS

≈ η2

η1
.

Table 1 gives the value of η2/η1 as a function of n1 for
different values of k when α = 0.05 and α0 = α/2. This
table shows that the ratio η2/η1 decreases as the number
of systems and the number of samples in the first stage
increase, and it also illustrates that once we reach, say,
15 to 30 observations in the first stage, there is not much
potential reduction in this ratio from increasing n1 further
within a realistic range of first-stage sample sizes (n1 ≤
100). Therefore, 15 to 30 samples are recommended to take
in the first stage to moderate the disadvantage of employing
the Bonferroni inequality.

Table 1. η2/η1 as a function of n1 = n0 − m0 when 1 − α = 0.95
and α0 = α/2

k

n1 2 10 50 100 500

2 4.03 4.00 4.00 4.00 4.00
5 1.60 1.46 1.43 1.43 1.42

10 1.42 1.26 1.22 1.21 1.20
15 1.37 1.22 1.18 1.17 1.15
20 1.35 1.20 1.16 1.15 1.13
30 1.33 1.18 1.14 1.13 1.11
40 1.32 1.18 1.13 1.12 1.10
50 1.32 1.17 1.13 1.12 1.09
60 1.32 1.17 1.13 1.11 1.09
70 1.31 1.17 1.12 1.11 1.09
80 1.31 1.16 1.12 1.11 1.09
90 1.31 1.16 1.12 1.11 1.09

100 1.31 1.16 1.12 1.11 1.09

6. A controlled sequential selection procedure with
approximate variance estimator

To avoid wasting samples in the preliminary stage, we de-
rive the Controlled Sequential Selection Procedure with
Approximate Variance Estimator (CSS-A). CSS-A is sim-
ilar to CSS except that it only requires a first stage (sam-
ple size n0 > q + 2) to estimate the β̂i (n0) and an ap-
proximate variance estimator. For the Generic Procedure,
we set m0 = 0 in the Setup step, set βi = β̂i (n0) and
replace S2

i�[0, n0, β̂i (n0), β̂�(n0)] with n0(�̂2
i (n0)̂τ 2

i (n0) +
�̂2

�(n0)̂τ 2
� (n0)) in the Initialization step.

The internal variance estimator, r (n0�̂
2
i (n0)̂τ 2

i (n0)), is a
biased estimator of var[Xi [0, r, β̂i (n0)]] for any observation
counter r > n0, leading to the unfavorable consequence
that the PCS guarantee may not be attained. However, we
expect the bias to be mild when n0 is not too small, because

β̂(n0)
w.p.1−→ β∗ as n0 → ∞ (Avramidis and Wilson, 1993),

and

n0�̂
2(n0)̂τ 2(n0)

p−→ τ 2 as n0 → ∞ (Nelson, 1990),

where
w.p.1−→ denotes convergence with probability one and

p−→ denotes convergence in probability. Thus, if n0 is not
too small, then Xi j − (Ci j − ξi )Tβ̂i (n0) behaves like Xi j −
(Ci j − ξi )Tβ∗

i and r (n0�̂
2
i (n0)̂τ 2

i (n0)) is approximately rτ 2
i

which is equal to var[Xi [0, r,β∗
i ]]. Therefore, CSS-A should

perform like a valid procedure with known (β∗
i , τ 2

i�) if n0
is not too small, a procedure for which we provide details
in the Appendix. It is worth noting that S2[0, n0, β̂(n0)]
is also a strongly consistent estimator of τ 2. However, we
still choose to use n0�̂

2(n0)̂τ 2(n0) because it is an unbi-
ased estimator of 1/n0var[X[0, n0, β̂(n0)]] and has a scaled
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78 Tsai and Nelson

chi-squared distribution, which allows us to select an ap-
propriate number of degrees of freedom.
CSS-A is likely to be conservative so that the required

PCS is still maintained even with a biased variance estima-
tor. Empirical evaluation shows that CSS-A performs well
in most configurations.

If we look at the expected value of the largest possible
sample size N and assume that CVs explain all effects of
CRN, we find that:

E[N]CSS−A = E

[
h2

[
n0�̂

2
i (n0)̂τ 2

i (n0) + n0�̂
2
k(n0)̂τ 2

k (n0)
]

δ2

]

= 2η × (n0 − 1)((n0 − 2)/(n0 − q − 2))τ 2
ik

δ2
.

To facilitate the analysis we assume that n0(CSS-A) =
m0(CSS) = n0(CSS)/2; then the following result holds:

E[N]CSS−A = E[N]CSS − m0,

which shows that less sampling is expended for CSS-A by
the amount of the preliminary-stage sample size m0.

