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We propose a framework for understanding the complex activities of Simulation Experiment Design and Analysis (SEDA), a
framework that provides a basis for developing SEDA software. This paper presents the framework and illustrates it with a brief
example. The definitions of six SEDA components form the core of the framework. The framework itself includes a dynamic model
and a static model. The dynamic model is a generic description of the sequential nature of SEDA. The static model, in contrast is a
very specific description of the SEDA computer system structure for our chosen problem domain: comparison of queueing
networks in terms of their expected performance. We argue that the proposed SEDA framework is a good one on the basis of its
properties and by comparing it with related frameworks. We close by briefly summarizing our prototype SEDA' software, which
was used to evaluate our framework.

1. Introduction

Our goal is to help simulation users with Simulation
Experiment Design and Analysis (SEDA) through the
assistance of a computer system (CS). However, instead
of simply developing a SEDA-CS, our primary interest is
in understanding, constructing and validating a high-le­
vel framework for the complex SEDA problem-solving
process. We then demonstrate the efficiency of our
framework through a prototype implementation. Our
premise is that by starting with a framework for SEDA,
we make it easier for developers and end-users to work
together to produce even better implementations of such
SEDA-CSs.

Software is already available that provides a simulation
problem-solving environment. Intelligent front ends [1, 2)
and program generators [3-7] are useful tools for inter­
active simulation modeling with existing simulation
software, and integrated simulation systems [8, 9] provide
artificial intelligence-assisted simulation environments
with consistent specification and internal representation
for both simulation modeling and analysis. Most of the
available simulation analysis tools help simulation users
either by automating the process or by focusing on a
specific field, such as manufacturing [10-13].

Our focus is on the statistical issues in simulation
problem solving. Although standard statistical analysis
packages provide a rich set of statistical tools for their
users, the user has to know both statistics and issues
specific to SEDA to perform simulation problem solving.
Our SEDA framework addresses this interaction.

0740-817X © 1997 "liE"

Three papers describe work that is closely related to ours.
Mellichamp and Park [14] organized statistical procedures
according to simulation problems, and developed a 'Sta­
tistical Expert System for Simulation Analysis' to assist
simulation users in selecting the appropriate procedures for
each subproblem of the targeted SEDA problem. Taylor
and Hurrion [15]justified the use of an expert system fra­
mework for simulation experimentation, and developed
the 'Warwick Expert Simulation' to assist simulation users
in SEDA problem solving with embedded problem-solving
expertise. Ramachandran et al. [16)described a framework
for an expert postprocessor for simulation output analysis,
with emphasis on interactive model validation, to be used
in their 'Intelligent Simulation Generator'.

The literature supports the idea that a CS can help
simulation users in all aspects of simulation problern
solving. In particular, the three papers mentioned above
demonstrate the feasibility of such interactive computer­
assisted SEDA applications. However, the fundamental
characteristics of the SEDA task are not clearly or
completely identified in these papers, and thus we believe
that there is room for substantial gains by defining these
fundametal characteristics. We define the basic compo­
nents of SEDA in Section 2, followed by a framework
consisting of a dynamic model and a static model of the
SEDA task in Section 3. Then Section 4 argues that this
is a good framework by comparing it with related CSs.
In Section 5 we briefly describe our prototype im­
plementation of an SEDA-CS; our conclusions are in
Section 6. Parts of this paper are based on Tao and
Nelson [17].
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2. SEDA Components

The SEDA environment consists of six components that
form the basis for the SEDA framework. They are:

1.' System: a black box with one or more parameters,
which takes prescribed input and produces corresponding
output. In our definition, a system is a collective term,
such as 'the MIMIl system', which represents a class of
similar system instances with different parameter values.
The term 'system' as it is commonly used refers to one
instance of a class of systems in our definition. For ex­
ample, we may be comparing three MIMll instances
each with its own values of mean interarrival time and
mean service time. Because these three instances all have
the same basic structure, except for different paired va­
lues of mean interarrival time and mean service time the
three MIMIl instances belong to the same class of'sys­
tems. Of course, our definition of system allows for much
more complex models and parameters, including net­
works of queues for which the parameters might be
numbers of servers, queue disciplines or even number of
queues.

