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Abstract. A vehicle content portfolio refers to a complete set of combinations of vehicle
features offered while satisfying certain restrictions for the vehicle model. Vehicle Content
Optimization (VCO) is a simulation-based decision support system at General Motors
(GM) that helps to optimize a vehicle content portfolio to improve GM’s business per-
formance and customers’ satisfaction. VCO has been applied to most major vehicle models
at GM. VCO consists of several steps that demand intensive computing power, thus re-
quiring trade-offs between the estimation error of the simulated performance measures
and the computation time. Given VCO’s substantial influence on GM’s content decisions,
questions were raised regarding the business risk caused by uncertainty in the simulation
results. This paper shows how we successfully established an uncertainty quantification
procedure for VCO that can be applied to any vehicle model at GM. With this capability,
GM can not only quantify the overall uncertainty in its performance measure estimates but
also identify the largest source of uncertainty and reduce it by allocating more targeted
simulation effort. Moreover, we identified several opportunities to improve the efficiency
of VCO by reducing its computational overhead, some of which were adopted in the
development of the next generation of VCO.

History: This paper was refereed.
Funding: This work was funded by the General Motors Operations Research Department.
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Introduction
The three key players in the automotive sales
market—automakers, car dealers, and customers—
inherently focus on different decisions with different
measures of success. Automakers decide what vehi-
cles to produce and what combinations of features to
offer and how to price them, which directly affect
what car dealers can order to sell to customers and
what customers can potentially purchase from dealer-
ships. Automakers typically measure success in terms of
market share, revenue, and profit. Car dealers, who sell
newvehicles at the retail level basedona contractwithan
automaker, decide what vehicles to stock on their lots
and at what price to sell to each customer. In the United
States, franchise laws require new cars be sold only by
dealerships. Although direct order from automakers is
available to customers, the majority of vehicles are sold
throughdealer stock.Hence, howwell dealers stock their
lots plays an important role in customers’ satisfaction so
that they can find what they want. Dealers measure
their success in terms of the profitability of their
businesses, which includes both the profit on current
sales and the prospect of future sales. Customers
make decisions on which vehicle to purchase given

what is available in the market and how much they
are willing to spend. Customers’ satisfaction with a
vehicle purchase impacts dealer profitability. Both
customer satisfaction and dealer profitability are critical
to the long-run growth of profit and market share
for automakers.
At General Motors (GM), the content of each vehicle

refers to the features the vehicle has to offer, such as
car seats, engines, sound systems, etc. The content
portfolio of a vehicle model is a complete set of com-
binations of features offered by GM while satisfying
certain restrictions for the vehicle model. Because
dealers stock their lots by ordering vehicles with
different content prescribed by the content portfolio,
it is important to reflect customers’ preferences and
willingness to pay when deciding a content portfolio.
To optimize the content portfolios of vehicle models,

GM developed Vehicle Content Optimization (VCO),
which is now a standard part of GM’s vehicle devel-
opment process (Wu-Smith et al. 2014). VCO starts
with a conjoint-based market research study to quantify
customers’ preferences for features and their will-
ingness to pay for them. At the heart of VCO is a
market simulator that simulates the dynamics of
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customer choice, such as what features customers
want, how much they are willing to pay, how likely
they are to find what they want on the dealers’ lots at
that price, and how they make purchase decisions.
This market simulator enables GM’s product teams to
evaluate different content portfolios and make in-
formed decisions based on estimated performance
measures such as profit, sales volume, and mar-
ket share.

VCO is a leap forward from the ad hoc decision-
making process in the past; however, it requires in-
tensive computing power owing to the stochastic and
combinatorial nature of the problem. This has forced
GM to trade off the accuracy and precision of the
estimated performance measures with the compu-
tation time. Simultaneously, the simulation results
reflect inherent natural variability in the real-world
vehicle market, which is confounded with the esti-
mation error as a result of the finite computation
budget.Moreover, VCO consists of several steps, each
requiring a substantial computation budget. How-
ever, these budgets were prespecified without ex-
plicitly quantifying how they affect the overall un-
certainty in performance measure estimates. Because
VCO is used in all major vehicle models’ content
optimization decisions, uncertainty in VCO poses
potential business risk to GM. Currently, GM ach-
ieves, on average, more than a billion dollars in an-
nual revenue from each vehicle model. According to
their market report, GM sold 758,000 vehicles in the
United States in the second quarter of 2018, and its
average transaction pricewas $35,500,which amounts to
27 billion dollars in revenue (General Motors 2018).
Given the scale of GM’s sales, even a 1% error in
the estimated sales volume translates to millions of
dollars’ difference in revenue.

The purpose of our study was to establish an un-
certainty quantification procedure for VCO that works
for any GM vehicle. In particular, we aimed to provide
the VCO team actionable guidance on how to efficiently
reduce uncertainty in the performance measure esti-
mates by recommending targeted computational effort.
To this end, GM would be able to either reduce the es-
timation error of its key performance measures to the
level that is not harmful to its business decisions ormake
more conservative decisions to hedge business risks
accounting for quantified uncertainty.

If a computer model is linear in inputs, then un-
certainty in the model output can be directly explained
by its derivative with respect to the inputs. However,
when themodel is nonlinear in inputs, as in VCO’s case,
the derivative at a particular set of inputs only de-
livers local sensitivity information. An alternative
approach is global sensitivity analysis designed to
analyze uncertainty in a highly nonlinear computer
model. Global sensitivity analysis measures how the

model’s output varies when its inputs change according
to their distributions and evaluates the effect of each
input’s contribution to the overall uncertainty in the
model. Several global sensitivity indices have been
proposed in the literature. Sobol′ (1993) applies func-
tional analysis of variance to decompose variance in
the model output and attribute it to each subset of
inputs. Homma and Saltelli (1996) define the first-
order and total effects of each input from Sobol′ in-
dices to measure the contribution of an individual
input alone and together with other inputs, respec-
tively. These measures are extremely popular in a
wide range of applications including nuclear safety
assessment (Saltelli and Tarantola 2002), chemical
experiment planning (Saltelli et al. 2005), land-use
policy assessment (Ligmann-Zielinska et al. 2014),
flood simulation (Pianosi et al. 2016), and fire spread
analysis (Song et al. 2016).
As summarizedby Iooss and Lemaı̂tre (2015), index-

based global sensitivity analysis is most suitable for a
computer model with a small to moderate number of
inputs owing to its computational cost because it
involves sampling multiple sets of inputs and run-
ning computer experiments for each set. Although
VCO has a relatively small number of inputs, its
nested structure is a challenge to uncertainty quan-
tification. Namely, some input parameters of the
VCO’s market simulator are first estimated via cali-
brating the simulation outputs with historical data,
which involves solving a highly nonlinear optimi-
zation problem. Thus, “sampling multiple sets of
input parameters” requires running multiple cali-
brations, which is infeasible for GM because of high
computational cost. Instead, we take a hybrid local-
and-global sensitivity analysis approach; we analyze
local sensitivity of the simulation output to calibra-
tion but compute global sensitivity indices with re-
spect to other inputs. This significantly reduces the
computational cost of full global sensitivity analysis
and thereby enables GM to quantify uncertainty in
VCO within an affordable time frame. Prior to in-
troducing our approach, we present an example of
content portfolio optimization at GM and highlight
its challenges to emphasize the importance of VCO
to GM.