7. Empirical evaluation

In this section we perform an empirical evaluation to com-
pare the CV procedures presented in this paper to KN and
to each other.

The systems are represented by various configurations of
k normal distributions; in all cases, system k was the best
(had the largest true mean). Let Xi be a simulation obser-
vation from system i , for i = 1, 2, . . . , k. For simplicity, we
assume that there is q = 1 control variate and the output
can be represented as

Xi = µi + (Ci − ξi )βi + ηi ,

where {ηi , i = 1, 2, . . . , k} are N(0, σ 2
η ) random variables.

The {Ci , i = 1, 2, . . . , k} are N(ξi , σ
2
c ) random variables

and independent of {ηi , i = 1, 2, . . . , k}. The squared cor-
relation coefficient between Xi and Ci is R2

(x,c).
We evaluated each procedure on different configurations

of the systems, examining factors including the number
of systems k, the practically significant difference δ, the
preliminary-stage sample size m0, the first-stage sample size
n1 = n0 − m0, the variance of controls σ 2

c , the variance of
residuals σ 2

η and the configuration of the means µi . We
also examined the impact of R2

(x,c) on the performance of
each procedure. Note that R2

(x,c) = β2σ 2
c /(β2σ 2

c + σ 2
η ). The

configurations, the experiment design and the results are
described below.

7.1. Configurations and experiment design

We used the Slippage Configuration (SC) of the true means
of the systems to investigate a difficult scenario for fully

sequential selection procedures. In the SC, the mean of the
best system µk was set to exactly δ or a multiple of δ, while
µ1 = µ2 = · · · = µk−1 = 0. Subsequent experiments were
performed with µk = δ. These experiments with the SC
showed that CVs can make the fully sequential procedure
more efficient even under the most difficult situation. To ex-
amine the efficiency of these procedures in eliminating infe-
rior systems, Monotone-Decreasing Means (MDM) were
also used. In the MDM configuration, the differences be-
tween the means of any two adjacent systems, µi − µi−1
were set to δ/γ where γ was a constant in the experiment
design. For later experiments, the value γ = 1 was used.

We chose the first-stage sample size to be n1 = 20,
for i = 1, 2, . . . , k. The mean of the controls, ξi , was set
to be zero, and βi was set to be 1, for i = 1, 2, . . . , k.
The number of systems in each experiment varied over
k = 2, 5, 10, 25, 100. The indifference-zone parameter, δ,

was set to δ =
√

(σ 2
c + σ 2

η )/n1, where σ 2
c is the variance of

controls and σ 2
η is the variance of residuals; therefore, δ

is one standard deviation of the first-stage sample mean.
For each configuration, 500 macroreplications (complete
repetitions) of the entire fully sequential procedure were
carried out. In all experiments, the nominal probability of
correct selection was set at 1 − α = 0.95. We took α0 = α/2
in CSS-C. To compare the performance of the procedures
we recorded the estimated PCS, the Average Number of
Samples per system (ANS), and the Percentage of Systems
that Survived after first-stage sampling (PSS) which is only
meaningful for CSS-C. Notice that ANS is used to gauge
a procedure’s overall efficiency, while PSS gauges the effec-
tiveness of the first-stage KN component in screening out
non-competitive systems for CSS-C.

7.2. Summary of results

We do not attempt to present comprehensive results from
such a large simulation study. Instead, we present details of
some typical examples that emphasize the key conclusions.

7.2.1. Effect of m0

We examined the effect of different values of the
preliminary-stage sample size m0 for CSS and CSS-C and
compared them toKN and CSS-Awith the same first-stage
sample size n1 = 20. Notice that the derivation in the on-
line Supplement shows that the optimal preliminary-stage
sample size is m∗

0 = 10 when q = 1, n1 = 20. As shown in
Table 2, all the procedures achieve the required PCS with
different m0, since the validity has nothing to do with the
value of β̂i (m0). However, if m0 deviates much from m∗

0,
in this case less than six or greater than 30, then CSS and
CSS-C will be degraded in terms of ANS; their performance
may even be worse than KN . They tend to have lower ANS
than KN when m0 is in the range of eight to 20.
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Fully sequential selection in simulation 79

Table 2. Effect of m0 for CSS and CSS-C in the SC with µk = δ ,
k = 10, n1 = 20, R2

