
This article was downloaded by: [Professor Barry Nelson]
On: 24 March 2015, At: 09:50
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Click for updates

IIE Transactions
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/uiie20

Quickly Assessing Contributions to Input Uncertainty
Eunhye Songa & Barry L. Nelsona

a Department of Industrial Engineering & Management Sciences Northwestern University
Evanston, IL 60208 USA E-mail:
Accepted author version posted online: 17 Nov 2014.Published online: 17 Nov 2014.

To cite this article: Eunhye Song & Barry L. Nelson (2014): Quickly Assessing Contributions to Input Uncertainty, IIE
Transactions, DOI: 10.1080/0740817X.2014.980869

To link to this article:  http://dx.doi.org/10.1080/0740817X.2014.980869

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://crossmark.crossref.org/dialog/?doi=10.1080/0740817X.2014.980869&domain=pdf&date_stamp=2014-11-17
http://www.tandfonline.com/loi/uiie20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/0740817X.2014.980869
http://dx.doi.org/10.1080/0740817X.2014.980869
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


IIE Transactions (2015) 47, 1–17
Copyright C© “IIE”
ISSN: 0740-817X print / 1545-8830 online
DOI: 10.1080/0740817X.2014.980869

Quickly assessing contributions to input uncertainty

EUNHYE SONG and BARRY L. NELSON∗

Department of Industrial Engineering & Management Sciences, Northwestern University, Evanston, IL 60208, USA
E-mail: nelsonb@northwestern.edu

Received February 2014 and accepted October 2014

“Input uncertainty” refers to the (often unmeasured) variability in simulation-based performance estimators that is a consequence of
driving the simulation with input models that are based on real-world data. Several methods have been proposed to assess the overall
effect of input uncertainty, and some also support attributing this uncertainty to the various input models. However, these methods
require a lengthy sequence of diagnostic experiments. This paper provides a method to obtain an estimator of the overall variance
due to input uncertainty, the relative contribution to this variance of each input distribution, and a measure of the sensitivity of
overall uncertainty to increasing the real-world sample-size used to fit each distribution, all from a single diagnostic experiment. The
approach exploits a metamodel that relates the means and variances of the input distributions to the mean response of the simulation
output, and also employs bootstrapping of the real-world data to represent input-model uncertainty. Furthermore, whether and how
the simulation outputs from the nominal and diagnostic experiments may be combined to obtain a better performance estimator
is investigated. For the case when the analyst obtains additional real-world data, refines the input models, and runs a follow-up
experiment, an analysis of whether and how the simulation outputs from all three experiments should be combined is presented.
Numerical illustrations are provided.

Keywords: Stochastic simulation, input modeling, input uncertainty, output analysis

1. Introduction

There is increasing recognition of the need to quantify all
sources of error in mathematical and computer models, in-
cluding stochastic simulations. Every simulation language
measures the statistical error due to sampling from the in-
put models, typically via Confidence Intervals (CIs) on the
performance measures. However, these CIs do not account
for the possible (in fact, likely) misspecification of the in-
put models when they are estimated from real-world data.
For instance, later in this article we consider the simula-
tion of a remote order-taking system for customers using
a drive-in service at a chain of fast-food restaurants; this
simulation was created to estimate a measure of customer
delay. Real-world data on customer arrivals, the time it
takes an agent to obtain a customer’s order, and the time
needed for a car to move beyond the order board are used to
fit input models that drive the simulation. Because we only
have a finite quantity of real-world data, these input mod-
els are imperfect representations of the actual processes.
As shown in many papers (e.g., Barton (2012), Barton
et al. (2014), Cheng and Holland (1998, 2004), Chick
(2001), and Zouaoui and Wilson (2003, 2004) the error
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due to “input uncertainty” can overwhelm the simulation
sampling error. These papers provide overall measures of
input uncertainty, such as adjusted CIs or Bayesian credible
intervals, where as we focus on assessing the contribution
of each input model to input uncertainty as a guide to
collecting more real-world data.

A predecessor of this article, Ankenman and Nelson
(2012) presented a quick-and-easy diagnostic experiment
to assess the overall effect of input uncertainty relative to
simulation sampling variability, and a follow-up method
for estimating contributions. Unfortunately, their method
for identifying the input models that contribute the most
to input uncertainty requires a sequence of additional di-
agnostic experiments; in the worst case it requires as many
experiments as there are input models, and each of these
experiments can be substantial. Furthermore, the variance
model that underlies their diagnostic experiments has no
rigorous justification.

In this article, we provide a new analysis that requires
only one diagnostic experiment to assess the overall effect
of input uncertainty, the relative contribution of each in-
put distribution, and a measure of sample size sensitivity
of each distribution. Using these results, the analyst can
decide whether it is worth the time and expense to col-
lect additional data and on which input processes to do
so. If the analyst decides to collect additional real-world
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2 Song and Nelson

input data to refine the input models, then yet another sim-
ulation experiment would be conducted. Thus, there are
potentially three sets of simulation output data: nominal
experiment, diagnostic experiment, and follow-up experi-
ment. We study when and how these data may be combined
to produce better performance estimates.

We obtain our measures of overall input uncertainty,
contributions, and sample size sensitivities using the fol-
lowing approach:

1. Following the nominal experiment, we take repeated
bootstrap samples from the real-world data and use
these data to create alternative sets of input distribu-
tions representing what could have occurred with differ-
ent real-world samples.

2. Using these alternative input distributions we fit a re-
gression metamodel that relates the mean of the simu-
lation output to the means and variances of the input
distributions.

3. From the metamodel, we derive expressions for the over-
all variance in the simulation output due to input un-
certainty, the contribution to this variance of each input
distribution, and the reduction in overall variance that
would result from one additional real-world sample of
data to fit each input distribution.

The measures computed in step 3 can be used to guide
additional real-world data collection and to heuristically
adjust measures of error, such as CIs, to account for both
input and simulation variability.

Ours is not the first attempt to decide from which input
processes to collect more real-world data to reduce input
uncertainty. Freimer and Schruben (2002) considered un-
certainty in the estimated parameters of parametric input
distributions (e.g., exponential with parameter λ, gamma
with parameters α and β). Similar to the present article,
they used bootstrapping of real-world input data to mimic
the effect of different possible real-world samples and the
corresponding input-parameter estimates they would yield.
The basic premise of Freimer and Schruben (2002) was that
sufficient real-world data on the parameters have been col-
lected when their sampling distributions, as represented by
bootstrap values, have no statistically detectable effect on
the simulation output.

After what we call the nominal experiment, Ng and
Chick (2001, 2006) attempted to optimally allocate a fi-
nite amount of additional effort—additional real-world
input-data collection and additional replications of the
simulation—to reduce overall uncertainty about the sim-
ulated system performance. Similar to our approach, they
employed a regression model to relate the inputs to the
outputs. Their goal was to collect additional real-world
input observations and additional simulation replications
to minimize the posterior variance of the simulation point
estimator subject to a budget constraint.

Freimer and Schruben (2002) collected additional input
data until they could establish that input uncertainty was

negligible, whereas Ng and Chick (2001, 2006) optimally al-
located the data-collection and simulation-replication bud-
get to minimize overall uncertainty. Both assumed that it
was possible to collect input data from any of the input dis-
tributions in whatever quantity was desired or affordable.
We take the perspective that additional real-world data are
often unattainable, at least for some of the input processes,
and the quantity that can be obtained is more likely to be
constrained by time than cost per observation; therefore, if
we can get more data, we will get as much as possible. The
insight we deliver starts with an overall assessment of in-
put uncertainty, which is useful for understanding risk even
if there is no follow-up experiment. When additional input
data are to be collected, then our relative contributions and
sensitivities provide guidance about the best targets.

This article is organized as follows. Section 2 defines the
input uncertainty problem and sets up our model of it.
In Section 3 we describe the sequence of experiments—
nominal, diagnostic, and follow-up—focusing on the diag-
nostic experiment for assessing input uncertainty and the
contribution of each input distribution. When and how to
combine output data from these experiments is addressed
in Section 4. Section 5 provides guidelines for the design
of the diagnostic experiment. Section 6 summarizes results
from an empirical study and an illustrative example, fol-
lowed by conclusions in Section 7.

2. Problem formulation

In this section we present a definition of “input uncer-
tainty” and introduce our model of it.

2.1. Definition of input uncertainty

In this article, we consider mutually independent input pro-
cesses that are each independent and identically distributed
(i.i.d.) random variables whose marginal distributions are
unknown. We use estimated or “fitted” distributions based
on real-world data as stand-ins for the unknown, true distri-
butions. We do not consider multivariate or time-dependent
input processes here.

Suppose that there are L mutually independent input
processes characterized by a collection of true real-world
marginal distributions Fc = {Fc

1 , Fc
2 , . . . , Fc

L}, where c de-
notes “correct.” Since these distributions are unknown, we
use a corresponding collection of estimated distributions
F̂ = {F̂1, F̂2, . . . , F̂L} to drive the simulation. The �th esti-
mated marginal distribution, F̂�, can be either a parametric
or an empirical distribution, but in either case it is inferred
from observed real-world data X�1, X�2, . . . , X�m�

∼ i.i.d.
Fc

� , where m� indicates the number of observations for the
�th input model. We only consider m� > 0 and thus do
not address subjectively specified distributions for which
we have no data.
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Quickly assessing input uncertainty 3

Given a collection of input distributions F̂, the simulation
generates performance output Yj (̂F) on i.i.d. replication
j = 1, 2, . . . , n. Ankenman and Nelson (2012) represented
Yj (̂F) as

Yj (̂F) = E[Y(̂F)|̂F] + ε j , (1)

where ε1, ε2, . . . , εn are i.i.d. with mean zero and variance
σ 2 representing the natural stochastic variability from repli-
cation to replication in the simulation. They assumed that
ε j does not depend on the input model F̂, which is clearly
an approximation and one which we also adopt. It is impor-
tant to notice that E[Y(̂F)| F̂] is a random variable since it is
a functional of F̂, which is estimated from real-world data.
In other words, depending on the real-world observations
that are used to infer Fc, we could have different values of
E[Y(̂F)|̂F].