2. Parameter: a collection of constants that define an
instance of a system. The instances of one system are
d!stinguished by a common set of parameters, but with
dlffen~nt values. The constants need not have a physical
m.ean,It1,g; e.g., a parameter could be the queue discipline,
with I corresponding to first-come-first-served.

3. Resource: a constrained quantity that is necessary to
solve a problem. The resources in SEDA are real time the
computer system and the user. We believe that real time is
an important resource in SEDA; other resources, such as
CPU time, can be expressed in terms of it. The computer
system and the user contribute information, including
kno.wledge and decisions, to this SEDA problem-solving
environment,

4. Design: the design consists of the number of re­
plications, the stopping time for each replication, the
rand~m number assignment and the data aggregation
technique. Data aggregation is any reduction of the raw
output data that may be needed if we are not able to
efficiently keep and utilize all of it, or any transformation
?f the data into. a more useful form. Data aggregation
Inc.lud~s batch size and data deletion, for batching and
weighting the data, respectively. Other types of aggrega­
tion could also be included.

5. Data: all of the simulation output. The data are
characterized by a multivariate joint distribution that is
typically unknown to us.

6. Analysis: deriving statements about systems. The
term 'statement' will be formally defined in Section 3.1.1.

The definitions of the SEDA components establish com­
mon ground for further discussion in this paper. They
represent our view of SEDA. Their definitions are precise,
but they are not useful at a working level. However, on
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the basis of these abstract components, the SEDA fra­
mework can be derived.

3. A framework for SEDA

We now present a framework for the SEDA task con­
sisting of a dynamic model in Section 3.1 and a static
model in Section 3.2. The dynamic model defines how
SEDA problem solving proceeds, whereas the static
model provides the infrastructure to facilitate attacking
an SEDA problem. In other words, the static model
provides the system of roads, and the dynamic model
provides the transportation, toward the destination of
solvi.ng an SEDA problem. Before introducing the dy­
namic model, Section 3. J.I defines five fundamental
SEDA constructs that are based on the six components in
Section 2; these constructs describe how SEDA proceeds
dynamically.

3.1. Dynamic model ofSEDA

By a dynamic model of the SEDA task we mean a de­
scription of the interplay between the SEDA primitives in
an interactive environment. The 'primitives' include the
SEDA components (system, parameter, resource, design,
data and analysis as defined in Section 2) and the con­
structs (system instance, statement, scope, procedure and
experiment as defined below). In brief, components are
generic building blocks of SEDA dynamics, whereas
constructs define the movement of SEDA dynamics. The
relationship between primitives is illustrated by an ex­
ample at the end of this subsection.

3.1.1. Fundamental SEDA constructs

The SEDA constructs are:

1. System instance: a system with a set of fixed values
for the system-dependent parameters. The difference be­
tween a system and a system instance is that several
system instances could be derived from the same system
with different values of the parameters. In other words,
system instance is derived from both the system and the
parameter components.

2. Statement: any declaration about the system in­
stances. The sources of statements are prior knowledge
and experimental analysis. Prior knowledge includes
knowledge of the problem domain and of similar classes
of systems, whereas experimental analysis draws inter­
mediate and final conclusions based on data.

3. Scope: the subset of data on which a statement is
based. The scope of a statement therefore implies the
applicable system' instances.

4. Procedure: a function of data and statements that
produces a new statement. Parametric and non-para­
metric statistical procedures are two major categories of
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Computer-assisted simulation analysis

procedures, but the definition is broad enough to include
the visual inspection of a plot.