Content Portfolio Optimization at GM
Figure 1 displays an example of a partial content
portfolio for the model year 2018 (MY18) Chevrolet
Cruze—namely, what trim levels to be offered, what
vehicle features to be offered as standard or as op-
tional on each trim level, and what optional features
to be bundled as option packages. There are five trim
levels for the MY18 Chevrolet Cruze: L, LS, LT, Diesel,
and Premier, as indicated by the five column names.
Various vehicle feature categories are shown by rows,
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such as “Exterior,” “Engine/Chassis,” “Safety & Se-
curity,” “Interior,” etc. Typically, each vehicle feature
category has several feature subcategories. For exam-
ple, the “Engine/Chassis” category has four sub-
categories: “Engine,” “Steering,” “Suspension,” and
“Transmission.” A typical vehicle model has more
than 100 subcategories under consideration when
making content decisions. Within a feature subcate-
gory, there are several attributes. An attribute denoted
by a solid dot is standard, a circle is optional, and a
dash means not available on a given trim level. The
superscripts reflect certain restrictions that the product
teamhas imposedon theoffering. For instance, fog lamps
are offered in a vehicle only if it is also equipped with a
rear spoiler and a sport body kit.

This example highlights that there are combina-
torially many possible ways to construct a content
portfolio. In the past, GM’s product teams relied
heavily on their experience and judgment by looking
back at historical sales (much like using the rearview
mirror) or looking around at what competitors of-
fered (much like using the side-view mirrors). What
was missing is the forward-looking windshield view
of what customers want for their next new vehicle.
Based on the feedback from GM internal interviews
with subject matter experts (SMEs), it was suggested
that GM should build what customers want, not

just mimic what competitors do. SMEs also revealed
the challenges that arise because there are compet-
ing objectives within a product team as a result of
different business functions (e.g., marketing, engi-
neering, finance) being evaluated based on different
business objectives. Overall, there was a lack of an-
alytical support for SMEs to understand customers’
preferences for vehicle features and their impact on
customers’ purchase decisions, to consider the impact
of competition and dealer stocking behaviors, and
to balance the competing objectives of maximizing
profit and market share and minimizing build com-
plexity (e.g., the number of vehicle configurations).
When poor content decisions are made, they present
both a risk of losing customers and a risk of giving
away content at prices below what customers would
have beenwilling to pay. Both risks have the potential
to result in lost profit andmarket share opportunities.
VCO provides quantitative performance measures

of profit, sales volume, andmarket share that are data
driven and transparent and that speak more com-
prehensively and objectively than expert opinions
and “guestimates.” For example, one of the midsized
SUV product teams had an internal debate about
whether to offer an optional driver power seat on the
middle trim. Notice that when a feature is added on a
trim as optional, it doubles the build complexity of

Figure 1. A Portion of the Trim Levels and Corresponding Features of MY18 Chevrolet Cruze
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that trim. The Engineering team proposed removing
that option in an attempt to reduce build complexity.
However, the Marketing team was very concerned
about removing it because they strongly believed
some middle-trim customers would want to have a
power seat for the driver. If the option was removed,
those customersmight notwant to pay extramoney to
move up to the next trim; instead, they might choose
to go to competitors and become a loss to GM. The
simulation results from theVCOanalysis showed that
when removing the optional driver power seat from
the middle trim, the build complexity would be
slightly reduced as expected; however, both the es-
timated market share and profit would be signifi-
cantly decreased. In the end, the cross-functional
product team assessed the trade-offs and decided
to keep the driver power seat as optional on the
middle trim. This is one of many testimonies to how
critical VCO analysis is for GM in vehicle content-
ing decisions.

Vehicle Content Optimization Process
Figure 2 illustrates the key steps of VCO and how
outputs from one step are used as inputs for the next
step. This provides an overview of how uncertainty
from different sources is propagated to the perfor-
mance measures computed at the end of the VCO
process. Our uncertainty quantification focuses on
the simulation analysis step.However, some inputs to
the simulation analysis step are outputs from previ-
ous steps of VCO. Hence, it is critical for under-
standing of our approach to describe each step of
VCO in detail.

Conjoint Study
Input: Conjoint Design, Respondent Group; Output:
Survey Data. VCO starts from a conjoint study (Orme
2006), a survey technique used to assess consumers’
preferences for attributes of a product or service. Prior
to the study, GM’s marketing team carefully designs
the questionnaire referred to as a “conjoint design”
to effectively study the respondents’ preferences
for content features of the target vehicle model. The

respondents are chosen so that the group represents
the target market segment of the vehicle model. Of
course, a larger group is preferred; however, recruiting
qualified respondents is expensive, and a study with a
larger respondent group tends to take longer. In practice,
the size of the group is chosen to balance several cost
factors and is taken as given in our work.
In each survey question, several combinations of

vehicle features and their corresponding prices are
presented. Table 1 shows an example of the conjoint
study questions used for the Chevrolet Cruze, whose
partial content portfolio is presented in Figure 1. Each
respondent is asked to select his or her most preferred
combination and whether he or she would consider
the selected vehicle for purchase. Typically, each
respondent receives 20–30 such questions. Asking
all possible combinations of attributes in Figure 1 is
impossible, and only a subset of feature attributes is
presented each time. These questions are carefully
designed to study the respondents’ trade-offs be-
tween feature preferences and price sensitivity when
theymake a purchase decision. As a result, the survey
data help GM quantify consumer preferences for both
features and price.