The goal of our simulation is to estimate E[Y(Fc)], which
we typically do with the sample mean Ȳ(̂F) = ∑n

j=1 Yj (̂F)/n
for given F̂. This article focuses on how to assess the rela-
tive impact of each F̂� on the variability of the simulation
estimator Ȳ(̂F). As the number of simulation replications
n increases, Ȳ(̂F) converges to E[Y(̂F)|̂F], which is not nec-
essarily the same as E[Y(Fc)]. In fact, there is typically a
bias in the estimator Ȳ(̂F) coming from the fact that F̂ is
inferred from a finite number of observations and the simu-
lation is a nonlinear transformation. The traditional confi-
dence interval captures only Var[Ȳ(̂F)|̂F] = σ 2/n for given
F̂. Therefore, we need a different approach to account for
the variability of the simulation estimator depending on the
input models, which we refer to as the input uncertainty.

Formally, the input uncertainty σ 2
I of the simulation es-

timator Ȳ(̂F) is defined as

σ 2
I = Var [E[Ȳ(̂F)|̂F]], (2)

where the Var[·] is with respect to the sampling distribution
of F̂. Therefore, Var[Ȳ(̂F)] can be decomposed as

Var[Ȳ(̂F)] = Var [E[Ȳ(̂F)|̂F]] + E[Var[Ȳ(̂F)|̂F]]
= σ 2

I + σ 2/n, (3)

where the first expression is general, and the second fol-
lows from the definition of σ 2

I and the homoscedasticity
assumption in Model (1).

Ankenman and Nelson (2012) introduced the ratio γ =
σI/(σ/

√
n) as a measure of the relative significance of input

uncertainty to the simulation-based estimator variability.
Suppose that the analyst chooses n large enough so that
the estimator variance σ 2/n is reasonably small. Then a
very small γ implies that σ 2

I � σ 2/n; i.e., the input un-
certainty is insignificant. On the other hand, if γ is large,
then σ 2

I � σ 2/n; i.e., there is significant input uncertainty
in the simulation estimator. In the latter case, a natural
question is: Which models contribute the most to the input
uncertainty?

Our proposed definition of the contribution of F̂� to input
uncertainty is

V�(m�) ≡ Var
[
E

[
Y

(
Fc

1 , Fc
2 , . . . , Fc

�−1, F̂�, Fc
�+1,

. . . , Fc
L

)∣∣F̂�

]]
. (4)

In other words, V�(m�) is the variability in the simulation’s
expected value when all of the true input distributions ex-
cept Fc

� are known and Fc
� is estimated by F̂�. Notice that V�

is a function of the sample size m� to make it clear that the
contribution depends on the number of observations; the
larger m� is, the smaller V�(m�) becomes as F̂� approaches
Fc

� . The relative contribution of the �th input model is

V�(m�)∑L
i=1 Vi (mi )

.

We also define the (sample size) sensitivity of the variance
of Ȳ(̂F) with respect to �th input model by approximating
m� as real valued and taking

∂Var[Ȳ(̂F)]
∂m′

�

∣∣∣∣∣
m′

�=m�

, (5)

which is the same as ∂σ 2
I

∂m′
�

∣∣
m′

�=m�
if we assume homoscedastic

simulation variance. The sensitivity can be interpreted as a
measure of how much input uncertainty can be reduced by
observing one more real-world sample from the �th input
process given that we already have m� observations.

The input uncertainty problem is related to global sen-
sitivity analysis. Here we briefly describe similarities and
differences. Suppose we have a response y = g(x) that is
a function of some parameters x = (x1, x2, . . . , xL). The
response y might be the objective-function value in an op-
timization problem or the key output from a deterministic
numerical simulation, for instance. However, the parame-
ters x are not actually known with certainty and therefore
could be modeled as a random vector X with known distri-
bution Fc. Loosely speaking, the goal of global sensitivity
analysis is to assign to each parameter X1, X2, . . . , XL a
measure of impact on the random variable Y = g(X); the
focus is often on decomposing Var[Y]. Many of these mea-
sures are computationally expensive to compute.

For instance, Wagner (1995) defined two global sensitiv-
ity measures for the objective function of an optimization
problem with uncertain parameters. One measure of sensi-
tivity for the �th parameter was based on the variance of the
conditional expectation of g(X) given all parameters except
X�, whereas the other was the variance of the conditional
expectation of g(X) given only X�. Homma and Saltelli
(1996) proposed a related variance-based sensitivity mea-
sure: the ratio of the variance of the total effect (main effect
and all the interaction effects of the parameter of interest)
to the variance of Y.

Oakley and O’Hagan (2004) introduced the idea of re-
placing evaluations of g(x) with evaluations of a Gaussian
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4 Song and Nelson

process metamodel ĝ(x) that is fit to a chosen set of pa-
rameters and outputs (xi , g(xi )), i = 1, 2, . . . , k. Because
generation of X ∼ Fc and evaluation of ĝ(X) are fast, this
facilitates computing any of the global sensitivity mea-
sures described above as well as others; furthermore, the
Gaussian process metamodel supports incorporating un-
certainty about the true function g(·) into the analysis.
Marrel et al. (2012) extended this idea to stochastic simula-
tions in which we can only observe g with noise: g(x) + ε(x).
They used joint metamodels for g(·) and Var[ε(·)] to esti-
mate a variance-based sensitivity measure using a func-
tional analysis of variance (ANOVA) decomposition of g.
Their setting is the closest to ours in that they do sensitivity
analysis in the presence of stochastic simulation output.

Returning to deterministic outputs, Plischke et al. (2013)
proposed density-based sensitivity measures as an alterna-
tive to variance-based measures. They evaluated the ex-
pected difference between the unconditional probability
density of Y and its conditional density given X� = x�. The
larger the expected difference is, the more sensitive the out-
put is to this parameter.

From our perspective, global sensitivity tries to assess the
effect of each distribution Fc

1 , Fc
2 , . . . , Fc

L on Y(Fc); that is,
it decomposes the (simulation) variability represented by ε.
Input uncertainty arises when Fc is estimated by F̂, and an
assessment tries to measure the impact of variability in F̂
(and in this paper, each F̂�) in the presence of simulation
variability. Input uncertainty due to F̂� can depend on how
sensitive the output is to the �th distribution but also on
how well that distribution is estimated.

2.2. The mean-variance effects model

As noted earlier, E[Y(̂F)|̂F] is a random variable depending
on F̂; therefore, we can think of it as a functional of F̂;
i.e., g(̂F) = E[Y(̂F)|̂F]. We suggest (and justify below) the
following mean-variance effects model for g(̂F):

g(̂F) = β0 +
L∑

�=1

β�μ(F̂�) +
L∑

�=1

ν�σ
2(F̂�), (6)

where μ(F̂�) and σ 2(F̂�) represent the mean and the vari-
ance of a random variable with distribution F̂�, respectively,
and β� and ν� are constant coefficients. The philosophy be-
hind this model is that sensitivity of the mean simulation
output to the particular realization of F̂� is largely cap-
tured by the realized center (mean) and spread (variance)
of the distribution. This model could be extended to in-
clude higher moments such as skewness and kurtosis, or
the 25th and the 75th percentiles could be chosen instead
of mean and variance. However, the essence of the model is
to represent the relationship between each F̂� and E[Y(̂F)|̂F]
through some characteristic properties of F̂�. As we show
later, there are advantages to using the mean and variance
when we want to estimate the contribution of each input
model. This model does not include interaction terms; we

expect that in many cases the main effects are more signif-
icant than the interaction effects and can capture a large
part of the impact of F̂� on the output.

The contribution of F̂� can be derived by plugging
this model into the definition in Equation (4). Let Fc

�̂
=

{Fc
1 , Fc

2 , . . . , Fc
�−1, F̂�, Fc

�+1, . . . , Fc
L}; i.e., the set of all true

distributions except Fc
� . Then V�(m�) becomes

V�(m�) = Var
[
E[Y(Fc

�̂
)|F̂�]

]
= Var

[
β0 +

L∑
i=1,i 
=�

βiμ(Fc
i ) +

L∑
i=1,i 
=�

νiσ
2(Fc

i )

+ β�μ(F̂�) + ν�σ
2(F̂�)

]
= Var[β�μ(F̂�) + ν�σ

2(F̂�)]

= β2
� Var[μ(F̂�)] + ν2

� Var[σ 2(F̂�)]

+ 2β�ν�Cov[μ(F̂�), σ 2(F̂�)]. (7)

The third equality holds because μ(Fc
i ) and σ 2(Fc

i ) are
constants. The overall input uncertainty σ 2

I can be derived
by plugging Model (6) into the definition in Equation (2):

σ 2
I = Var[g(̂F)] =

L∑
�=1

β2
� Var[μ(F̂�)] +

L∑
�=1

ν2
� Var[σ 2(F̂�)]

+
L∑

�=1

2β�ν�Cov[μ(F̂�), σ 2(F̂�)]

=
L∑

�=1

{
β2

� Var[μ(F̂�)] + ν2
� Var[σ 2(F̂�)]

+ 2β�ν�Cov[μ(F̂�), σ 2(F̂�)]
}

(8)

=
L∑

�=1

V�(m�).

The second equality follows from independent sampling
from the input models and the last equality follows directly
from Equation (7). This result shows that under Model (6)
the overall input uncertainty is the summation of individ-
ual contributions; i.e., σ 2

I = ∑L
�=1 V�(m�). Thus, under our

model the overall input uncertainty can be decomposed
into the individual contributions, and the individual con-
tributions are independent of each other. Also, under this
model the sensitivity of F̂� becomes

∂σ 2
I

∂m′
�

∣∣∣∣
m′

�=m�

= ∂V�(m′
�)

∂m′
�

∣∣∣∣
m′

�=m�

,

which makes the sensitivity simply the derivative of the
contribution with respect to the sample size, evaluated at
the current number of samples m�.