5. Experiment: executing a system instance according to
a design to produce data.

The terminology used for these constructs may not be
entirely standard, but their definitions are unambiguous
in this paper. As opposed to the SEDA components de­
fined in Section 2, the definitions of these constructs are at
a working level that describes the SEDA task. The reason
we separate them is because a component is more con­
crete and traditionally known in SEDA, whereas a con­
struct is more ambiguous, confusing and is often ignored.
Constructs and components are both SEDA primitives of
equal importance. The constructs are valuable because,
through defining them, the components of SEDA - the
system, the resource, the design, the parameter, the data,
and the analysis - can be connected in a dynamic, se­
quential, problem-solving process, as described below.

3.1.2. Dynamics of SEDA

Because SEDA problem solving is typically an iterative
process, we first describe the generic SEDA-cyc1e. Then,
on the basis of this generic cycle, the sequential nature of
the SEDA task is presented.

One SEDA-cycle describes the possible activities and
interactions between the primitives. In brief, it is as
shown in Fig. 1.

Stated differently, the SEDA-cycle proceeds as follows:
within the real-time constraint, a pre-analysis is per­
formed for deriving statements and an experiment design
that generates data. Then a post-analysis is performed
using both the data and available statements to produce
new statements and their scope. The computer system
and the user provide the necessary knowledge and deci­
sions during this SEDA-cycle within their capabilities.
The SEDA-cycle repeats until the SEDA problem is
solved.

Although a generic SEDA-cycle attempts to describe
all the possible interactions between these primitives, it is
not necessary that all the activities happen in every
SEDA-cycle. Nevertheless, one or more statements must
be produced in every SEDA-cyc1e, which is what keeps
the SEDA process moving forward. Statements are pro­
duced sequentially during the iterative SEDA-cycles, so
their scope may reach backwards several cycles. In other
words, any statement may depend on previous state­
ments. For example, represented in a functional notation,

statements = proci (dalaSI procs(dala4 ...)).

Resources + Pre-Analysis + Design+ ---------...
Statements +"Data + Post-Analysis -------....- New Statements + Scope

Fig. 1. SEDA-Cycle Unit.
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Notice that the system instances and the data are embedded
within this sequential representation of the SEDA task.
The sequential nature of experimentation is an important
aspect of the dynamics of SEDA. However, our definition
of 'sequential' is broader than the classical statistical defi­
nition, in that we allow backtracking and interaction,
which means that the analysis path is not necessarily fixed.

Theoretically, if there is no resource limit, then the true
values of the system performance measures of interest can
be obtained. In reality this sequential SEDA process has'
to stop when the available real time runs out. Accord­
ingly, the goal of SEDA problem solving, in practice, is to
produce a simulation result within a desired error level
under the real time constraint.

Although these fundamental constructs and compo­
nents are well-defined and precise elements of the dy­
namic SEDA task, in real SEDA problems distinct
constructs or components may not be easily identified or
separated. For example, experiment design and analysis
are often tightly coupled, and thus it is not easy to clearly
identify which is which, or to match any possible design
with any possible analysis. Also, the procedures that are
chosen will very often affect the experiment design. The
skill to look ahead to manage this tight coupling during
SEDA problem solving is typically lacking in a novice.
We argue below that nearly all simulation experimenta­
tion, no matter how complex, can be expressed in this
simple but well-defined manner, which therefore provides
an ideal structure on which to build a CS that will aid the
novice as well as the sophisticated user.

3.1.3. An example

The sequential nature of SEDA can be illustrated by a
few segments of a simplified example, which is based on a
protocol script from a simulation problem solved by an
SEDA expert. This example is a real SEDA problem­
solving session that we conducted to explore SEDA ac­
tivities. The protocol script illustrates the relevant
thought process that the user/expert would undergo. Each
quotation represents the expert thinking out loud as part
of the SEDA process. The problem is as follows: A user
wants an SEDA expert to help compare the expected
waiting times between three queueing system instances
that are identified by their mean interarrival times and
mean service times: (1.05, 0.9), (1.0, 0.8), and (0.9, 0.7):
respectively. Because the final report will be due within 8
hours, the user can only spend 4 hours of simulation
study before writing it.