ChoiceModelEstimationviaMarkovChainMonteCarlo
Input: Survey Data; Output: β Sample Library. The
survey results from the conjoint study are used to
estimate the distribution of the respondents’ utilities
for the feature attributes. Here, utility is a numerical
value assigned to each vehicle feature attribute to
represent the respondent’s relative preference. At
GM, the vector of all respondents’ utilities for all
feature-attribute combinations is referred to as beta
(β). GM takes a Bayesian approach to estimate the
distribution of β (Train 2003). That is, a prior distri-
bution on β is assumed first, and then its posterior
distribution is updated conditional on the conjoint
survey data. The survey data only inform the re-
spondents’ choices, not their utilities for features.
What connects their choices and utilities is a choice
model; GM adopts a logit model (see the appendix) to
represent the probability of each respondent selecting

Figure 2. The Vehicle Content Optimization Process at GM

Song, Wu-Smith, and Nelson: Uncertainty Quantification in VCO for GM
228 INFORMS Journal on Applied Analytics, 2020, vol. 50, no. 4, pp. 225–238, © 2020 INFORMS



an alternative among candidates. The logit model lets
us write the likelihood function of β given the ob-
served choices in the survey data. Combining the
likelihood function with the prior distribution of β,
the posterior distribution of β is obtained. Although it
is difficult to derive the closed-form expression for the
posterior distribution, we may obtain samples from it
via Markov chain Monte Carlo (MCMC). Given the
high dimension of β, it typically takes a long time for
the MCMC procedure to converge to its posterior
distribution. Once converged, a finite number of β
draws is generated from the MCMC simulation and
saved. Any successive β s sampled via MCMC are
highly correlated. Therefore, in between two saved β
draws, a large number of β s are discarded to obtain
an approximately independently and identically dis-
tributed (i.i.d.) set of β s, which makes this procedure
computationally expensive. We refer to the collection
of saved β draws as the β sample library.
In the subsequent VCO steps, the posterior distri-

bution of β is approximated by the empirical distri-
bution of β s in the β sample library—that is, the β
draws in the library represent all possible realizations
of β given by the posterior distribution, and we
sample from the library with replacement instead of
sampling from β’s posterior. Of course, the larger the
β sample library is, the better it approximates the
posterior distribution of β. However, it takes a long
time to generate approximately i.i.d. β draws because
of the correlation issue, and the high dimension of β
makes storing a large number of β draws cumber-
some. Typically, a few hundred β draws are saved to
the library.

Market Simulator Calibration
Input: β Sample Library and Historical Sales Data;
Output: Tuning Parameters. The market simulator,
which is a core component of VCO, simulates the
dynamics of customer choice. For the simulator to
produce a meaningful output (e.g., market share,
sales volume), calibration is crucial. The survey data
from the conjoint study represent the stated prefer-
ences of respondents. Thus, running the simulation
with βdrawsmeanswe rely on the stated preferences.
On the other hand, we can also observe the revealed
preferences from historical sales data that detail which
vehicles were purchased by customers at what prices
and which other vehicles (of the same model) were on
the dealers’ lots at the time of the purchases. In the
conjoint analysis literature, it is well understood that
there typically is a gap between respondents’ stated
willingness to pay in the survey and their actual
spending (Louviere et al. 2000). To bridge this gap,
VCO calibrates a set of simulation parameters so
that the simulated sales outcome matches the his-
torical sales data. The resulting calibrated simulationT
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parameters, θ, are called “tuning parameters” in
VCO. Calibrating the simulator involves optimizing a
loss function that represents the discrepancy between
the historical sales data and the simulated results. The
loss function is nonconvex in θ and can only be
evaluated (with stochastic error) by the market sim-
ulator. Thus, there is no guarantee that a local min-
imum is the global minimum. To avoid being stuck
at a local minimum, there is extra randomness in-
duced in the optimization process controlled by a
pseudorandom number seed to make the algorithm
randomly search less explored feasible regions of θ.
This class of simulation optimization algorithm is
referred to as random search (Andradóttir 2015); thus,
we refer to the pseudorandom number seed that
controls the search as the “random search seed.”VCO
combines several random search algorithms to in-
crease the effectiveness of calibration.

In fact, the calibration step is a major bottleneck of
VCO as each loss function evaluation requires a single
simulation run. As a result, it may take orders of
magnitude longer than a simulation run (depending
on the complexity of the content portfolio of the simu-
lated vehiclemodel) until the loss function converges to a
reasonable range. The execution time of a single simu-
lation run is roughly linearly increasing in the number of
β draws saved in the β sample library. To alleviate the
computational burden, VCO takes a subsample of β s
from the library to represent the posterior distribution
of β instead of using the entire library. We refer to this
subsample as the calibration subsample of β. Because
there is no guarantee the loss function converges to 0 as
calibration continues, a time budget is set for calibration,
and the best tuning parameter values are retained at ter-
mination. This means that the calibration may end pre-
maturely before even reaching a local minimum. In fact,
owing to the highly nonconvex nature of the loss function,
it is unlikely that the calibration procedure reaches the
global optimumgivenfinite calibration time. The resulting
θ from a calibration procedure is a function of the
calibration time as well as random search seed. Such
dependence combined with the nonconvexity of the
loss function makes θ random, and ultimately, it
becomes a source of uncertainty in the simulated
performance measure estimates of VCO.

Simulation Analysis
Input: β Sample Library, Tuning Parameters θ, and
Content Portfolio; Output: Performance Measure
Estimates. In the final step of VCO, the calibrated
market simulator is used to evaluate different con-
tent portfolios to identify the ones that yield high
performance measures (e.g., sales volume, profit,
market share). We focus on the sales volume here
because profit and market share can be directly
computed from the sales volume.

The simulator consists of two main parts. The first
part simulates the purchase behavior of customers in
themarket segment.Within each simulation run, each
customer forms a candidate set of vehicles fromwhich
they make a purchase decision (including no pur-
chase). This candidate set includes different combi-
nations of vehicle content a customer would see on
dealer lots constructed by sampling from all possi-
ble content combinations prescribed by the content
portfolio (e.g., Figure 1) with a probability distribu-
tion representing the likelihood of each combination
being stocked at a dealership. The details of the be-
havioral model that generates the customers’ candi-
date vehicle sets and the dealerships’ stocking like-
lihood are GM proprietary information and cannot
be disclosed.
The second part of the simulator computes the sales