The variance decomposition in Equation (8) coincides
with a result in Cheng and Holland (1998) that was
obtained by a different argument. They approximated the
input uncertainty variance σ 2

I as a function of the variances
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Quickly assessing input uncertainty 5

of parameter estimators of parametric input distributions.
If we let Fc(·|θ ) be the true parametric family of input dis-
tributions, θ c be the collection of true parameters, and θ̂ be
an estimator of θ c, then a Taylor series expansion of g(̂θ)
around θ c gives

Var[g(̂θ)] ≈ ∇(g(θ c))TVar[̂θ ]∇(g(θ c)), (9)

where Var[̂θ ] is the variance–covariance matrix of θ̂ and
∇(g(θ c)) is the gradient of g(·) at θ c. By further assuming
θ̂ is a Maximum Likelihood Estimator (MLE) for θ c, they
argued that

Var[g(̂θ)] ≈ ∇(g(θ c))TV[
θ ]∇(g(θ c)),

where V[
θ ] is the asymptotic variance–covariance matrix of
θ̂ under some regularity conditions.

To connect this to our formulation, assume that
each input distribution Fc

� can be parameterized
by μ(Fc

� ) and σ 2(Fc
� ). Then we can represent

g(̂F) as a function of the parameters g(̂θ ), where
θ̂ = {μ(F̂1), σ 2(F̂1), μ(F̂2), σ 2(F̂2), . . . , μ(F̂L), σ 2(F̂L)}.
Similarly, θ c = {μ(Fc

1 ), σ 2(Fc
1 ), μ(Fc

2 ), σ 2(Fc
2 ), . . . , μ(Fc

L),
σ 2(Fc

L)} and the gradient ∇(g(θ c)) under Model (6) is
(β1, ν1, β2, ν2, . . . , βL, νL)T. In fact, in our case the approx-
imation in Equation (9) is an equality because Model (6)
is linear in θ̂ and therefore the first-order Taylor approx-
imation is the model itself. A feature of our approach is
that we can directly compute Var[̂θ ] without making fur-
ther assumptions. Since we have independence among input
processes, Var[̂θ ] is a block diagonal matrix:

Var[̂θ ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

Var[μ(F̂1)] Cov[μ(F̂1), σ 2(F̂1)] 0 · · · 0
Cov[μ(F̂1), σ 2(F̂1)] Var[σ 2(F̂1)] 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
0 · · · 0 Var[μ(F̂L)] Cov[μ(F̂L), σ 2(F̂L)]
0 · · · 0 Cov[μ(F̂L), σ 2(F̂L)] Var[σ 2(F̂L)]

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Plugging Var[̂θ ] into Equation (9) gives the same expression
as in Equation (8).

Cheng and Holland (1998) provided an approximate
analysis of an exact model that requires parametric input
distributions and MLEs; we provide an exact analysis of
an approximate model using any form of input distribution
but assuming that most of the sensitivity of the simula-
tion response to the input distributions is captured by their
means and variances.

To evaluate the contribution of each input model,
we will use least-squares regression to estimate
β0, β1, . . . , βL, ν1, ν2, . . . , νL. In the next section we intro-
duce a sequence of experiments to estimate these coeffi-
cients and to evaluate the contribution and sensitivity of
each input model.

3. The sequence of experiments

In this section we describe a sequence of experiments that
an analyst might conduct: nominal, diagnostic, and follow-

up. Current simulation practice is to run only the nominal
experiment.

The nominal experiment involves the analyst collecting
input data, choosing input models F̂ to use, building the
simulation model, and running n replications to obtain
the point estimator Ȳ(̂F) of system performance E[Y(Fc)].
From this experiment, the analyst obtains the traditional
CI for E[Y(̂F)|̂F], which is typically not the same as a CI for
E[Y(Fc)], as discussed earlier. The number of replications
n is either chosen arbitrarily, to achieve a certain level of
simulation error, or because it can be completed in the
available time.

We are suggesting that this be followed by a diagnostic
experiment to evaluate the contribution and sensitivity of
each input model as well as the overall input uncertainty.
The contributions can be calculated from Equation (7)
given the coefficients β1, β2, . . . , βL, ν1, ν2, . . . , νL and the
variance and covariance of μ(F̂�) and σ 2(F̂�). We describe
a method for estimating them in the next section.

Upon completion of the diagnostic experiment, the ana-
lyst is either satisfied that input uncertainty is not substan-
tial or is concerned that it is substantial and has a better
understanding of how significant it is. In either case, the
analyst has simulation results from the diagnostic experi-
ment that could perhaps be used to improve the estimate
of E[Y(Fc)]; we study whether and how to do this as well.

When input uncertainty is substantial, the analyst may
also undertake a follow-up experiment, which involves
collecting additional real-world input data (with our sen-
sitivities providing the most valuable targets), refining the
estimated input models, and conducting another simulation
with the refined input models. Conclusions could be based
on this final experiment only, but we investigate whether
simulation outputs from the nominal and diagnostic ex-
periments should also be incorporated. Of course, there
could be additional cycles of diagnostic and follow-up ex-
periments as desired.

3.1. Diagnostic experiment

The diagnostic experiment is conducted to fit the mean-
variance effects model (6) and derive our measures of
input uncertainty. To estimate the unknown coefficients
β0, β1, . . . , βL, ν1, ν2, . . . , νL by least squares, we need at
least 2L + 2 design points, which means we need 2L + 2
different F̂s. However, this is typically impossible since we
do not have more than one data set to fit F̂; even if we
did have multiple data sets they would usually be pooled
to enhance the precision of F̂. Instead, Song and Nelson
(2013) suggested a bootstrap approach by treating F̂ as
the true real-world distribution Fc and sampling multi-
ple times from F̂ instead of gathering multiple real-world
samples. In our context, a “bootstrap” is an i.i.d. sample
X�

�1, X�
�2, . . . , X�

�m�
from F̂�. We use the notation X�

�j to de-
note a sample from the empirical cumulative distribution
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6 Song and Nelson

(ecdf) or fitted parametric distribution F̂�, as opposed to
X�j , which is a sample from the true real-world distribu-
tion Fc

� . More generally, a � denotes a quantity defined by
a bootstrap sample.

In our method a bootstrap sample X�
�1, X�

�2, . . . , X�
�m�

from F̂� is treated as a real-world sample X�1, X�2, . . . , X�m�

from Fc
� . From the bootstrap sample we can fit an ecdf

F̂�
� , which plays the role of F̂�, and calculate μ(F̂�

� ) and
σ 2(F̂�

� ). Repeating this for � = 1, 2, . . . , L, a collection of
ecdfs F̂� = {F̂�

1 , F̂�
2 , . . . , F̂�

L} is obtained and we can run
replications of the simulation with F̂� to obtain the esti-
mator Ȳ(̂F�). If we repeat this process B times, we will
get F̂�(1), F̂�(2), . . . , F̂�(B) and the corresponding means and
variances of input models, as well as the simulation esti-
mators Ȳ(̂F�(1)), Ȳ(̂F�(2)), . . . , Ȳ(̂F�(B)) by which we can fit
Model (6).

Why use bootstrap samples to create design points for
fitting the mean-variance effects model (6) instead of a clas-
sic designed experiment? First, this is not a simple design
space: it is the space of possible fitted input distributions
that could result from sampling from the true distribu-
tion Fc. Even if parametric distributions are used (which
we do not require) so that the design space becomes the
space of parameter values, some sets of parameters are far
more likely than others, and our mean-variance model will
be most effective if we get a good fit near Fc rather than a
global fit across the space. By using bootstrap samples from
F̂ we create design points that are representative of what is
likely, providing a good fit where it matters most. Further-
more, simulating at bootstrap random samples, rather than
chosen design points, allows us to combine simulation re-
sults from the nominal and diagnostic experiments without
introducing lack-of-fit bias; see Section 4. There are addi-
tional advantages, which we describe below.

The analogy between real-world sampling and bootstrap
sampling is equivalent to assuming that the input uncer-
tainty σ 2

I = Var[g(̂F)] is approximated as

Var[g(̂F)] = Var[g(̂F)|Fc] ≈ Var[g(̂F�)|̂F]. (10)

Under Model (6), σ 2
I is the sum of the contributions of all

input models as in Equation (8). Therefore, in view of the
approximation (10):

β2
� Var[μ(F̂�)] + ν2

� Var[σ 2(F̂�)] + 2β�ν�

×Cov[μ(F̂�), σ 2(F̂�)] ≈ β2
� Var[μ(F̂�

� )|F̂�]

+ν2
� Var[σ 2(F̂�

� )|F̂�] + 2β�ν�Cov[μ(F̂�
� ), σ 2(F̂�

� )|F̂�],

which will be true if

Var[μ(F̂�)] ≈ Var[μ(F̂�
� )|F̂�]

Var[σ 2(F̂�)] ≈ Var[σ 2(F̂�
� )|F̂�] (11)

Cov[μ(F̂�), σ 2(F̂�)] ≈ Cov[μ(F̂�
� ), σ 2(F̂�

� )|F̂�].