System: the queueing system.
System instances: the queueing system with three different
sets of values for the system parameters: mean inter­
arrival time and mean service time.
Parameters: (mean interarrival time, mean service time)
=(1.05, 0.9), (1.0, 0.8) and (0.9, 0.7) for the three system
instances, respectively.
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Resource: 4 hours of real time and the user and the SEDA
expert, where the user may supply the knowledge about the
system and major SEDA decisions, and the SEDA expert
may supply the knowledge ofSEDA and queueing systems.

'I (the SEDA expert) am going to make replications
and look at the bias for one of the system instances. I
have no other reasons for choosing this approach but to
get a better look at the bias.... Look at the traffic intensity
and find out which is the most congested system. I will use
system instance I since it has the highest traffic intensity.'

Analysis: the quotation above is part of the pre-analysis.
Resource: the SEDA expert who is contributing his
knowledge of SEDA and queueing systems.
System instance: the queueing system with the first set of
parameters.

'Let me make a quick run of two replications of 2500
observations for system instance 1.... It did not take long
(about 3 seconds) to make two replications.'

Design: the number of repJications (2) and the stopping
time for each replication (2500 waiting times).
Data: the simulation output as planned in the above de­
sign.
Experiment: Executing system instance I with the design
of two replications each with 2500 waiting times.
Statement: 3 seconds for two replications of 2500 ob­
servations for system instance 1.
Scope: system instance I with the data in the statement.

'Look at the data. Some bias at the beginning.... The
waiting time seems to climb quickly. I am taking a little
gamble to do 10 replications each with 200 observations.'

Procedure: visual inspection of the data.
Statement: 'Some bias at the beginning.' This statement
has the same scope as the previous statement.
Analysis: inspecting the trend of the data and producing
a statement about a new design.
Design: the new number of replications (20) and stopping
time (200 observations).

The following statements with their implied scope il­
lustrate the sequential nature of the SEDA expert's pro­
blem-solving process:

Statement 4: 'The three queueing system instances are
logically similar.'
Statement 20: 'I am sure that the appropriate initial bias
deletion point is 500 for system instance 1.'
Statement 21: 'I will use this deletion point for an three
queueing system instances.'
Statement 22: "The current data, which look exponential
and have lag-l correlation 0.51, fail the- normal and the
independence assumptions for system instance 1.'

The expert reasons by combining statements to obtain
a desirable new statement. Those experts who well un-
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derstand the sequential nature of simulation problem
solving know how to achieve the goal effectively and ef­
ficiently with the available resources and within the
available real time.

3.2. Static Model ofSEDA

The static model is a description of the SEDA structure
for solving a particular class of problems, in our case the
problem of comparing expected performance across
queueing-network models. Choosing a problem domain
was necessary so that we could incorporate domain
knowledge and limit the number of statistical procedures
in our prototype CS. However, these are not limitations
of the framework itself.

Our static structure is represented as a three-layer
model. The static model need not be unique, but it should
be able to be explained by the SEDA primitives, and be
able to explain the actual design of an SEDA-CS.

The difference between the dynamic model and the static
model, in addition to the dynamic versus static views, is that
the dynamic model forms a high-level abstraction for the
nature ofSEDA that will not change over time, whereas the
static three-layer model is a lower-level representation of
the SEDA task that may change as the technologies or
methodologies evolve.

Our static model of the SEDA task consists of a clas­
sification of simulation problems, a decomposition of si­
mulation tasks and a hierarchy of simulation procedures.
Figs 2-4 represent this three-layer breakdown. Some
features that are outside the scope of this paper are
omitted from the figures because of page-size limitations.