volume of the simulated customers based on their
purchase behavior. Fundamentally, the simulator uses a
logit choice model similar to the one presented in the
appendix to predict each individual customer’s pur-
chase decision. The difference is that Cars 1–4, the
alternatives presented in the conjoint question, are
replaced by the customer’s candidate vehicle set
plus a no purchase option. Once the probability of
purchasing a GM vehicle is computed, it can be
regarded as the expected “volume” of the GM vehicle
this customer purchases. Adding these expected
purchases from all simulated customers and scaling
to the entire U.S. market segment, the total sales volume
is obtained.Note that theβdrawswe obtained from the
second step play an important role in computing the
sales volume as they are fed into the logit model.
There are three computational compromises made

in the simulation step. First, as in the calibration
step, a subsample of the β sample library, which we
refer to as the simulation subsample of β, is selected to
represent the market preferences. Again, this is to
save the computational cost of each simulation run.
Typically, GM used the same subsample for both
calibration and simulation. However, we distinguish
them because we ended up recommending using
different sets of β draws for calibration and simula-
tion as a result of this study.
Second, when each simulated customer’s candidate

vehicle set is formed, it is difficult to consider all
possible combinations of feature attributes in the
content portfolio because of its combinatorial nature.
As a result, the simulator first subsamples a smaller
set of combinations and uses them as a stand-in for the
content portfolio to make the simulation more effi-
cient. This subset is referred to as the product library.
Clearly, sampling a product library introduces an extra
layer of uncertainty. Finally, when each customer’s
candidate vehicle set is constructed, the simulator
samples it from an approximate distribution of the
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candidate vehicle sets instead of the exact distribu-
tion because of computational complexity. There is
no analytical expression for the candidate vehicle
set distribution; instead, it is defined implicitly by
a GM proprietary behavioral model inside the sim-
ulator. Thus, the simulator takes an approach to
pregenerate a large number of candidate vehicle sets
at the beginning of the simulation and sample from
them every time a random customer is simulated.
Such pregeneration is controlled by a pseudorandom
number seed, which we refer to as the vehicle set
generation seed; thus, the sampled candidate vehicle
sets depend on the vehicle set generation seed, which
becomes another source of uncertainty.

In addition to these three computational compro-
mises, uncertainty is propagated from the calibration
step because tuning parameters θ obtained from the
calibration step are fed into the simulation step. Such
compounding effects make uncertainty quantifica-
tion of VCO challenging.

Sources of Uncertainty in the VCO Process
We summarize the sources of uncertainty in the VCO
process here. There is a distinction between uncer-
tainty caused by the natural variability that arises in
the real-world vehicle market and the estimation error
introduced by finite computational effort or data.

1. Natural variability
• Customers’ individual preferences within the

market segment
• Dealerships’ individual variability in stock-

ing behavior
• Customers’ individual variability in purchase

behavior
2. Estimation error

• Nondegenerate posterior distribution of β reflect-
ing imperfect learning of a respondent’s preferences

• Error introduced by representing the posterior
distribution of β with the β sample library, calibration
subsample, and simulation subsample

• Randomness in tuning parameters θ caused by
nonconvexity of the loss function, finite calibration time,
and use of random search controlled by the random
search seed

• Error caused by sampling a product library from a
content portfolio

• Error caused by approximating the candidate ve-
hicle set with an empirical distribution of pregenerated
vehicle sets whose randomness is controlled by the vehicle
set generation seed

Identifying the sources of natural variability is
important as it allows GM to measure their business
risk as a result of market randomness; however, it
cannot be reduced by expending more computation
effort. On the other hand, estimation error as a result

of sampling β s and the product library, randomness
in tuning parameters, and approximation error of the
candidate vehicle set distribution can be reduced by
increasing the computational effort. We narrowed
our focus to these four sources of uncertainty (in
italics) to quantify howmuch impact they have on the
overall uncertainty of the performance measure es-
timates from the VCO.
That said, not all estimation error can be reduced,

given the scope of our study. For example, perfectly
learning each respondent’s preferences is impossible
given a finite number of conjoint questions. Such
uncertainty is reflected in the posterior distribution of
the β fitted from the conjoint data. In other words,
without running a new conjoint studywith additional
questions, we cannot reduce this uncertainty further,
which was outside the scope of our analysis.

Mathematical Representation of
Input-Output Relationships
After identifying the target sources of uncertainty,
we established a mathematical model that represents
the input-output relationships for each step of VCO.
See the appendix for the full description of the model.
This helped us rigorously and unambiguously identify
how the different sources of uncertainty in VCO prop-
agate to the performance measure estimates. Here, we
summarize major insights obtained from mathemati-
cal modeling.
First, the set of local optima of the loss function for

calibration is conditional on the calibration subsam-
ple of β. If the random search algorithm used in
calibration converges to a local optimum as the cal-
ibration time increases without a bound, then θ will
converge to one of the local optima in the set; the
particular local optimum it converges to depends on
the initial solution as well as the random search seed.
In otherwords, evenwith infinite calibration time, the
variability of θ is nonzero. Nonetheless, we may
postulate that the variability of θ is a decreasing
function of the calibration time.
Second, we hypothesized that the variability of θ is

larger when the calibration subsample is smaller.
Intuitively, if we used an infinitely large set of β for
calibration, then it would perfectly represent the
posterior distribution of β, and θ would no longer
depend on the calibration subsample. For this reason,
one of GM’s main concerns was how large the cali-
bration subsample should be so that its impact on the
variability of θ is small while obtaining a good cali-
bration result in a reasonable length of time. We later
present a preliminary study that indicates that the
variability of θ is less sensitive to the calibration
subsample size than to the random search seed.
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Finally, the total sales volume of a content portfolio
is estimated from the sum of sales of each content
combination in the product library. To compute the
expected total sales volume, the simulator averages
the total sales volume across all β draws in the sim-
ulation subsample of β. Thus, the variance of the
estimated expected sales volume is inversely pro-
portional to the simulation subsample size. Because
simulation time increases linearly in the simulation
subsample size, there is a trade-off between compu-
tational cost and output uncertainty.

Preliminary Study
Although the mathematical representation provides
a framework for uncertainty quantification, we had
little knowledge about the computational cost of each
VCO step, which is crucial to consider for providing
an actionable solution for GMgiven their limited time
budget. Also, we wanted to have a deeper under-
standing of the calibration procedure because it is the
bottleneck of VCO and affects the subsequent simu-
lations as uncertainty in θ is propagated to the per-
formance measure estimates.

To answer these questions, we conducted a series of
experiments using one of GM’s past vehicle models.
The particular model was chosen because it had a
relatively small content portfolio andmodest conjoint
study data, which made MCMC, calibration, and
simulation analysis faster than other vehicle models,
and therefore, we could run many otherwise computa-
tionally demanding exploratory experiments. Because
the insights we gained from this preliminary study were
crucial for shaping our approach to the problem, we
highlight its major findings in the following subsections
before we introduce our methodology.