As the real-world sample size m� increases, this approxi-
mation is asymptotically justified under some conditions
on F̂�, as discussed in Section 3.3. A valuable advantage of

the approximation (11) is that it provides expressions for
the variance and covariance components in Equation (7)
that we need to calculate the contributions. Since we use
an empirical distribution F̂�

� , μ(F̂�
� ) and σ 2(F̂�

� ) are simply
the sample mean and the second sample central moment
of X�

�1, X�
�2, . . . , X�

�m�
, which is an i.i.d. sample from the

known distribution F̂�. Therefore, as shown in Appendix A
of the online supplement, we can derive expressions for
Var[μ(F̂�

� )|F̂�], Var[σ 2(F̂�
� )|F̂�], and Cov[μ(F̂�

� ), σ 2(F̂�
� )|F̂�]

as

Var[μ(F̂�
� )|F̂�] = M2

�

m�

Var[σ 2(F̂�
� )|F̂�] = (m� − 1)2

m3
�

M4
�

− (m�−3)(m�−1)

m3
�

(M2
� )2

≈ M4
� − (M2

� )2

m�

Cov[μ(F̂�
� ), σ 2(F̂�

� )|F̂�] = (m� − 1)2

m�
3

M3
� ≈ M3

�

m�

,

where Mk
� is kth central moment of F̂�. If F̂� is an empirical

distribution, then Mk
� = ∑m�

i=1(X�i − X̄�)k/m�. If F̂� is a
parametric distribution, then we can calculate the central
moments from the known representation; for instance, if
F̂� is a gamma distribution with estimated shape parameter
α̂ and rate parameter β̂, then the second, third, and
fourth moments are α̂/β̂2, 2α̂/β̂3, and 3α̂2/β̂4 + 6α̂/β̂4,
respectively.

One of the major advantages of our approach is that
these variance/covariance expressions are not approxima-
tions, which improves the estimation of the contributions.
Also notice that this is a very general method that is ap-
plicable to any empirical distribution and many parametric
distributions; the only time we face difficulty is when F̂�

is a parametric distribution whose parameters are in the
range for which not all moments up to the fourth exist
(e.g., a log-logistic distribution with shape parameter less
than four). Even then, we can use our method provided that
the offending distribution can be represented as a transfor-
mation of another distribution whose first four moments
always exist. In this case we fit the mean-variance model to
the moments of the underlying distribution. For instance,
the log-logistic distribution is a transformation of a logis-
tic distribution whose first four moments are finite, so we
fit to the moments of the underlying logistic distribution.
Since every distribution can be viewed as a transformation
of the uniform (0, 1) distribution, our method is (at least in
theory) completely general.

Inserting the moment expressions into Equation (7), the
contribution of F̂� with m� samples can be written as

V�(m�) ≈ 1
m�

{
β2

� M2
� + ν2

�

(
M4

� − (M2
� )2) + 2β�ν�M3

�

}
,

(12)
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Quickly assessing input uncertainty 7

implying that the sample size sensitivity of F̂� is

∂V�(m′
�)

∂m′
�

∣∣∣∣
m′

�=m�

= − 1
(m�)2

{
β2

� M2
� + ν2

�

(
M4

� − (
M2

�

)2)
+ 2β�ν�M3

�

}
= −V�(m�)

m�

. (13)

Notice that the sensitivity is always negative since input un-
certainty is reduced with additional real-world data. Notice
also that the rank order of contributions and sensitivities
of distributions do not always coincide; even if F̂� has the
largest contribution, if m� is also large then input uncer-
tainty may be less sensitive to F̂� than some other input
models. In other words, an additional sample from Fc

� may
not make much difference to the input uncertainty variance
since we already have a large sample.

The algorithm for the diagnostic experiment is as follows:

Diagnostic Experiment

1. Given the estimated input models F̂, do the following:
2. For bootstrap sample b = 1 to B

a. For input model � = 1 to L
i.Generate X�(b)

�1 , X�(b)
�2 , . . . , X�(b)

�m�
by sampling m�

times from F̂�.
ii.Let F̂�(b)

� be the ecdf of X�(b)
�1 , X�(b)

�2 , . . . , X�(b)
�m�

and

calculate the mean μ(F̂�(b)
� ) and variance σ 2(F̂�(b)

� ).
b. Using input models F̂�(b) = {F̂�(b)

1 , F̂�(b)
2 , . . . , F̂�(b)

L },
simulate R i.i.d. replications Yj (̂F�(b)), j =
1, 2, . . . , R and calculate the sample mean Ȳ(̂F�(b)).

3. Fit the model

Ȳ(̂F�(b)) = β0 +
L∑

�=1

β�μ(F̂�(b)
� ) +

L∑
�=1

ν�σ
2(F̂�(b)

� ) + ε̄b

(14)

with Ȳ(̂F�(b)) from step 2b and μ(F̂�(b)
1 ), μ(F̂�(b)

2 ),
. . . , μ(F̂�(b)

L ) and σ 2(F̂�(b)
1 ), σ 2(F̂�(b)

2 ), . . . , σ 2(F̂�(b)
L ) from

step 2a for b = 1, 2, . . . , B to estimate the coefficients
β0, β1, . . . , βL, ν1, ν2, . . . , νL.

4. Estimate the overall input uncertainty σ̂ 2
I =∑L

�=1 V̂�(m�) and the ratio

γ̂ = σ̂I

σ̂ /
√

n
=

√
n

∑L
�=1 V̂�(m�)

σ̂
.

5. Estimate the contribution V̂�(m�) and the sensitivity for
� = 1, 2, . . . , L.

We estimate σ̂ 2 in step 4 using the sample variance from the
nominal experiment, rather than using the residual mean-
squared error (MSE) of the fitted model in step 3; this
avoids bias due to lack of fit. Of course, n in step 4 is the

number of replications used in the nominal experiment and
need not be the same as R.

As discussed in Section 2.1, the ratio γ expresses input
uncertainty in units of the simulation estimation error. If
γ̂ = 0.5, for instance, it implies that the input uncertainty is
only half of the simulation estimation error, which may be
acceptable depending on the type of decision that the sim-
ulation is expected to support. If γ̂ is large—e.g., γ̂ = 20—
then we can conclude that the simulation estimation error
as measured, say, by the width of a CI, should be inflated
by a factor of roughly

√
1 + γ̂ 2. Whether or not this is

acceptable depends on the situation: If the simulation esti-
mation error is very small—as would occur if the number
of replications n is very large—then a CI that is roughly 20
times longer might have little effect on the decision that the
simulation model is designed to support. We believe that it
will often be the case that such an inflation is unacceptable,
so the analyst may choose to collect more real-world data
for the input models that have greater (more negative) sen-
sitivities. This decision also depends on the feasibility and
the cost of additional data collection.

The key insight is that γ̂ must be interpreted in light
of the remaining simulation estimation error, not as an
absolute number, and will be the most meaningful when n
was explicitly chosen chosen to achieve a specified level of
error. For instance if n was chosen (perhaps sequentially)
to attain a CI whose width is no more than ±
, then γ̂ can
be interpreted as large or small relative to

√
1 + γ̂ 2 × 
.

3.2. Follow-up experiment

If the analyst collects more real-world data from some or
all of the input processes, then they will have an updated
collection of input models with m′

� > m� for at least one
� ∈ {1, 2, . . . , L}. Using updated input models that are fit to
all of the accumulated data, the analyst can run a follow-up
experiment to obtain an estimator of E[Y(Fc)] with reduced
input uncertainty. We assume that the follow-up experiment
employs at least as many simulation replications as the
nominal experiment, so n′ ≥ n. If needed, this sequence of
experiments can be repeated by regarding the results from
the follow-up experiment in the previous sequence as a new
nominal experiment.

The primary question with respect the follow-up experi-
ment is whether we should use simulation outputs from the
nominal or diagnostic experiments in the overall estimator.
We address this question in a later section.

3.3. Validity of the bootstrap approximation

Here we consider the validity of the approximation, intro-
duced above, where we suggested that

Var[g(̂F)] = Var[g(̂F)|Fc] ≈ Var[g(̂F�)|̂F].
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8 Song and Nelson

Given our model, this is equivalent to

Var[μ(F̂�)] ≈ Var[μ(F̂�
� )|F̂�]

Var[σ 2(F̂�)] ≈ Var[σ 2(F̂�
� )|F̂�]

Cov[μ(F̂�), σ 2(F̂�)] ≈ Cov[μ(F̂�
� ), σ 2(F̂�

� )|F̂�].

This assumption can be asymptotically justified under
certain conditions as the sample size m� gets large; we de-
scribe some cases below. Recall that in our method the
bootstrap distribution F̂�

� is an ecdf. Let μk
� = E[(X�j −

E(X�j ))k], the kth central moment of Fc
� .

Assuming that F̂� is also an ecdf, and the relevant mo-
ments exist, the asymptotic variance and covariance of
μ(F̂�

� ) and σ 2(F̂�
� ) given F̂� are, with probability 1:

lim
m�→∞ m�Var[μ(F̂�

� )|F̂�] = lim
m�→∞ M2

� = μ2
�

lim
m�→∞ m�Var[σ 2(F̂�

� )|F̂�] = lim
m�→∞ M4

� − (
M2

�

)2 = μ4
�−

(
μ2

�

)2

lim
m�→∞ m�Cov[μ(F̂�

� ), σ 2(F̂�
� )|F̂�] = lim

m�→∞ M3
� = μ3

�.

(15)

Furthermore, when F̂� is an ecdf it is easy to show that

lim
m�→∞ m�Var[μ(F̂�)] = μ2

�

lim
m�→∞ m�Var[σ 2(F̂�)] = μ4

� − (
μ2

�

)2
(16)

lim
m�→∞ m�Cov[μ(F̂�), σ 2(F̂�)] = μ3

�.

See Zhang (2007), Cho and Cho (2008), and the online
supplement.

However, if F̂� is a parametric distribution whose param-
eters are estimated from the observed real-world data then
neither Equation (15) nor Equation (16) is guaranteed to
hold. For instance, if we fit the wrong parametric family to
the data then differences can occur. A sufficient condition
for both Equation (15) and (16) to hold when F� is a para-
metric distribution is that F� is flexible enough to match
any first four moments of the data, and the distribution is
fit using the Method of Moments (MMs) up to at least the
fourth moment.

Even when we have the correct parametric family, there
could still be differences depending on how we estimate
the parameters. As mentioned above, if we use the MMs
then the moments of the fitted distribution are the sample
moments. And in many cases, the MLEs and MMs are
asymptotically equivalent (e.g., normal). This is not always
the case, however.