(x,c) = 0.4 and nominal PCS = 0.95

m0 Procedure PCS ANS PSS

KN 0.96 151
CSS-A 0.98 98

4 CSS 0.96 186
CSS-C 0.96 184 0.98

6 CSS 0.96 127
CSS-C 0.97 137 0.98

8 CSS 0.97 118
CSS-C 0.98 125 0.99

10 CSS 0.96 114
CSS-C 0.98 120 0.99

12 CSS 0.97 112
CSS-C 0.97 124 0.99

14 CSS 0.97 113
CSS-C 0.97 122 0.99

30 CSS 0.97 124
CSS-C 0.97 128 0.98

40 CSS 0.96 133
CSS-C 0.98 129 0.97

50 CSS 0.97 143
CSS-C 0.98 136 0.96

7.2.2. Effect of CVs
We evaluated the effect of CVs for the three CV proce-
dures and compared them to KN under the slippage con-
figuration. The results in the online Supplement suggest
that R2

(x,c) needs to be no less than 0.13 and no more than
0.26 for CSS to be more efficient than KN when n1 = 20,
m0 = 10 and q = 1. As Table 3 shows, CSS and CSS-A
outperform KN easily with R2

(x,c) ≥ 0.2 in this example.
However, CSS-C needs to have a larger multiple correla-
tion coefficient (R2

(x,c) ≥ 0.4) to outperform KN since the
SC configuration is especially undesirable for CSS-C. Of

Table 3. Effect of CVs for CV procedures in comparison with
KN under the SC with µk = δ, k = 10, m0 = 10, n1 = 20 and
nominal PCS = 0.95

R2
(x,c) Procedure PCS ANS PSS

KN 0.96 151
0.2 CSS 0.97 146

CSS-A 0.98 134
CSS-C 0.98 160 0.99

0.4 CSS 0.96 114
CSS-A 0.98 98
CSS-C 0.98 120 0.99

0.6 CSS 0.96 80
CSS-A 0.97 67
CSS-C 0.98 89 0.99

0.8 CSS 0.96 46
CSS-A 0.97 35
CSS-C 0.97 52 0.99

Table 4. Comparisons among all configurations of the means
with m0 = 10, n1 = 20, R2

(x,c) = 0.4, and nominal PCS = 0.95

k = 5 k = 10 k = 100

Procedure Measure
k = 2

SC SC MDM SC MDM SC MDM

KN PCS 0.95 0.95 0.98 0.96 0.99 1 1
ANS 67 127 81 151 72 210 41

CSS PCS 0.96 0.96 0.99 0.97 0.99 1 1
ANS 58 94 65 113 56 149 36

CSS-A PCS 0.96 0.96 0.99 0.98 0.99 1 1
ANS 45 81 52 98 45 162 27

CSS-C PCS 0.97 0.98 0.99 0.99 1 1 1
ANS 65 107 72 120 58 160 21
PSS 0.96 0.98 0.93 0.99 0.79 0.99 0.16

course, a larger R2
(x,c) makes these procedures even more

efficient because the CVs can explain more variability of
the outputs. Notice that PSS of CSS-C is not affected by
R2

(x,c) because the CVs are not involved in the first-stage
screening process.

7.2.3. Comparisons across all configurations of the means
The conclusions in this section are based on Table 4. Here
we compare the four procedures under the SC and MDM
configuration when k = 2, 5, 10 and 100. Notice that the
SC and MDM are identical when k = 2. The experiments
showed that all procedures require greater ANS as the num-
ber of systems increases in the SC. However, for the MDM
configuration these procedures need fewer samples from
each system when the number of systems increases since
the additional systems are far from the best.

We find that CSS-A is superior to the other procedures
across most of the configurations we examined in terms
of ANS. Results in Section 6 suggest that E[ANS]CSS−A =
E[ANS]CSS − m0, and this is consistent with what we have
seen in the experiments. Notice that the estimated PCS of
CSS-A is greater than 0.95 even under the SC with k = 2
and µ2 − µ1 = δ, which is the most difficult case to deliver
the desired PCS since the inequalities used to extend to
k > 2 tend to make all of these procedures conservative as
k increases.

The performance of CSS-C is not better than the other
CV procedures under the SC because of the Bonferroni
inequality, and the ratio of E[ANS]CSS−C to E[ANS]CSS
is very close to the result derived in Section 5. We see
that CSS-C dominates under the MDM configuration with
k = 100; the PSS value indicates that the procedure is able
to eliminate many inferior systems in the first stage (KN ),
thus reducing the overall ANS dramatically. Therefore,
CSS-C could be more or less efficient than the other proce-
dures, depending on how much we gain from screening out
systems in the first stage.
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80 Tsai and Nelson

8. An illustrative example

In this section we provide a queueing example to com-
pare our procedures with NSGS, TNS-I and KN . NSGS is
a combined sample-mean-based procedure due to Nelson
et al. (2001) that uses a screening procedure with sample
means to eliminate uncompetitive systems after the first
stage of sampling, and then applies Rinott’s IZ selection
procedure (Rinott, 1978) in the second stage. TNS-I is a
two-stage CV combined procedure presented in Tsai et al.
(2009). Both NSGS and TNS-I allow unknown and un-
equal variances, but CRN is not exploited.