Local Optimality of Calibration Causes Large
Variability in Performance Measure Estimates
As discussed earlier, we conjectured that the vari-
ability of θ is a decreasing function of the calibration
subsample size. The VCO team was concerned that
using a smaller calibration subsample may cause the
tuning parameters to be biased. Therefore, we per-
formed calibrations with multiple calibration sub-
samples with four different sizes, 25, 50, 75, and 100,
while setting the calibration time large enough so that
the loss function evaluated at termination was small
for all sizes. Different random search seeds were used
for all calibration runs. For each tuning parameter, we
examined the trend in the sample means and the
marginal1 sample variances of the tuning parameters
as a function of the calibration subsample size but
did not find a statistically significant trend in either.
The observed insensitivity of the sample means of the
tuning parameters with respect to the size of the
calibration subsample assured the VCO team that

the calibration subsample need not be too large for the
purpose of reducing the bias in θ. Nevertheless, the
tuning parameters had large marginal variances, which
was a result of the nonconvexity of the loss function as
well as randomness in drawing a calibration subsample.
To separate these two effects, we fixed the cali-

bration subsample size and performed two sets of
experiments. For the first set, we used the same cal-
ibration subsample and ran n calibrations using dif-
ferent random search seeds. For the second set, we
drew n calibration subsamples from the β sample
library and paired each subsample with a different
random search seed. From the marginal variances of
the resulting tuning parameters, we learned that the
second set of experiments yields slightly more vari-
able tuning parameters; however, the differences
were statistically insignificant for most of the tun-
ing parameters.
This result was quite a surprise to the VCO team, as

they had expected drawing a calibration subsample to
be a significant source of variability for θ. Because the
ultimate goal was to quantify uncertainty in the es-
timated performance measures, we performed two
sets of simulation experiments to measure variability
in the expected sales volume estimate. Two sets of
size n simulations were run, where the first (second)
set was run using n tuning parameters obtained from
the first (second) set of calibrations. In each run, the
simulation subsample was chosen to be identical to
the calibration subsample. The first set of simulations
estimates variability caused purely by the random
search seed, whereas the second estimates variability
caused by both random search seed and the cali-
bration subsample. Both variances were estimated to
be large, but the formerwas less than 50%of the latter.
This shows that (1) the variability in the tuning pa-
rameter caused by multiple local optima of the loss
function indeed induces large variability in the per-
formancemeasure estimate, and (2) using afinite sample
of β s causes large variability in the simulation results,
although not so much in the tuning parameters.
Notice that in these experiments, the same β sub-

sample was used for each calibration-simulation pair,
which was consistent with the VCO team’s protocol.
However, from our calibration experiments, we learned
that θ is less sensitive to the particular choice of
calibration subsample or its size, which means the
calibration subsample need not be too large. On the
other hand, the variance of estimated expected sales
volume is inversely proportional to the size of the
simulation subsample. Thus, we recommended GM use a
simulation subsample larger than the calibration subsample.

Calibration Time Matters
For the preliminary study, we made multiple cali-
bration runs to examine the variability of θ. In practice,
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however, the VCO team has limited time for analysis.
Given a time budget, there is a trade-off between
running a single long calibration and running mul-
tiple short calibrations to estimate how much vari-
ability in the performancemeasure estimate is caused
by the random search seed. Although it is clear that
local optimality of θ is a significant source of un-
certainty from the above-mentioned experiments, the
tuning parameters from a short calibration proce-
dure may be far from any local optimum of the loss
function; hence, the resulting performance measure
estimate may be biased. Moreover, if we perform
multiple calibrations, then we would probably want
to pick the θ that has the smallest loss function value
as the single “best” tuning parameter instead of using
them all. Therefore, we decided to draw a single
calibration subsample and perform a long calibration
run so that a good set of tuning parameter values can
be obtained.

A question remains, however: How long is long
enough? The VCO team typically set an absolute
bound on the loss function as a stopping criterion;
for example, the loss function value drops below 1.
However, such a cutoff is somewhat arbitrary and
may not be attainable for some vehicle models, as
there is no guarantee that the loss function is less
than 1 at the global minimum. Instead, we devised an
iterative calibration method that increments cali-
bration time until the estimated performancemeasure
is no longer sensitive to the change in the tuning
parameters, as discussed later.

Dimensionality of Calibration Can Be Reduced
While analyzing the joint distribution of the tuning
parameters obtained from the calibration experiments,
we discovered dependence among tuning parameters.
Figure 3 shows pairwise scatterplots of the five ele-
ments of θ, θ1−θ5.2 Clearly, there are strong linear
relationships among the first three parameters, whereas
other pairs do not exhibit statistically significant rela-
tionships. Such trends were consistent across different
calibration subsamples of different sizes. This implies
that at least one of θ1, θ2, and θ3 can be removed to
reduce the number of parameters for the calibra-
tion procedure. The benefit of dimensionality re-
duction is twofold: it speeds up the calibration op-
timization procedure by reducing the number of
decision variables, and it may reduce uncertainty in
the estimated performance measures when we have
fewer tuning parameters. Adopting our recommenda-
tion, GM carefully examined redundancy of tuning pa-
rameters in its model and reduced its dimension in the
next generation of VCO.

Uncertainty Quantification with
First-Order Effects
The first-order effect is a global sensitivity index that
quantifies how much of the simulation output vari-
ance is caused by each random input in isolation
when there are multiple inputs. When there are k
variable inputs to a simulator, the first-order effect of
the ith input is defined as the variance of the condi-
tional mean of the simulation output given the ith
input. Because the conditional mean averages out all
other inputs’ variability, the first-order effect captures
the portion of the variance of the simulation output
solely from the ith input’s variability.
For VCO, the first-order effect can be used to

measure the impact of four inputs—the tuning pa-
rametersθ, the simulation subsample of β, the product
library sampled from the content portfolio, and the
vehicle set generation seed that controls the ran-
domness in approximating the candidate vehicle set
distribution—on the performance measure estimates.
Among these four inputs, θ is the most expensive to
“sample,” as it involves running multiple calibra-
tions, whereas drawing a simulation subsample of β,
sampling a product library, or choosing a different
vehicle set generation seed is cheap. As learned from
the preliminary study, running multiple calibrations
given a time budget was not desirable. Therefore,
we decided to separate out θ from the other inputs
and perform global sensitivity analysis with respect to
the remaining three inputs and analyze the local
sensitivity of the performance measure estimates with
respect to θ.