Suppose that Fc
� is a uniform (0, 1) distribution and we

have m� i.i.d. real-world observations X1, X2, . . . , Xm�
. The

MLEs are α̂ = X(1) and β̂ = X(m�), where X(i ) is the i th

order statistic. Then

lim
m�→∞ m�Var[μ(F̂�)] = 0 <

1
12

= μ2
�

lim
m�→∞ m�Var[σ 2(F̂�)] = 0 <

1
180

= μ4
� − (μ2

�)2

lim
m�→∞ m�Cov[μ(F̂�), σ 2(F̂�)] = 0 = μ3

�.

Except for the covariance term, the asymptotic variances
are smaller than those of the MMs estimators because the
MLEs are asymptotically more efficient. Nevertheless, even
in this case our bootstrap approximation provides a valid
representation of the variability of the real-world data that
could have been obtained, although not a perfect represen-
tation of the variability of the estimated parameters.

As a practical matter, we would apply our method
for any sample sizes m�, � = 1, 2, . . . L that the analyst is
comfortable using to fit distributions if the alternative is
to ignore input uncertainty. Based on the bootstrapping lit-
erature (e.g., Hall (1992, Appendix I)), the performance
of sample moment estimators, and our own experience in
empirical studies, we are comfortable with m� ≥ 100.

4. Combining results from the nominal, diagnostic, and
follow-up experiments

In some situations it is not feasible to gather additional
real-world input data even if there is substantial input un-
certainty; in others the input uncertainty is so small that
there is little value in reducing it further. In either of these
situations the analyst terminates the experiment at the di-
agnostic phase that generated Ȳ(̂F�(b)), b = 1, 2, . . . , B to
fit Model (6). The first question we address is whether these
results can be utilized to improve the estimator Ȳ(̂F) from
the nominal experiment by using a weighted estimator:

Ỹ = αȲ(̂F) + (1 − α) ¯̄Y(̂F),

where ¯̄Y(̂F) = ∑B
b=1 Ȳ(̂F�(b))/B and α ∈ [0, 1]. This estima-

tor only makes sense because the bootstrap distributions
F̂�(b) are sampled directly from F̂ and therefore indirectly
from Fc. Deterministically chosen design points would in-
troduce an unknown and likely significant bias.

We answer this question by seeking α� that minimizes
MSE[Ỹ|̂F], rather than minimizing MSE[Ỹ]. Minimizing
MSE[Ỹ] would make sense if we were actually able to
obtain multiple real-world data sets, whereas minimizing
MSE[Ỹ|̂F] acknowledges that we only have one real-world
data set and therefore cannot improve our estimate of Fc

beyond F̂.
From the derivation in Appendix B of the online supple-

ment, and under the assumption that Model (6) holds, we
have

MSE[Ỹ|̂F] = (1 − α)2
(

(b�)2 + σ 2
I

B
+ σ 2

BR

)
+ α2 σ 2

n
,

(17)
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Quickly assessing input uncertainty 9

where

b� = Bias[ ¯̄Y(̂F)|̂F] = E[Y(̂F�(b))|̂F] − E[Y(̂F)|̂F]

which is the bias from bootstrapping. Therefore, the opti-
mal α� is

α� = (b�)2 + σ 2
I /B + σ 2/(BR)

(b�)2 + σ 2
I /B + σ 2/(BR) + σ 2/n

. (18)

Notice that α� is strictly less than one; hence, it is al-
ways better to pool Ȳ(̂F) and ¯̄Y(̂F). The key term is σ 2/n
that represents the simulation variance: the larger it is, the
more weight is given to the diagnostic results, which are
biased but reduce simulation variance. An unbiased es-
timator of b� is ¯̄Y(̂F) − Ȳ(̂F), so every term in α� is ei-
ther known or estimable from the nominal and diagnostic
experiments.

Previously we suggested that the diagnostic experiment
could be used to provide a heuristic adjustment to the CI or
standard error of the mean of the nominal experiment by
multiplying them by

√
1 + γ̂ 2. In Appendix C of the online

supplement, we justify using
√

σ̂ 2
I + ̂MSE as a plug-in

approximation for the MSE of the combined estimator Ỹ,
where ̂MSE is Equation (17) with optimal weight α� from
Equation (18) but inserting estimates from the diagnostic

experiment for all of the unknown quantities. As a rough CI
we could multiply this by an appropriate normal quantile.

We next consider the case when all three experiments have
been conducted. Now it makes sense to try to minimize the
MSE of the final point estimator with respect to both in-
put and simulation uncertainty. For this reason we discard
the simulation results from the diagnostic experiment since
they introduce additional bias due to bootstrapping.

For a clear distinction, let F̂m denote the collection of
input models used in the nominal experiment that were
estimated from m = {m1, m2, . . . , mL} real-world observa-
tions, and let Ȳn (̂Fm) denote the estimator from n repli-
cations using F̂m. Similarly, F̂m′ denotes the collection of
input models used in the follow-up experiment that were
estimated from m′ = {m′

1, m′
2, . . . , m′

L} real-world observa-
tions, where m′

� ≥ m� for all �, and Ȳn′ (̂Fm′) is the corre-
sponding estimator from n′ ≥ n replications. Notice that it
is very likely that Ȳn (̂Fm) and Ȳn′ (̂Fm′) are positively corre-
lated since the follow-up m′ real-world observations include
the nominal m observations.

The weighted estimator Ŷ is defined as

Ŷ = αȲn (̂Fm) + (1 − α)Ȳn′ (̂Fm′).

Due to the correlation between Ȳn (̂Fm) and Ȳn′ (̂Fm′), find-
ing α� to minimize MSE(Ŷ) is more complicated than the
previous case. As shown in Appendix D of the online sup-
plement, if we let bm and bm′ denote the bias of Ȳn (̂Fm) and
Ȳn′ (̂Fm′), respectively, as estimators of E[Y(Fc)], and let σ 2

I
and (σ ′

I )2 denote the input uncertainty of the nominal and
the follow-up experiments, respectively, then α� becomes

α� = (σ ′
I )2 + (σ 2/n′) + bm′ (bm′ − bm) − Cov[Ȳn (̂Fm), Ȳn′ (̂Fm′ )]

σ 2
I + (σ ′

I )2 + (σ 2/n) + (σ 2/n′) + (bm′ − bm)2 − 2Cov[Ȳn (̂Fm), Ȳn′ (̂Fm′ )]
.

If α� < 0 we use α� = 0.
In general it is not easy to find a useful expression for

Cov[Ȳn (̂Fm), Ȳn′ (̂Fm′)]. However, if we assume all input dis-
tributions are ecdfs, then under Model (6) we can show
that

Cov[Ȳn (̂Fm), Ȳn′ (̂Fm′)] ≈ (σ ′
I )2.

Under this condition we can also get an expression for the
bias term as

bm =
L∑

�=1

ν�σ
2(Fc

� )
m� − 1

,

where σ 2(Fc
� ) represents the variance of the true distribu-

tion Fc
� . These expressions are derived in Appendix D of

the online supplement. Therefore, for this special case α�

becomes

α� ≈ (σ 2/n′) + {∑L
�=1 ν�σ

2(Fc
� )/(m′

� − 1)
}{∑L

�=1 ν�σ
2(Fc

� )
(
(1/(m′

� − 1)) − (1/(m� − 1))
)}

(σ 2/n)+(σ 2/n′)+∑L
�=1

(
V�(m�)−V�(m′

�)
) + { ∑L

�=1 ν�σ 2(Fc
� )

(
(1/(m′

�−1)) − (1/(m�−1))
)}2 .

(19)

From this result, we can immediately observe that as n′
gets bigger, α� gets smaller, which implies that the more
replications we make from the follow-up experiment, the
less we value the replications from the nominal experiment,
which makes sense.

For the simplest case, suppose that the analyst did not
collect additional real-world input data and ran the follow-
up experiment with the same input models F̂m. Then α� =
n/(n + n′) because m� = m′

� for all �. This is clearly the
weight we would use to pool two estimators from n and n′
replications generated by the same input models.

More generally, when m′
� > m� for at least one � there is

a trade-off because pooling leads to more bias as Ȳn (̂Fm)
tends to have a larger bias than Ȳn′ (̂Fm′). If Ȳn (̂Fm) is sig-
nificantly more biased than Ȳn′ (̂Fm′) then it is less attractive
to pool the two estimators and we suspect this is often the
case. To illustrate this point, suppose that overall input un-
certainty is substantial (e.g., γ = 20) and F̂1 has the largest
contribution among all input models while others have neg-
ligible contributions. In this case, the analyst might collect
a large additional sample (m′

1 � m1) from Fc
1 to update

F̂1, while keeping all other input models the same as in the
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10 Song and Nelson

nominal experiment. When this happens α� becomes

α� = (σ 2/n′) + ((ν1σ
2(Fc

1 ))2/(m′
1 − 1))((1/(m′

1 − 1)) − (1/(m1 − 1)))
(σ 2/n) + (σ 2/n′) + (V1(m1) − V1(m′

1)) + {ν1σ 2(Fc
1 )((1/(m′

1 − 1)) − (1/(m1 − 1)))}2
. (20)

The denominator in Equation (20) is strictly positive as
V1(m1) > V1(m′

1). However, the numerator can be negative
if ∣∣∣∣σ 2

n′

∣∣∣∣ <

∣∣∣∣∣
(
ν1σ

2(Fc
1 )

)2

m′
1 − 1

(
1

m′
1 − 1

− 1
m1 − 1

)∣∣∣∣∣ ,
in which case α� = 0. Even if the numerator is greater than
zero, we suspect α� will be near zero for the following
reasons.

1. The analyst may run more replications for the follow-up
experiment than the nominal experiment (n′ ≥ n) as it
provides a less biased (more accurate) estimator, which
makes σ 2/n′ < σ 2/n.