Consider the M/M/s/c queue with Poisson arrivals, ex-
ponentially distributed service times, s servers, a capacity of
c customers and first-come, first-served queueing discipline.
The customers arrive with rate λ. The service rate for an
individual server is µ. Each procedure is performed on ten
different configurations of the systems in which λ/sµ = 4/5
where the performance measure is the steady-state mean of
the waiting time in system. The capacity c is set to 15. The
ten configurations along with their true expected waiting
times, which can be analytically computed, are given in
Table 5. System 1 is obviously the best system.

To mitigate the initial transient bias, we initialize the
simulation in steady state. That is, for each replication we
sample the initial condition in accordance with that steady-
state distribution of the number of customers in the system.
An average waiting time for 30 customers is used as the
output on each replication. We use the average service time
as the control on replication j , which means:

Xi j =
∑30

m=1 Wi jm

30
and Ci j =

∑30
m=1 Si jm

30
,

where Wi jm is the waiting time in system for customer m of
replication j from system i and Si jm is the service time for
customer m of replication j from system i . The preliminary-
stage sample size m0 for CSS and CSS-C is set as 20, and
we set the first-stage sample size n1 = 10 for all procedures.
We choose the indifference-zone parameter δ to be 0.1 and
CRN is not applied.

Table 5. The ten queueing systems and their expected waiting
times in steady state

System i λ s µ E[W]

1 4 1 5 0.88
2 4 2 5/2 0.98
3 4 3 5/3 1.10
4 4 4 5/4 1.24
5 4 5 1 1.38
6 4 6 5/6 1.52
7 4 7 5/7 1.67
8 4 8 5/8 1.81
9 4 9 5/9 1.96

10 4 10 5/10 2.10

Table 6. Results for NSGS, TNS-I, KN , CSS, CSS-C and CSS-
A in 100 trials with δ = 0.1, m0 = 20, n1 = 10 and 1 − α = 0.95

Procedure PCS ANS ŝe(ANS) PSS

NSGS 0.98 158 6.1 0.9
TNS-I 0.99 90 5.4 0.4
KN 0.99 89 2.9
CSS 0.96 37 0.4
CSS-C 0.96 36 0.4 0.7
CSS-A 0.90 42 2.1

Table 6 gives the results of the simulation study with
100 complete macroreplications and nominal PCS value of
0.95. We also provide the estimated standard error of ANS
to illustrate that there is a significant difference.

The observed PCS for all procedures is greater than 0.95
except for CSS-A. Comparing to the experimental results
of Section 7 in which CSS-A works very well with the lin-
ear and normal assumption (Model (1)), the bias problem
appears to be exacerbated in the queueing example. To be
more specific, X̄[0, n0, β̂(n0)] and n0�̂

2(n0)̂τ 2(n0) will be bi-
ased when linearity fails; therefore, the observed PCS for
CSS-A deviates from the nominal PCS greatly. Figure 4
shows a scatter plot of Xi j and Ci j for system 1 which
illustrates the non-linear relationship. Notice that the un-
biasedness of the controlled sum and the controlled sample
variance for CSS and CSS-C do not depend on linearity.
The efficiencies of the three CV procedures are similar and
superior to NSGS, TNS-I and KN in terms of ANS. There
is not much difference between the performance of TNS-I
and KN . TNS-I can eliminate more systems than CSS-C
in the first stage (PSS = 0.4 versus PSS = 0.7); however,
CSS-C has a smaller ANS than TNS-I because our CV
fully sequential selection procedure is much more efficient
than the CV selection-of-the-best procedure in Nelson and
Staum (2006).

System 1
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Fig. 4. Scatter plot for average waiting time against average service
time from system 1.
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Fully sequential selection in simulation 81

9. Conclusions

In this paper we have proposed a general methodology
and several specific procedures for applying CVs in a fully
sequential indifference-zone selection procedure. We rec-
ommend using CSS-C only when there is a very large
number of widely spaced systems so that the benefits of
screening during the first stage are realized. For general
use we recommend CSS. We showed that these two pro-
cedures reduce the required sample size with respect to
KN while still delivering the PCS guarantee. An approx-
imate procedure called CSS-A may require fewer obser-
vations, and the experiments showed that it performed
well when all assumptions are satisfied even though we
cannot prove its validity. On the other hand, when the
linearity assumption is violated, it seems risky to use
CSS-A.