Layer one: classification of simulation problems. Fig. 2
implies that any given simulation problem on the top
node can be classified into a desired type of solution on
the bottom nodes. Within the classification scheme, a
comparison-with-known-alternatives problem can be di­
vided into three subproblems: basis of comparison, ex­
periment design and analysis.

Before the basis of comparison, we first classify a si­
mulation problem into either a comparison problem with
known alternatives, or a comparison problem without a
known alternative. In our view, all simulation problems are
comparison problems. The main difference between si­
mulation problems is with what a system instance is com­
pared. If a system instance is evaluated only to estimate the
true value of its performance measure of interest, which is
unknown but fixed, then this is a comparison without a
known alternative. However, when a system instance is
compared with other known alternative system instances,
then this is a comparison with known alternatives.

Layer two: decomposition of simulation tasks. The
SEDA task can be broken down into subtasks and issues
that are relevant at different stages of simulation problem
solving. Design and analysis are critical high-level SEDA
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Fig. 2. Classification of simulation problems.

tasks; a lower-level representation of the subtasks for
design and analysis can be represented as in Fig. 3.

Notice that in Fig. 3 the comparison problem with a
known alternative is further divided into two independent
modules: the initial-bias recognition problem and the
core comparison problem (note that we do not intend to
imply that all simulation problems are divided into these
two categories). Under these two subproblems, then, are
the subtasks of design and analysis. One important point
is that the subtasks under design and analysis can be
derived from the primitives as defined earlier. This is
what we think is important in designing a CS: a funda­
mental conceptual understanding of a complex activity
for explaining the empirical model based on some task
analysis.

Layer three: hierarchy of simulation procedures. The
third layer is the procedure tree in Fig. 4. Fig. 4 first
classifies a simulation problem into either an output­
analysis problem or an initial-bias recognition problem.
The decomposition matches Fig. 2 until the 'means­
comparison problem'. From there on, a statistical pro­
cedure can be determined by branching down to the
bottom level of this hierarchy.

The procedures in Fig. 4 are just one set of basic pro­
cedures used for comparison with known alternatives.
There are many other procedures used by other experts.
Accordingly, although this layer is necessary for actually
solving a problem, the procedures are not exhaustive or
fixed. The reader can ignore any unfamiliar terminology
in Fig. 4 because it is for illustration only.
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Fig. 3. Decomposition of simulation tasks.

Fig. 4. Hierarchy of simulation procedures.
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The value of this third layer is that the procedures are
clustered based on the classification of simulation pro­
blems in Fig. 2. For example, both output-analysis and
initial-bias-recognition nodes branch down to the 'means'
procedures as in Fig. 2. Therefore our static model can
encompass a large range of statistical procedures and
analysis.

Figs 2-4 are not complete. One reason for this is that
we only focus on a limited problem, that is, the means­
comparison problem with known alternatives. Another
reason is that we provide only one possible scheme to
represent the fundamentals of simulation problems.
Moreover, even within this scheme our colleagues may fill
in or replace some of the details as the methodology and
technology advance. In other words, we are concerned
more with the fundamental structure and the sketch of
SEDA than with the details within the structure. Conse­
quently the SEDA primitives should embrace any new
methodology and not be limited to the procedures pro­
vided in the third layer of the SEDA model.

4. Justification

We briefly argue that the proposed SEDA framework is a
good framework in Section 4.1. We examine and evaluate
existing SEDA applications in terms of this framework in
Section 4.2.

4.1. Supporting arguments

We believe that a SEDA framework should be self-con­
tained, simple, specific only when necessary and com­
prehensive.

Self-contained: our SEDA framework has in total 11
primitives that are briefly but precisely defined. These
primitives help to derive and develop both the dynamic
model and the static model.

Simple: our SEDA framework is simple because it
contains only the dynamic model and static model of the
SEDA task. Each of them has only one central theme:
sequential nature and three-layer structure, respectively.