2. (σ 2/n′) + ((ν1σ
2(Fc

1 ))2/(m′
1 − 1))((1/(m′

1 − 1))
− (1/(m1 − 1))) < σ 2/n′;

3. since m′
1 � m1, we expect V1(m1) − V1(m′

1) ≈ V1(m1);
and

4. since γ is large and F̂1 has the biggest contribution,

V1(m1) � σ 2

n
.

From 1 to 4;

V1(m1) � σ 2

n′ + (ν1σ
2(Fc

1 ))2

m′
1 − 1

(
1

m′
1 − 1

− 1
m1 − 1

)
,

and, therefore, α� becomes small. Hence, the more we real-
world data we collect for the follow-up experiment, the less
benefit there is in variance reduction from pooling the two
estimators, whereas the relative disadvantage from intro-
ducing additional bias increases.

As mentioned earlier, the result in Equation (19) holds
under Model (6) when we assume that F̂m and F̂m′ are
collections of ecdfs. We believe that α� is typically near
zero in this case, which implies that it is better to use the
estimator from the follow-up experiment without pooling.
We also suspect a similar conclusion holds when any of the
input distributions are parametric.

5. Design of the diagnostic experiment

The diagnostic experiment is an essential component of our
method. There are three key experiment design questions.

1. How should we select design points? As discussed in Sec-
tion 3.1, to fit Equation (14) we have chosen bootstrap
generated empirical distributions F̂�

1, F̂�
2, . . . , F̂�

B as de-
sign points. This concentrates the design where we need
to fit well, and it facilitates combining results from the
nominal and diagnostic experiment.

2. Should we use Common Random Numbers (CRNs)
across the diagnostic simulations? The bootstrap design
points F̂�(1), F̂�(2), . . . , F̂�(B) must be sampled indepen-
dently from F̂, but we can choose to use the same ran-
dom numbers for the simulations conducted with each
F̂�(b). Kleijnen (1988) and others have shown that CRN
tend to reduce the variance of the slope-parameter es-
timators in least-squares regression, which are β̂�, ν̂�,
� = 1, 2, . . . , L in Model (6). Since the variance of V̂� is
an increasing function of the variances of β̂� and ν̂�, it
seems clear that using CRNs is desirable.

3. Given a budget of N simulation replications, how should it
be divided between design points (B) and simulation repli-
cations per design point (R) so that RB = N? Anken-
man and Nelson (2012) showed that with their method
for assessing overall input uncertainty, if N is not too
small then B ≈ 10 is optimal in terms of minimizing
the expected width of the CI for γ . However, our ob-
jective is different: we focus on providing estimates of
the contribution of each input model. Below we argue
that B = N (R = 1) is the best choice in terms of statis-
tical efficiency, but B = 2L + 3 is best for computation.
Therefore, we provide a recommendation that balances
these two objectives.

First, B = N is the optimal design to minimize the MSE
of the combined estimator from the nominal experiment
(Ȳ(̂F)) and the diagnostic experiment ( ¯̄Y(̂F)). This is because
the conditional variance of ¯̄Y(̂F) can be approximated as
Var[ ¯̄Y(̂F)|̂F] ≈ σ 2

I /B + σ 2/N under the bootstrap approx-
imation in Equation (10); see Appendix B of the online
supplement.

Second, as described in Section 3, we estimate the pa-
rameters β0, β1, . . . , βL and ν1, ν2, . . . , νL in Model (6) by
regressing B simulation output estimators on the means
and variances of bootstrapped ecdfs. The design matrix for
the regression is⎡

⎢⎢⎢⎣
1 μ(F̂�(1)

1 ) σ 2(F̂�(1)
1 ) · · · μ(F̂�(1)

L ) σ 2(F̂�(1)
L )

1 μ(F̂�(2)
1 ) σ 2(F̂�(2)

1 ) · · · μ(F̂�(2)
L ) σ 2(F̂�(2)

L )
...

...
...

...
...

...
1 μ(F̂�(B)

1 ) σ 2(F̂�(B)
1 ) · · · μ(F̂�(B)

L ) σ 2(F̂�(B)
L )

⎤
⎥⎥⎥⎦ .

As we have 2L + 1 parameters, we need at least 2L + 2
unique rows in the design matrix, which implies that it is
necessary to have B ≥ 2L + 2. However, B ≥ 2L + 2 is not
always sufficient to obtain the required number of unique
rows.

If our input models include at least one continuous para-
metric distribution among F̂1, F̂2, . . . , F̂L, then with prob-
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Quickly assessing input uncertainty 11

ability one all rows in the design matrix will be unique
because the probability of two bootstrap samples with the
same sample moments is zero for a continuous distribution.
On the other hand, if all input models in F̂1, F̂2, . . . , F̂L are
ecdfs or discrete parametric distributions, then we need
to be more cautious. Bernoulli distributions, particularly
when the probability of success is extreme, are the most
challenging cases since ties in the sample moments are quite
likely when m� is small. Thus, a larger m� gives more op-
portunities for unique rows. Also worth noting is that the
likelihood of identical rows diminishes as the number of in-
put models L increases, so the problem is less pronounced
in simulations with many input models.

Finally, the contribution estimator V̂� in Equation (12) is
a function of β� and ν�, so a good stand-in for the properties
of V̂� are the properties of β̂� and ν̂�. To illustrate why B =
N is statistically best, we temporarily simplify Model (6) to
only include the “mean effects” and no CRN:

Yj (̂F) = β0 +
L∑

�=1

β�μ(F̂�) + ε j . (21)

Then V̂�(m�) = β̂2
� Var[μ̂(F̂�)]. If we assume that both μ(F̂�)

and ε j are normally distributed—which is plausible since
μ(F̂�) is asymptotically normally distributed with large
sample size m�—then standard results show that

Var[̂β�] = 1
N

(
B

B − L − 2

)
σ 2

Var[μ(F̂�)]
(22)

when we force RB = N. Notice also that

E [̂β2
� ] = β2

� + Var [̂β�] = β2
� + 1

N

(
B

B − L − 2

)

× σ 2

Var [μ(F̂�)]
. (23)

Clearly, B = N is best for minimizing variance and bias,
but the marginal impact of increasing B diminishes when
BR = N is fixed. If we extend this analysis in the natural
way to include the “variance effects” as in Model (6), then
the −L terms in the denominators of Equation (22) and (23)
become −2L.

On the other hand, from a computational efficiency point
of view using B < N (R > 1) has advantages over B =
N (R = 1). There is typically a computational set-up cost
for simulating a new design point (which is really a new
simulation model) but very little setup required for each
additional replication at a design point. If B < N then there
are fewer setups. Furthermore, the number of rows in the
design matrix is B, implying the need to manipulate a B ×
(2L + 1) matrix to fit the regression model. This argues for
smaller B.

We must have B ≥ 2L + 2. When larger N is feasible,
we recommend making B large enough so that the incre-
mental decrease in the variance and bias is small, say < δ.

Therefore, we select the smallest B such that

d
d B

(
B

B − 2L − 2

)
> −δ,

which implies selecting the smallest B such that

B > 2L + 2 +
√

2L + 2
δ

and R = �N/B�. For instance, if L = 5 and δ = 0.01—a
1% marginal decrease—then B ≈ 12 + 35 = 47.

6. Empirical results

This section summarizes an empirical study of the pro-
posed method applied to two simple examples and also an
illustration on a realistic problem.

In the two simple examples we apply our method and
provide intuitive explanations for the results, as well as
compare them to true input-model contributions as defined
in Equation (4) that were estimated precisely from side
experiments. These side experiments exploit the fact that
the true, correct real-world distributions are known, which
is obviously not the case in practice. In both examples we
define Fc

� for each input and then sample m� observations
that we treat as the real-world data.

We first evaluate the method using a well-known Stochas-
tic Activity Network (SAN); see Fig. 1. The goal is to
estimate the mean time to complete the network. We
defined a set of real-world input distributions for the activ-
ity times Fc = {Fc

1 , Fc
2 , . . . , Fc

5 }. Experiments under differ-
ent settings of sample size and mean and variance of the
activity-time distributions were conducted and the variance
contribution and sensitivity of each input distribution was
estimated.

The second example is an M/M/1/k queueing system
simulation that has two input distributions: interarrival
time and service time. The goal of the simulation is to esti-
mate the mean steady-state queue length, which is known
to be a highly nonlinear function of the means of the two

Fig. 1. A small SAN.
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12 Song and Nelson

Fig. 2. Scaled contributions (positive) and sensitivities (negative) of input models for the SAN with different activity-time sample
sizes.

input distributions. We use this example to show the per-
formance of our method when the mean response is a non-
linear function of the means and variances of the input
distributions. Different settings of the means of the inter-
arrival times and service times as well as the capacity of
the queue were tested to evaluate the performance of our
method.

We conclude with a more realistic example of simulat-
ing a remote order taking system to illustrate the practical
application of our method.

6.1. SAN

For each activity time X� we have a correct real-world dis-
tribution Fc

� , which we pretend is unknown. Using m� sam-
ples generated from Fc

� , we fit ecdf F̂� for each X�. The
total time to finish the project is Y = max{X1 + X4, X1 +
X3 + X5, X2 + X5} and the purpose of the simulation is to
estimate the expected value of Y. In the remainder of the
section we describe empirical results for contribution and
sensitivity of the input distributions under two experimen-
tal settings: (i) different real-world sample sizes and (ii)
different means and variances of the activities.

To evaluate how well our method measures the contribu-
tion of each input model, a series of side experiments was
conducted for each experimental setting. The side experi-
ment estimates the contribution directly from the definition
in Equation (4) by exploiting the fact that we know the true
distributions in this example.