Figure 3. Dependence Among Five Tuning Parameters, θ1,
θ2, . . . , θ5.

Note. There are strong linear relationships among θ1, θ2, and θ3.
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In the appendix, we show a mathematical repre-
sentation of the first-order effects with respect to the
three inputs. A naive estimation approach is to first
estimate the inner conditional expectation by running
N1 simulations, and then estimate the variance of N2
conditional expectation estimates. However, this ap-
proach requires 3N1N2 simulations to compute all
three first-order effects, where N1 and N2 should be
reasonably large. Instead, we follow a more efficient
estimation method by Saltelli (2002) that computes
all three first-order effects from 5N simulations for
some reasonably large N. From these runs, we can also
estimate the overall variance of the sales volume caused
by all three inputs. See the appendix for details.

If the estimated overall variance is small anyway,
then GM would not be too concerned about the es-
timated first-order effects. When it is large, however,
GM can compare the relative magnitudes of the first-
order effects to investigate which source of uncer-
tainty causes the largest uncertainty in the simulation
output. If the first-order effect of the simulation
subsample of β is the largest, then the variance of the
expected sales volume estimate can be decreased by
increasing the size of the simulation subsample (recall
that the variance is inversely proportional to the
subsample size). If the first-order effect of the product
library is the largest, then increasing the product li-
brary size is effective so that the content portfolio is
better represented by each sampled product library.
In the preliminary study, we empirically confirmed
that while fixing other inputs, the variance of the
estimate of the expected sales volume decreases pro-
portionally to the product library size as long as the
product library is reasonably small relative to the content
portfolio. If the first-order effect of the vehicle set gen-
eration seed is the largest, then we can increase the
number of the candidate vehicle sets the simulator in-
ternally creates to obtain a better approximation of the
candidatevehicle setdistribution.However, basedon the
experiments, this first-order effect tends to be negligible
compared with the other two sources of uncertainty.

Iterative Calibration and Local Sensitivity
to Tuning Parameters
As noted earlier, a longer calibration run is prefera-
ble to repeating multiple short runs. The remaining
question was how to choose the calibration time.
We approached this problem by segmenting the cal-
ibration time into smaller intervals with length t. At
the end of each time t interval, a stopping criterion is
applied to decide whether to continue or not. Figure 4
shows an example of the trajectory of the loss function
value at the end of each time t interval. Notice that the
trajectory is a nonincreasing function of time because,

by design, the optimization procedure for calibration
never takes a step toward an increasing direction.
There are several possible stopping criteria. For

instance, one could stop at the end of an interval if
reduction in the loss function value in that interval is
less than a threshold. Because this stopping criterion
is based on the relative improvement in the loss
function during each interval and the loss function is
nonnegative, the criterion is expected be satisfied
after some finite number of intervals. Either reduction
in the loss function value or the loss function value
itself will fall below the threshold after some itera-
tions; in the latter case, there is no need to further
calibrate. On the other hand, GM’s original criterion
to stopwhen the loss function falls below 1may not be
satisfied for the given vehicle model even if the cal-
ibration is run indefinitely.
Although our suggestion is an improvement, this

stopping criterion is based on reduction in the loss
function during an interval. A more important question
is, how much difference in the performance measure es-
timates is there if we continue calibrating for another
interval? Suppose calibration is terminated at the end
of the mth iteration, and θm is the vector of tuning
parameters to be used for simulations. We can per-
form simulations using both θm−1 and θm and com-
pare the performance measure estimates. If this
difference is small, then the performance measure
is likely to change little even if we continue cali-
brating for another time t interval and update θm

to θm+1. Because running simulations at an addi-
tional set of tuning parameters is much cheaper than
running an additional iteration of calibration, the
computational cost for such local sensitivity check
is negligible.

Figure 4. An Example of the Trajectory of the
Objective (Loss) Function Value at the End of Each
Time t Interval
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Quantifying Bias as a Result of Product
Library Sampling
In addition to variability, sampling the product li-
brary induces bias in the expected sales volume es-
timate. This bias is always negative because sales
volume as a result of combinations of features not
included in the product library is missed. Unlike
variance, such bias cannot be “averaged away” by
running more simulations. Our solution is to correct
the bias directly by estimating it as a function of
product library size.

We conjectured that the bias can be effectively
approximated by a quadratic function of the recip-
rocal of the product library size if all other inputs are
fixed. The coefficients of the quadratic function can be
estimated via least squares regression by running
simulations with product libraries of different sizes;
see the appendix for details.

Applications
In this section, we demonstrate the proposed uncer-
tainty quantification procedure on the same vehicle
model we used for the preliminary study. For itera-
tive calibration, we used a calibration subsample of
50β draws and 10-minute intervals. For the stopping
criterion,weused the threshold of 0.01.We also set the
minimum calibration time to 90 minutes—that is, the
calibration can be stopped using the stopping crite-
rion only after this time. Figure 4 represents the loss
function of the calibration procedure at the end of the
mth interval form � 1, 2, . . . , 9. Because the reduction
in the loss function at the ninth interval is 0.009 < 0.01,
the calibration stopped after 90 minutes (m � 9), and
θ9 was used for uncertainty quantification, whereas
θ8 was saved for local sensitivity analysiswith respect
to the tuning parameters. Notice that with GM’s
original criterion, we would have stopped calibrating
after 10 minutes, as the loss function value fell below 1,
which is clearly a premature termination in this case.

We drew a simulation subsample of size 50 and
sampled 306 of 9, 216 configurations in the content
portfolio to include in the product library. To com-
pute the first-order effect, we chose N � 10, which
amounts to total 50 simulation runs. For the perfor-
mance measure, we computed the expected market
segment share of GM, which is a simple function of
the sales volume (i.e., the ratio of the sales volume to
the total market segment size). The mean share
estimate and its standard error (squared root of
its variance) were 22.8% and 0.19%, respectively. The
latter quantifies uncertainty in the share estimate
caused by all three input sources. The estimated nor-
malized first-order effects of the simulation subsample

of β, product library, and vehicle set generation
seed are 0.964, 0.032, and 0.003, respectively. These
indicate that most of the uncertainty in the share
estimate is caused by drawing the simulation sub-
sample of β, and if GM desires to reduce it, increasing
the size of the subsample would be the most effec-
tive way.
To examine the sensitivity of the mean share esti-

mate to the tuning parameters, we ran simulations
using θ8 while fixing other inputs exactly the same as
those for θ9. These simulations are much faster to run
than calibrating for an additional 10 minutes. The
estimated share and its standard error are 23.4% and
0.19%, respectively. To see whether the two share
estimates are statistically significantly different, we
set up a hypothesis test with the null being that they
are equal. The test statistic for the two-sample t-test
is |23.4 − 22.8|/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.192 + 0.192

√ � 2.233 resulting in a p
value of 0.0315 (degrees of freedom = 38); hence, we
concluded that longer calibration is required by choosing
a stopping criterion threshold smaller than 0.01. This
was a valuable guideline for GM; if we stopped cal-
ibrating using GM’s original stopping criterion without
checking the sensitivity of the simulation outputs, we
would not have endedupwith the same recommendation.
Finally, the bias correction scheme was also tested.