Specific only when necessary: our SEDA framework
involves only fundamental elements without any­
implementation detail. Moreover, all these fundamental
elements are required to describe the SEDA framework.
Although there are some specific details in our SEDA
framework, they are necessary to describe the static
model completely only at the bottom level of the hier­
archy of simulation statistical procedures.

We believe that the dynamic model will not be affected
by changes in technologies and methodologies over time,
and only the bottom level of the static model might be.

Comprehensive: our framework is. comprehensive in
that it is compatible with almost any statistical analysis. It
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covers everything from a formal one-step data analysis to
formal sequential data analysis to an informal ex­
ploratory data analysis. Therefore, as long as distinct
alternatives are simulated, this framework applies to
other situations such as ANOVA or metamodeling.

For example, suppose that we were interested in
knowing the relationship between the throughput rate
and two factors, the queueing discipline (A) and buffer
size (B), in a queueing network system and we have 2
hours of time available. A 2 x 2 factorial design could be
used in our simulation study with two levels in each
factor: FIFO (A I) or Shortest Processing Time First
(SPTF) (A2); and large buffer (BI) or small buffer (B2). We
could run 20 replications each of 8 hours of simulated
time for each of the 2 x 2 cells within the 2 hours avail­
able. The finding could be that there is a significant in­
teraction between queue discipline and buffer size.

In terms of our framework, the following constructs
and components can be identified:

System: the queueing network system.
Parameter: queueing discipline with FIFO and SPTF,
and buffer capacity with large size and small size.
System instance: four system instances corresponding to
the 2 x 2 design.
Resource: 2 hours.
Design: 20 replications each with 8 hours of simulated
time.
Experiment: executing the above design for 20 replica­
tions each with 8 hours of simulated time.
Data: simulation data from the experiment above.
Procedure: ANOVA.
Analysis: examining the ANOVA table and testing for
significant effects.
Statement: interaction exists between queueing discipline
and buffer size.
Scope: all four system instances each with 20 replications
of 8 hours of simulated time.

4.2. Related SEDA applications

We reviewed the three related applications discussed in­
Section 1 in the light of our framework. All are very
useful, but certain shortcomings arise because they are
not based on a fundamental set of primitives.

For example, a shortcoming of Warwick Expert Si­
mulation (WES) [15] is that it ignores the resource real
time in SEDA problem solving. A consequence is that
there is a chance that the SEDA will not be accomplished
satisfactorily within the available time. For instance,
WES could propose a 'perfect' experiment and carry out
the experiment by first generating the desired amount of
data without interruption for analysis. The experiment.
might be perfect, but the design is based on the available
information up to the stage it was proposed. If WES does
not know the data-generation speed and does not moni-
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tor the progress of data generation, then this experiment
might exhaust all or most of the available time for further
analysis or data generation. In other words, WES has no
way of effectively adjusting to the time constraint during
SEDA problem solving because the time resource is not
part of its world view.

In addition to time management, a shortcoming of
Statistical Expert System for Simulation Analysis (SES­
SA) [14] is that it does not account for the sequential
nature of the SEDA task; it simply provides a collection
of statistical procedures, which is similar to the third layer
of our static model in Fig. 4. As a result, the user actually
has to do most of the SEDA reasoning, which is often the
most difficult part of SEDA problem solving. A potential
concern when providing only a collection of statistical
procedures is that methodologies are changing over time.
Therefore both the system and the user may not be able
to keep pace with these changes unless there is an em­
bedded structure for organizing the simulation problems
and the statistical procedures.

Expert Post-processor for Simulation Output Analysis
(EPSONA) [16] is more concerned than W·ESand SESSA
with expressing the task of simulation output analysis at a
conceptual level. However, at best, EPSONA is a re­
presentation like the three-layer static model in our
SEDA framework. It is not clear what the dynamics of
simulation output analysis are in EPSONA and how they
interact sequentially. Also, like WES and SESSA, EP­
SONA ignores the real-time resource.