Side Experiment

1. Given the true distributions Fc
1 , Fc

2 . . . , Fc
5 for activity

times X1, X2, . . . , X5, do the following:
2. For b = 1 to B

a. Generate m1 samples from Fc
1 and fit F̂ (b)

1 .
b. Run R replications Yj (F̂ (b)

1 , Fc
2 , . . . , Fc

5 ), j = 1, 2,

. . . , R using the fitted F̂ (b)
1 and true distributions

Fc
2 , Fc

3 . . . , Fc
5 as the input models.

c. Calculate the sample mean Ȳ(F̂ (b)
1 , Fc

2 , . . . , Fc
5 )

from the replications.

3. Calculate the sample variance of Ȳ(F̂ (b)
1 , Fc

2 , . . . , Fc
5 ),

b = 1, 2, . . . , B

1
B − 1

B∑
b=1

{
Ȳ(F̂ (b)

1 , Fc
2 , . . . , Fc

5 ) − ¯̄Y(F̂1, Fc
2 , . . . , Fc

5 )
}2

(24)
to estimate the true contribution V1 of X1, where

¯̄Y(F̂1, Fc
2 , . . . , Fc

5 ) = 1
B

B∑
b=1

Ȳ(F̂ (b)
1 , Fc

2 , . . . , Fc
5 ).

4. Conduct steps 2 and 3 for each distribution Fc
2 , Fc

3 ,

Fc
4 , Fc

5 in turn.

A key point is that we make R large enough that

Var
[
Ȳ(F̂ (b)

1 , Fc
2 , . . . , Fc

5 )
∣∣ F̂ (b)

1

] ≈ 0.

This implies that Ȳ(F̂ (b)
1 , Fc

2 , . . . , Fc
5 ) ≈ E

[
Ȳ(F̂ (b)

1 , Fc
2 ,

. . . , Fc
5 )

∣∣ F̂ (b)
1

]
and we can treat the sample variance (24)

as an estimate of the variance due to different real-world
samples; i.e., contribution V1 only. We used (B = 100, R =
5000) that gave relative errors of less than 2%. Notice that B
and R in these side experiments are unrelated to the choices
we make for the diagnostic experiment.

6.1.1. SAN with different activity-time sample sizes
In this experiment, all activity times have exponential
real-world distributions with mean one. Thus, the path
X1 + X3 + X5 is likely to be the longest. To see the effect
of different real-world sample sizes on V̂�, we conducted
simulations for two cases: (i) m� = 100, � = 1, 2, . . . , 5;
and (ii) m� = 100, � = 1, 2, 4, 5, and m3 = 50. We used
(B = 50, R = 200) for the diagnostic experiment.

Figure 2 displays the simulation results when averaged
over 1000 macro replications to provide a relative error
of less than 3%. Plotted are the relative contributions
V̂�(m�)/

∑L
i=1 V̂i (mi ), and the sensitivities scaled so that

the greatest sensitivity has value −1. In case (i), X1 and
X5 have the largest contributions and are more sensitive
to additional real-world data since these two activity times
are involved in two-out-of-three paths on the network. On
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Quickly assessing input uncertainty 13

Fig. 3. Comparison of estimated input-model contributions and the true contributions for the SAN with different activity-time sample
sizes.

the other hand, X2 and X4 have the smallest contributions
and sensitivities since they are only involved in one path
that is likely to be dominated by X1 + X3 + X5. The higher
contribution/sensitivity of X3 compared with X2 and X4
can be explained by the same reasoning. This trend changes
slightly when m3 decreases to 50 in case (ii): since there are
fewer real-world samples for X3 in this case, X3 shows the
largest contribution and sensitivity. This is a good illustra-
tion that input uncertainty is a combination of how much
the distribution itself matters in the simulation and how
well it has been estimated.

Figure 3 compares the estimated contributions from
the diagnostic experiments and the side experiments for
cases (i) and (ii). Notice that the contributions are not
scaled in this graph. Clearly, the estimated contribu-
tions from the two approaches are close, which implies
our diagnostic experiment successfully estimated the true
contributions.

6.1.2. SAN with different activity-time distributions
In this section, gamma distributions are used as the true
distributions for the activity times. Two sets of experi-
ments were conducted to investigate the effect of differ-
ent mean and variance values on the contribution of X3.
In the first set of experiments, we fixed the variance of all
activity times to 0.5 and set X1, X2, X4, X5 to have mean
one and X3 to have mean 10. In the second set, the means
of all activities are fixed to 10, but X1, X2, X4, X5 have
variance one, whereas X3 has variance five. In all cases,
m� = 100 real-world samples were collected for each activ-
ity time to fit ecdf F̂�. For the diagnostic experiment we

used (B = 50, R = 200) and the results were averaged over
1000 macroreplications.

Figure 4 shows the experimental results. Observe that in
the first set the trend in contribution/sensitivity is not much
different from case (i) in Section 6.1.1. This might not seem
intuitive since one might think that the large mean value of
X3 would increase its contribution. However, a large mean
for X3 only makes the path X1 + X3 + X5 more likely to be
dominant and, therefore, the input uncertainty due to X1
and X5 still has a significant impact on output variability
since they are also included in other paths. In the second
set, X3 has the largest contribution and is more sensitive
to additional data collection, which can be explained by its
relatively large variance.

Figure 5 presents the estimated input contributions from
the side experiments and compares them to the results from
our method. As in Section 6.1.1, the two estimated values
are close in both cases (i) and (ii).

6.2. M/M/1/k queueing system

In this section, we apply our method to a queueing sys-
tem with finite capacity k where the interarrival times and
services times are i.i.d. exponential random variables with
mean θ1 and θ2, respectively. Our measure of interest is the
mean of the number of customers in the system at steady-
state, Y. Given θ1 and θ2, it is known that the steady-state
number of customers in system n follows a truncated geo-
metric distribution with probability

Pn = (θ2/θ1)n 1 − θ2/θ1

1 − (θ2/θ1)k+1
, for n = 0, 1, . . . , k, (25)

Fig. 4. Scaled contributions (positive) and sensitivities (negative) of input models for the SAN with different activity-time distributions.
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14 Song and Nelson

Fig. 5. Comparison of estimated input-model contributions and the true contributions for the SAN with different activity-time
distributions.

provided θ1 
= θ2. Therefore, the expected number of cus-
tomers in the system is

E[Y|θ1, θ2] = θ2/θ1

1 − θ2/θ1
− (k + 1)(θ2/θ1)k+1

1 − (θ2/θ1)k+1
, (26)

which is clearly a nonlinear function of θ1 and θ2. Assume
for the moment that the expression in Equation (26) is un-
known and we have to estimate it by simulation, where
the true parameters θ c

1 and θ c
2 are estimated from the ob-

served interarrival times and the service times, respectively.
Then we can use our method to analyze the input uncer-
tainty in the simulation estimator and evaluate the con-
tributions of the two input models. However, our method
fits Model (6) to the simulation response. In other words,
it assumes E[Y|̂θ1, θ̂2] to be a linear function of θ̂1, θ̂

2
1 , θ̂2,

and θ̂2
2 . Therefore, the estimation quality of contributions

depends on how well Model (6) approximates E[Y|̂θ1, θ̂2]
near θ c

1 and θ c
2 .

To investigate the performance of our method, the esti-
mated contributions from diagnostic experiments at differ-
ent settings of θ c

1 , θ c
2 , and k are compared to the estimated

contributions from the side experiments. As in the SAN ex-
ample in Section 6.1, we exploit the fact that θ c

1 and θ c
2 are

known. In all cases the sample sizes for the real-world inter-
arrival times and services times are m1 = 200 and m2 = 100,
respectively. Table 1 provides the estimated contributions
from the diagnostic experiments and the side experiments.
For the diagnostic experiment, we used B = 40, R = 100.
The results are averaged over 100 macro-replications and
the standard errors are provided in parentheses.

In all settings, the estimated contributions are of the
same order of magnitude (by rounding to the first dec-
imal point, if necessary) with the results from the side
experiments. Also, the order of importance is preserved;
i.e., the contribution of the service time is higher than
that of the interarrival time in all cases in both diagnostic
and side experiments. The first two cases show the results
when the queue is congested. Therefore, the system is likely
to be filled up to its limit size k. In fact, in both k = 1
and k = 100 cases (26) is quite flat near (θ c

1 = 0.2, θ c
2 = 1).

Therefore, Model (6) captures the shape of Equation (26)

well, which results in good estimation quality. In Cases 3
and 4, the queue is lightly loaded and therefore the ex-
pected queue length in this case is less than k. Especially
when k = 100, the system effectively has no capacity limit
and behaves similar to a corresponding M/M/1 queueing
system. When k = 1, Equation (26) shows smooth curva-
ture near (θ c

1 = 1, θ c
2 = 0.5), which can be easily captured

by Model (6). When k = 100, Equation (26) is flat near
(θ c

1 = 1, θ c
2 = 0.5). Therefore, in both cases the diagnos-

tic experiments approximate the contributions well. When
θ c

1 = 1 and θ c
2 = 0.9, our method performs better in Case 5

than in Case 6. This difference is because the traffic inten-
sity θ c

2/θ c
1 is close to one in this case. In Case 5, the size of the

queue is limited by k = 1; therefore, even if the estimated
traffic intensity θ̂2/̂θ1 is greater than one, the queue length
is still less than one. In Case 6, however, if θ̂2/̂θ1 > 1, the
simulated average queue length becomes close to k = 100,
whereas it is much less than 100 when θ̂2/̂θ1 < 1. Therefore,
as small change in θ̂1 and θ̂2 can cause the mean response to
change dramatically and Model (6) approximates the sur-
face relatively poorly in Case 6. However, our method still
estimates the contributions of the input distributions to the
right order of magnitude and the order of importance is
also correct in this case compared to the results from the
side experiment.

From this example, we can confirm that even if the mean
response is a highly nonlinear function of input distribu-
tions’ means and variances, our method works reasonably
well. Notice that our goal is not to approximate the mean
response surface globally but rather to fit Model (6) near
the true means and variances of the input distributions.
Therefore, even when the mean response is nonlinear glob-
ally, if it is linear in terms of means and variances in the
neighborhood of interest, our method works well.