Additional refinement of these procedures may be pos-
sible. For instance, the variance-dependent sampling ap-
proach in the fully sequential procedure of Hong (2006)
could be adapted to the controlled sum.
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Appendices

Appendix A: CSS-C Procedure

Based on the notation in Section 2, we describe CSS-C in
detail.

Procedure CSS-C

Setup: Select confidence level 1/k < 1 − α < 1, α =
α1 + α2, indifference-zone parameter δ > 0 and
preliminary-stage sample size m0 > q + 2. Let λ =
δ/2 and h2

1 = 2η [α0, m0] × (m0 − 1), where:

η [α0, m0] = 1
2

[(
2α0

k − 1

)−2/(m0−1)

− 1

]
.

KN Initialization: Let I = {1, 2, . . . , k} be the set of sys-
tems still in contention.
Obtain (Xi j , Ci j ), i = 1, 2, . . . , k, j = 1, 2, . . . , m0
(preliminary stage).
Compute estimator β̂i (m0) of β∗

i and set βi =
β̂i (m0), i = 1, 2, . . . , k.
Compute S2

D(i, �) = S2
i� [0, m0, 0, 0], for all i �= �.
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82 Tsai and Nelson

Select the first-stage sample size n0 such that n0 −
m0 ≥ 2, set the observation counter r = m0 and go
to KN Screening.

KN Screening: Set Iold = I. Let

I = {
i : i ∈ Iold and X̄i [0, r, 0] ≥ X̄�[0, r, 0]

− WC
i�

[
h2

1, S2
D(i, �), r

]
, ∀� ∈ Iold, � �= i

}
,

where

WC
i�

[
h2

1, S2
D(i, �), r

] = max
{

0,
h2

1S2
D(i, �)
2δr

− λ

}
.

Keep adding data and performing screening until the
observation counter r = n0.

CSS Initialization: Let h2
2 = 2η[α1, n0 − m0] × (n0 − m0

−1), and for all i �= � still in I, retrieve the n0 − m0
observations Xi j , Ci j , j = m0 + 1, m0 + 2, . . . , n0
maintained in the first stage to compute
S2

CV(i, �) = S2
i�[m0, n0,βi ,β�].

Go to KN + CSS Screening.
KN + CSS Screening: Set Iold = I. Let

IKN = {
i : i ∈ Iold and X̄i [0, r, 0] ≥ X̄�[0, r, 0]

−WC
i�

[
h2

1, S2
D(i, �), r

]
, ∀� ∈ Iold, � �= i

}
,

I = {
i : i ∈ IKN and X̄i [m0, r,βi ] ≥ X̄�[m0, r,β�]

−WC
i�

[
h2

2, S2
CV(i, �), r

]
, ∀� ∈ IKN , � �= i

}
.

Stopping Rule: If |I| = 1, then stop and select the system
whose index is in I as the best.
Otherwise, take one additional observation
(Xi,r+1, Ci,r+1) from each system i ∈ I, set r = r + 1
and go to KN + CSS Screening.

Appendix B: Procedure for known (β∗, τ 2)

We present a procedure with known β∗ and τ 2 which helps
justify the approximate validity of CSS-A.

Procedure for known (β∗, τ 2)

Setup: Select confidence level 1/k < 1 − α < 1,
indifference-zone parameter δ > 0. Let λ = δ/2
and h2 = 2η, where:

η = − ln
(

2α

k − 1

)
.

Initialization: Let I = {1, 2, . . . , k} be the set of systems
still in contention.
Obtain (Xi1, Ci1), i = 1, 2, . . . , k.

Set the observation counter r = 1 and go to Screen-
ing.

Screening: Set Iold = I. Let

I = {
i : i ∈ Iold and X̄i [0, r,β∗

i ] ≥ X̄�[0, r,β∗
� ]

− Wi�(r ), ∀� ∈ Iold, � �= i
}
,

where

Wi�(r ) = max
{

0,
h2τ 2

i�

2δr
− λ

}
.

Stopping Rule: If |I| = 1, then stop and select the system
whose index is in I as the best.
Otherwise, take one additional observation
(Xi,r+1, Ci,r+1) from each system i ∈ I, set r = r + 1
and go to Screening.

The PCS guarantee is due to Kim and Nelson (2006).
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