Simulation
User

Tao and Nelson

5. Prototype SEDA-CS

To assess the usefulness of our SEDA framework, we
designed, developed and evaluated a prototype CS based
on it; see Tao [18] for a complete description of the CS
and the experimental evaluation. Here we summarize
some important aspects of our prototype. The framework
presented in this paper provided the guiding principles for :
designing the CS, particularly in terms of conducting se­
quential experimentation and time management.

Our SEDA-CS targets users who have knowledge of
the problem domain (in this case, queueing network si­
mulation), simulation modeling and simulation pro­
gramming, but have limited knowledge of statistics.
Therefore the CS's most important function is to guide
the user through one or more SEDA cycles until their
comparison problem has been solved. The expertise for
this SEDA-CS came from a simulation expert with
knowledge of modeling, programming, and statistics, and
experience with different classes of problems. The com­
puter in use was a DECstation 3100. The software in­
cluded the ULTRIX operating system, GNU C++,
ClXll-based Motif graphical user interface (GUI) and
some FORTRAN libraries.

Fig. 5 shows the relationships between the simulation
user, the simulation models and the SEDA-CS (the de­
tailed structure and definitions of the terminology in the
figure are outside the scope of this paper; Fig. 5 is in­
cluded only to provide an overview). The communication

Simulation Models

• ISimal.tJoD l.........~
P~Ud I~ ~~

SEDA-CS

Grapblul
User ~---+

IDlerf'lII£e

t_

Rules
Frame!

AI rilhms

Fig. S. Interactions between the user, the SEDA-CS and simulation models.
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Computer-assisted simulation analysis

chan nels between the simulation user and the simulation
models. and between the SEDA-CS and the simulation
models, are one-way. However, the SEDA-CS works
cooperatively with the simulation user to solve the si­
mulation problem using their diffe rent knowledge and
background. The SEDA-CS does calculations, displays
results, manages data. presen ts alternatives with ex­
planat ions, and provides suggestions and defau lts when
the user is unsure what to do. The user relates the results
to the problem domain and makes decisions based on
other externa l considera tions.

Th roughout the cooperative problem-solving session
there is question-and-a nswer dialogue between the user
and the SEDA-CS. The SEDA-CS asks many questions
at the beginning of the session 10 classify the simulation
prob lem relative to layer one of the sta tic model (F ig. 2).
On the basis of this dialogue. the SEDA-CS produces
sta tements about the systems and begins to break down
the simulation pro blem into those subtasks in layer two
of the static model (Fig. 31; it also proposes designs for
generating da ta , leading the user to perform a sequence of
experiments. Th is phase cor responds to the experiment
design and ana lysis in layer one of the static model
(Fig. 2). Before reaching a final result a t the bottom node
of the classification tree. many SEDA-cyc1es. involving
the act ivities described in Section 3.1.2. may occur. Each
cycle genera tes at least one new statement about the
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systems with corresponding scope . These sta tements are
frequently based on the statistical procedures in layer
three of the static model (Fig. 4 ). The statements help the
user to decide what to accomplish in the next SEDA
cycle. or they are the basis for recommendations by the
SEDA-CS when the user is unsure what 10 do next .

Sequential experimentat ion via SEDA cycles stops
when a satisfacto ry result is obtained or the real-t ime
resource is exhausted. Even when time expires before a
satisfactory result is obtained , the time-management
features help the user to obtain as much informa tion as
possible. Time management works well in our SEDA-CS
environm ent because it allows backt rackin g and inte rac­
tion , mean ing that the user can interrupt the experi­
mentation and switch to a different subtask if needed.

We show two screen dumps o f our SEDA-CS in Figs 5
and 6 that illustrate how o ur GU I works and provide
examples of time management and sequential experi­
mentation .