6.3. Illustration: remote order-taking system

In this section we apply our method to a more realistic sim-
ulation to illustrate the sequence of experiments proposed
in Section 3. All experiments presented in this section were
conducted by using Simio (www.simio.com) and function-
ality that has been added to Simio that performs the diag-
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Quickly assessing input uncertainty 15

Table 1. Estimated contributions of interarrival-time and service-time distributions from diagnostic experiments and side experiments
at different settings of θ c

1 , θ c
2 , and k

Interarrival time Service time

Case θ c
1 θ c

2 k Diagnostic Side Diagnostic Side

1 0.2 1 1 1.55 × 10−4(1.53 × 10−5) 9.46 × 10−5 2.72 × 10−4(2.15 × 10−5) 1.95 × 10−4

2 0.2 1 100 7.33 × 10−3(5.81 × 10−5) 4.88 × 10−4 1.18 × 10−3(7.07 × 10−5) 1.06 × 10−3

3 1 0.5 1 3.31 × 10−4(2.57 × 10−5) 2.49 × 10−4 5.97 × 10−4(4.07 × 10−5) 4.84 × 10−4

4 1 0.5 100 2.95 × 10−2(2.62 × 10−3) 2.25 × 10−2 5.51 × 10−2(4.57 × 10−3) 4.71 × 10−2

5 1 0.9 1 4.33 × 10−4(3.33 × 10−5) 3.11 × 10−4 7.03 × 10−4(3.98 × 10−5) 6.25 × 10−4

6 1 0.9 100 1.92 × 102(1.50 × 10) 3.31 × 102 3.83 × 102(2.90 × 10) 5.77 × 102

nostic experiment and displays our contribution measures.
The problem, which is taken from Nelson (2013), is to eval-
uate replacing the current drive-through order windows
for a chain of fast-food restaurants with the equivalent of a
call center. The current design for each store has two fully
staffed windows, one for order taking and another for food
delivery. The proposal is to replace the first window with a
remote order-taking service in which agents communicate
with customers through the electronic order board and then
relay the order to the store. The fast-food chain has high
standards for customer service and requires that the average
waiting time for a customer to be greeted by an agent once
they reach the order board be less than 1.5 seconds. The
proof-of-concept simulation uses data from seven stores to
investigate whether the call center can meet this standard
with substantially fewer agents than the number of stores
served.

There are nine sets of real-world data (actually created
by us): customer interarrival times from the seven stores;
order-taking times; and the time for a car to pull away from
the order board and the next one in line (if there is one) to
pull up. Interarrival times were collected during the busiest
3-hour period over 10 days. The numbers of observations
of order-taking time and car-moving time available were
150 and 70, respectively. With these data, parametric dis-
tributions were fitted for the initial experiment (the fitted
distributions were exponentials, Weibulls, and gammas, and
we did not exploit knowing the true distribution families).
To evaluate busy-period performance, steady-state simula-
tions were conducted using a replication-deletion experi-
ment design employing n = 1000 replications. With four
agents at the call center, the 95% confidence interval for
mean customer waiting time in the nominal experiment was
0.99 ± 0.04 seconds, which clearly excludes 1.5 seconds.

To analyze the impact of input uncertainty, we con-
ducted a diagnostic experiment with (B = 80, R = 125).
The design was chosen using the guidelines presented in
Section 5. Below we report results from the simulation with
four agents, which we concluded to be adequate based on
the nominal experiment.

The diagnostic experiment gave γ̂ = 17.48, which
implies that input uncertainty is significantly larger than

simulation uncertainty. If we adjust the CI to account for
input uncertainty, the 95% CI length should be more like
0.04 × √

1 + 17.482 ≈ 0.63. This is a rough adjustment,
and we do not claim that it is a CI in the formal sense.
Clearly, the adjusted interval 0.99 ± 0.63 includes the crit-
ical value 1.5. Therefore, to reduce the input uncertainty
we are interested in which distributions are the largest
contributors.

Table 2 displays the estimated scaled contribution and
sensitivity of each input model, as well as its real-world
sample size and its sample mean (in seconds). The input
model for order-taking time makes the largest contribution
to input uncertainty, and it is the most sensitive to collecting
additional data. This makes sense: every customer requires
an order-taking time, and the real-world sample size for this
input is relatively small. If it is possible to collect additional
input data, then this is the distribution for which we would
achieve the most benefit.

Notice that the rank order of contribution and sensitivity
do not always coincide. For instance, the interarrival times
of stores 6 and 7 have the same contribution; however, the
sensitivity of the former is greater because it has a smaller
sample size, so that additional real-world samples for store
6 can reduce the variability in the simulation result by a
larger amount.

Table 2. Scaled contribution and sensitivity results for the remote
order-taking system

� Input data m� Average Contribution Sensitivity

1 Interarrival 1 351 307.0 0.014 −0.007
2 Interarrival 2 153 701.3 0.011 −0.012
3 Interarrival 3 421 256.1 0.021 −0.008
4 Interarrival 4 261 413.0 0.008 −0.005
5 Interarrival 5 342 308.9 0.018 −0.008
6 Interarrival 6 354 304.4 0.006 −0.003
7 Interarrival 7 472 228.5 0.006 −0.002
8 Order taking 150 84.8 0.914 −1.000
9 Moving 70 5.4 0.003 −0.006

Boldface type indicates the input model with the largest contribution and
sensitivity.

D
ow

nl
oa

de
d 

by
 [

Pr
of

es
so

r 
B

ar
ry

 N
el

so
n]

 a
t 0

9:
50

 2
4 

M
ar

ch
 2

01
5 



16 Song and Nelson

Fig. 6. The adjusted CI for expected customer waiting time along
with γ̂ (indicated by •) for different real-world sample sizes for
the order-taking time.

Since we concluded that the order-taking time has the
largest contribution, we collected more real-world data to
perform a follow-up experiment (the “real-world” order-
taking time in this example is an exponential distribution
with mean 90 seconds). Figure 6 shows the trend in γ̂ , indi-
cated by •, and the roughly adjusted CI for expected waiting
time, as a function of the total amount of real-world data
on order taking. These are CIs from the nominal experi-
ments inflated by

√
1 + γ̂ 2, not CIs using combined nomi-

nal and diagnostic experiment results (we discuss one such
CI below). The number of simulation replications remains
n = 1000.

We observe that γ̂ tends to decrease as we collect more
order-taking data. However, even with 50 000 observations
of the order-taking time, γ̂ does not become zero because
there is still residual input uncertainty from the other distri-
butions. The contribution and the sensitivity of the order-
taking time also decrease as the sample size grows. At
m = 50 000, the relative contribution of the order taking
time is 4.1%, which is smaller than any of the other distri-
butions except the moving time. We also observe that the
average customer waiting time increases as we collect more
data. This implies that the first 150 real-world observations
did not provide a particularly good approximation of the
true distribution. With more real-world data, the adjusted
CI length decreases and it becomes more clear that the crit-
ical value (1.5 seconds) has not been achieved. Therefore,
we need to consider increasing the number of agents from
four to five, which we would not have considered based on
the nominal experiment alone.

In this illustration we chose to collect more real-world
data on the order-taking time to mitigate input uncertainty.
Had that not been possible, then we could have improved
our point estimate from the nominal experiment by using
the combined estimator Ỹ = α�Ȳ(̂F) + (1 − α�) ¯̄Y(̂F), where

α� = (b�)2 + σ 2
I /B + σ 2/BR

(b�)2 + σ 2
I /B + σ 2/BR + σ 2/n

.

To estimate α� we used σ̂ 2
I from the diagnostic experiment,

σ̂ 2 from the nominal experiment, and b̂� = ¯̄Y(̂F) − Ȳ(̂F) to
estimate the bias. This gave α̂ = 0.88, putting most of the
weight on the nominal experiment. In this case the adjust-
ment was so small that Ỹ is the same as Ȳ(̂F) to two deci-
mal places. It is important to note that the estimated bias
from bootstrapping matters: had we ignored it (set b� = 0)
then α̂ = 0.80 putting somewhat more weight on the results
from the diagnostic experiment. The heuristically adjusted
CI, which uses data from the nominal and diagnostic exper-

iment, has halfwidth ±1.96
√

σ̂ 2
I + ̂MSE = ±0.45 seconds,

which is narrower than if we had used the nominal data
alone.

7. Conclusions

In this article we presented a method to quantify the over-
all impact of input-model uncertainty on simulation-based
performance estimates, to identify which input models
make the largest contribution to this uncertainty, and to
identify the input data sources from which additional real-
world observations would lead to the greatest reduction in
input uncertainty. Our approach builds on Ankenman and
Nelson (2012) but obtains the contribution and sensitiv-
ity results from the same experiment that they used just to
measure the overall input uncertainty.

Our philosophy is to try to obtain a lot of useful informa-
tion without substantial additional effort or sophisticated
computations. In fact, all we require is the capability to
sample from the ecdf or fitted parametric distribution of
the real-world input data—which is necessary for doing
simulation—and least-squares regression to fit the mean-
variance model. As a proof of concept, our diagnostic ex-
periment and uncertainty measures have been implemented
as a standard feature in Simio.

To achieve all of this we modeled the relationship be-
tween the input distributions and the simulation’s output
through the means and variances of these distributions,
without interactions. We know that higher moments can
matter, and there certainly could be interactions. However,
our goal is to rank the input distributions as to their con-
tributions to input uncertainty, rather than to precisely es-
timate each contribution. For this goal, a first-order model
that characterizes a distribution by its mean and variance
will often suffice, as illustrated by our experiments.

Open questions remain about the total budget N that
should be expended on the diagnostic experiment to obtain
reliable results. We suspect that no blanket recommenda-
tion is possible, but instead N would have to be discov-
ered adaptively. Important extensions include assessing the
contributions of multivariate (e.g., age, health status, and
income of customers) and time-dependent (e.g., arrivals to
a call center) input processes.
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