For this particular content portfolio, the number of all
possible configurations (9,216) was relatively small.
To fit the quadratic model to estimate the bias via
regression, we chose two additional product library
sizes, 612 and 918, and we ran simulations to estimate
the shares given all other inputs were fixed. The es-
timated shares for these two product library sizes
were 23.26% and 23.53%, respectively. After esti-
mating the coefficients of the quadratic model via
least squares, the bias-corrected estimate of share was
obtained as 24.16%. Compared with the share esti-
mate with p � 918, we closed the bias by 24.16%−
23.53% � 0.63%. This is significant bias reduction, con-
sidering it representsGM’s U.S. market segment share,
and the corresponding revenues are vastly different.

Conclusions of the Study
The VCO process supports one of GM’s major busi-
ness decisions—what content portfolios to offer to the
market, which directly impacts their market share
and profit as well as consumer satisfaction. How-
ever, because of the VCO’s expensive computation
requirements, several computational compromises
were made without explicitly quantifying uncertainty in
the estimated performance measures that such com-
promises would induce, which ultimately may pose
business risk. The goal of this research was to develop a
method to systematically quantify uncertainty in the
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performance measure estimates and diagnose which
sources of uncertainty have the largest influence on the
overall uncertainty so that targeted computational effort
can be expended.

We identified fourmajor sources of uncertainty that
can be reduced by increasing computational effort.
Of these sources, we separated calibration from
the rest and used the first-order effects to quantify the
contribution of each source of uncertainty to the
overall uncertainty in the performance measure es-
timates. Then, the sensitivity to the tuning parameters
is measured locally to decide whether further cali-
bration effort is needed. We also proposed a model to
estimate the bias fromfinite product library sampling,
which can make GM’s performance measure esti-
mate more accurate without increasing simulation
effort much.

Lessons Learned
We share several valuable lessons learned from this
research that can be appreciated by others who study
uncertaintyquantificationof complex systems simulation.

• Establishing the mathematical representation of
input-output relationship of the VCO process helped
us identify the sources of uncertainty we can and
cannot measure and thereby let us focus on the
measurable sources of uncertainty. This also pro-
vided GM a “big picture” description of VCO that is
free of the complicated details of each step.

• A thorough preliminary study was a key to our
success; we better understood VCO and its associated
computational costs and were able to devise an un-
certainty quantification procedure that is computa-
tionally efficient and makes targeted suggestions to
reduce uncertainty most effectively. Had we tried to
develop the procedure in the abstract, we would
certainly not have created the same procedure.

• Computational constraints matter in practice;
GM wanted an actionable solution to the uncertainty
quantification problem. There are more theoretically
elegant approaches available in the literature, but they
often require significantly more extensive computa-
tion than what GM could afford. For this reason, GM
sacrificed uncertainty quantification for faster content
decisionmaking.Our recommendationswerefirst tested
for their computational feasibility. To this end, we de-
vised the hybrid local-and-global sensitivity analysis for
VCO, which requires a marginal increase in computa-
tional cost beyond GM’s current practice.

• Developing procedures that do not require cus-
tomization for each vehicle model was our aim, so that
they can be applied by any analyst at GM and produce
objective results. Uncertainty quantification, iterative
calibration, and bias reduction procedures are all

designed to be applicable to any GM vehicle models
without having to customize the parameters of the
procedures to each model.
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Appendix
This appendix provides mathematical notation for key
quantities and the details of our uncertainty quantifica-
tion approach.

A.1. Vector Representation of β and Logit Model
Let βrℓ represent the rth respondent’s utility for the ℓth
vehicle feature for r � 1,2, . . . ,R and ℓ � 1,2, . . . , L, where R
and L are the number of respondents and the number of
available feature attributes for this vehicle model, respec-
tively. In particular, the Lth attribute is the price of the
vehicle. Then, we may define β as anRL-dimensional vec-
tor: β � {βrℓ}r�1,2,. . . ,R,ℓ�1,2,. . . ,L.

GM adopts a logit model to represent the probability of
each respondent selecting an alternative among candidates.
For instance, the probability of the rth respondent selecting
Car 1 out of four candidates in Figure 1 is modeled as

exp

( ∑
ℓ∈Car1

βrℓ

)

exp

( ∑
ℓ∈Car1

βrℓ

)
+exp

( ∑
ℓ∈Car2

βrℓ

)
+exp

( ∑
ℓ∈Car3

βrℓ

)
+exp

( ∑
ℓ∈Car4

βrℓ

) .

A.2. Mathematical Representation of Key Inputs andOutputs
In the following, we denote the calibration subsample and
the simulation subsample by @c and @s, respectively. The
pseudorandomnumber seeds for randomsearch andcandidate
vehicle set generation are denoted by ω and γ, respectively.
The sampled product library is represented by π, and p � |π|
is the number of unique combinations of features in the
product library.

Calibration of the simulator yields a vector of tuning
parameters,θ, which depends on calibration subsample@c,
the calibration time T, and random search seed ω. Thus, θ �
θ(@c,T,ω). Note that θ is a random vector because it is a
function of ω as well as @c.

In the simulation analysis step, θ becomes an input to the
market simulator that generates realizations of sales vol-
ume, market share, and revenue for a given content port-
folio. Let βd ∈@s be the dth draw in @s and πℓ ∈π the ℓth
content combination in π for ℓ � 1,2, . . . , p. GM’s sales
volume when the customers’ utilities are represented by βd
is computed as

Yd(θ,βd,π,γ) � ∑p
ℓ�1

Ydℓ(θ,βd,πℓ,γ), (A.1)

where Ydℓ(θ,βd,πℓ,γ) is the simulated sales volume of the
ℓth content combination. In other words, (A.1) is the sum of
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sales of all p content combinations in π. The expected sales
volume is then estimated across all D � |@s | draws by

Ȳ(θ,@s,π,γ) � ∑D
d�1

Yd(θ,βd,π,γ)/D.