Fig. 6 is a screen dum p of the SEDA-CS main screen.
On the left-hand side of the mainscreen there are th ree
areas:

I. Function button.. and time di..plal area . These func­
tion butt ons. Help, Tutor. Display. Time Mgt. and Quit
are available at all times during the SEDA-CS consulting
session. The time display area can display the options

t"iI:. 6. SEDA -CS main screen.
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230 Tao and Nelson

Fi/.:. 7. SF DA -CS mam screen w uh a rap-up windo w.

within the Time Mgl. bu tton . including the c urrent clock
time. the remain ing lime un til the pr oject is due a nd the
pro ject du e time. In Fig. 6, 50 mi nut es o f rem ainin g lime
was d ispla yed when th is screen d ump wa s o bta ined. This
is (m e way in which the system helps the user ma nage th e
real-t ime resource.

2. l)ialtJ~ut· area. The upper par i of the dialogue area
di splays instruct ions From the S EDA·CS to the user.
whereas the bonom part of the d isplay highli gh ts th ose
o pti on s avai lable to the user. In th is screen dump the
S EOA·CS was as king the user to determine whether the
Q.Q plot o n the righ t-ha nd side of the SE DA-CS main
screen mat ched the referential straight line. Th us the
system was guidi ng the use r towar ds prod ucin g a sta te­
ment to complete the curre nt SEDA cycle . A structured
reco rd of all statemen ts p roduced d urin g the sess io n a nd
their sco pe is maintained by the CS. either to a id the user
in designing the ex perime nt fo r the next SE D A cycle. o r
for use by the CS when the user appeal s to it fo r guida nce .

J . S tatus area . The sta tus area dis plays the last actio n
performed by the S ED A-CS. Viewing the remainin g t ime
was the la st ac tio n taken before this screen dump.

The right -han d side o f the screen is the diagram area . The
upper part d ispla ys the d iagra m in q uestion , whereas the
lower pan d ispla ys a descriptio n of the d iagram . In the
fi gu re. the Q~Q (norma lity) plo t fo r system instance I is

disp layed with a 450 referen tial line. Supp lemen ta ry in­
fo rma tion about the Q-Q plot is sho wn below the plot.

Fig. 7 is a screen du mp of the S EDA-CS ma in screen at
the t ime at which data generat ion was performed for
system instan ce I. The po p-up window updates the csti­
mated time to complete the data generat io n every 30
seco nds, with a n uption tu ca ncel data genera tion by
pushing the Ca ncel bu tto n. This is the pnmary way that
the system helps the user man age the availa ble t ime: by
proj ect ing the time that will be consumed by a ny pro­
posed experiment , and then updating the est imate while
data gene ra tio n is in progress.

In Fig. 7 the cu rso r is an a rrow, rat her than a watch ,
wh ich mea ns that the SE DA-CS was availa ble 10 the user
du ring da ta generation (da ta generat ion is a child p rocess
spa wned from the o rigina l SE DA-CS process). T he use r
ca n a lso revert to the UN IX opera ting system at any time
to perfor m other task s while the SE DA-CS is busy.

6. Conctusieu

We ha ve perfo rmed a fo rmal user evaluat ion to under­
sta nd the usefulness of our S ElJA framework , wh ich is
not included in this paper; see Tao [18). In the user eva ­
Illation we had two test ca ses, and six subjects each so lved
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Computer-assisted simulation analysis

one of the two test cases for up to 2 hours. We explained
to each subject their test case and trained them in use of
the prototype SEDA-CS before the evaluation began.
During the problem-solving sessions, the subjects were
asked to think out loud, and every session was videotaped
for transcribing verbal-protocol data that was used to
analyze the results.

We were satisfied with the result of the user-evaluation
using our prototype SEDA-CS. However, to prove that
an SEDA-CS based on our SEDA framework can help
simulation users better than other related problem-sol­
ving" setups, an experiment to compare users using our
SEDA-CS to users using their own tools or SESSA-I
WES-like systems is needed.
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