Thus, it is clear that the simulation time increases linearly
in D with all else equal. On the other hand, the variance of
Ȳ(θ,@s,π,γ), conditional on θ, is proportional to 1/D; that
is, the standard error of the expected sales volumedecreases
as 1/

̅̅̅
D

√
.

A.3. First-Order Effects for VCO
For simulation output Y(X1,X2, . . . ,Xk) with k random in-
puts X1,X2, . . . ,Xk, the first-order effect of input X1 is de-
fined as

V(E[Y(X1,X2, . . . ,Xk)|X1]). (A.2)

Note that the inner expectation averages out the random-
ness caused by X2,X3, . . . ,Xk; therefore, (A.2) measures the
portion of uncertainty in Y that is solely attributed to X1.

In the context of VCO,we estimated the first-order effects
of three sources of uncertainty conditional on θ: @s sam-
pling, product library sampling (π), and candidate vehicle
set sampling (γ):

F@ � V(E[ Ȳ(@s,θ,π,γ)|@s]),
Fπ � V(E[ Ȳ(@s,θ,π,γ)|π]),
Fγ � V(E[Ȳ(@s,θ,π,γ)|γ]).

We adopted an efficient computation method by Saltelli
(2002) that estimates all inputs’ first-order effects at the
same time using (k + 2)N simulation runs, where k repre-
sents the number of inputs (e.g., k � 3, as in our case), and
N ≥ 2. First, we sample 2N sets of {@s,π,γ} and form the
following two N × 3 matrices:

A �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
@s

1, π1 γ1
@s

2, π2 γ2
⋮, ⋮ ⋮
@s

N , πN γN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,B �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
@s

N+1, πN+1 γN+1
@s

N+2, πN+2 γN+2
⋮, ⋮ ⋮
@s

2N , π2N γ2N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Combining the columns ofA and B, we define the following
three additional matrices:

C@ �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
@s

1, πN+1 γN+1
@s

2, πN+2 γN+2
⋮, ⋮ ⋮
@s

N , π2N γ2N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,Cπ �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
@s

N+1, π1 γN+1
@s

N+2, π2 γN+2
⋮, ⋮ ⋮
@s

2N , πN γ2N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

Cγ �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
@s

N+1, πN+1 γ1
@s

N+2, πN+2 γ2
⋮, ⋮ ⋮
@s

2N , π2N γN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

For each row of these five matrices, we perform one sim-
ulation run given θ, which results in 5N simulation runs in
total. For instance, if we choose N � 10, then the overall
simulation budget would be 50 simulation runs. Let ȲM,i

represent the expected sales volume estimate from the ith
row’s inputs in matrix M. Then we can compute the esti-
mates of three first-order effects as follows:

F̂@ � ∑N
i�1

ȲA,iȲC@,i/N −
(∑N

i�1
(ȲA, i + ȲB, i)/2N

)2
,

F̂π � ∑N
i�1

ȲA,iȲCπ ,i/N −
(∑N

i�1
(ȲA, i + ȲB, i)/2N

)2
,

F̂γ � ∑N
i�1

ȲA,iȲCγ,i/N −
(∑N

i�1
(ȲA, i + ȲB, i)/2N

)2
.

By pooling the simulation results from A and B, we can

also compute the mean sales volume estimate, Y � ∑2N
i�1 Ȳi/

(2N), where Ȳ1, Ȳ2, . . . , Ȳ2N are the sales volumes computed
from each of the 2N rows ofA andB. The variance ofY can be
also estimated as

V̂ (Y) � V̂(Ȳ(θ,@s,π,γ))/2N � ∑2N
i�1

(Ȳi − Y)2/(2N(2N − 1)).

A.4. Regression Model for Bias
The expected sales volume conditional on all other inputs
but π can be approximated by a quadratic function of 1/p:

E[ Ȳ(θ,@s,π(p),γ)|θ,@s,γ] ≈ c0 + c1/p + c2/p2, (A.3)

where c0, c1, and c2 are unknown quantities depending onθ,
@s, and γ, and c1 < 0; the latter condition is postulated from
the expectation that the (negative) bias becomes closer to 0
for large p. Notice that we explicitly indicate the size of the
product library as π(p) in (A.3). We use π(P) to represent
the set of all possible combinations of features prescribed by
the content portfolio, where P is the size of the set. For a
typical content portfolio, P≫ p. Under model (A.3), the bias
as a result of sampling π(p) conditional on other inputs can
be written as

E[ Ȳ(θ,@s,π(p),γ)|θ,@s,γ] − E[ Ȳ(θ,@s,π(P),γ)|θ,@s,γ]
� c1(1/p − 1/P) + c2(1/p2 − 1/P2).

In other words, the bias-corrected estimator of the
sales volume when p<P is Ȳ(θ,@s,π(p),γ)− c1(1/p−1/P)−
c2(1/p2−1/P2).
To estimate the constants c0, c1, and c2 in model (A.3), we

pick k≥ 3 different product library sizes p1 < p2 <⋯< pk and
sample a product library of each size: π(p1),π(p2),⋯,π(pk).
After running simulations with these product libraries while
fixing other inputs, Ȳ (θ, @s, π(p1), γ), Ȳ(θ@s, π(p2), γ), . . . ,
Ȳ(θ, @s, π(pk), γ) can be used to fit model (A.3) to estimate
the constants via least squares regression.

Endnotes
1Recall that θ is a vector of tuning parameters.
2We do not disclose what θ1–θ5 are owing to GM proprie-
tary information.
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Verification Letter
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“I am pleased to verify our use of the method and
analysis capability presented in ‘Uncertainty Quantifica-
tion in Vehicle Content Optimization for General Motors’
by Song, Wu-Smith, and Nelson.

“Vehicle Content Optimization (VCO) supports General
Motors’ vehicle content and packaging decisions as an
important part of the vehicle development process; how-
ever, no uncertainty was explicitly considered. The un-
certainty quantification and reduction capability described
in the paper allows us to conduct vehicle content optimi-
zation analyses that are more robust to model uncertainty
by systematically quantifying uncertainty in the perfor-
mance measure estimates and diagnosing which sources
have the highest influence on the overall uncertainty. In
addition, the project identified several opportunities to
improve the efficiency of VCO by reducing its model re-
dundancy and computational overhead.”
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