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Abstract

Traditionally, competition between semiconductor manufacturers has primarily fo-
cused on product design and cost. Recently, speed of delivery has also become an
important differentiator among these firms which has led to manufacturing cycle time
becoming a critical performance measure. This paper presents a methodology that
performs a limited set of simulation runs for a complex wafer fabrication system and
then uses the results to develop metamodels that predict mean steady-state cycle time
as a function of product mix and throughput. These predictions can be made on de-
mand, i.e., without performing any additional simulation runs, for product mixes and
throughput levels not previously simulated. The goal is to support medium and long-
range planning by providing results with the fidelity of a detailed simulation model but
with the speed of a queueing approximation or simple capacity model.
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1 Introduction

Planning for semiconductor manufacturing, either at the factory or enterprise level, requires

answering a large number of what-if questions involving different scenarios for product mix,

production targets and capital expansion. A key performance measure for evaluating these

scenarios is the time. Accurate cycle-time estimation results in a more stable production

environment (Chung and Lai 2006). Shorter cycle times may also lead to in the production

of a higher quality product and improved responsiveness to customer needs (Hopp and

Spearman 2000). Leachman (2002) indicated that “there is considerable evidence that yields

are inversely related to manufacturing cycle times.”

The importance of cycle time to the semiconductor manufacturing industry is reinforced

within the International Roadmap for Semiconductors 2006 Update (Semiconductor Industry

Association, 2006); it states that the improvement of cycle-time targets must be met to

prevent slowing of the industry’s growth. Cycle-time reduction is listed in the road map

as a difficult challenge for both the near term and the long term. Nemoto et al. (2000)

demonstrate that significant financial benefits come from cycle-time reduction in the ramp-

up phases of semiconductor manufacturing. Boebel and Ruelle (1996) and Pfund et al.

(2006) also indicate that cycle time has become a key performance metric for semiconductor

manufacturers.

The importance given to cycle time as a performance metric in the semiconductor manu-

facturing industry motivates the need for a quick and accurate way to estimate it. A typical

factory must constantly review how proposed changes to product mix, start rates, and pro-

cess routings will impact the cycle time of both in-process and planned future production.

Planners in some semiconductor manufacturing facilities use a Cycle Time-THroughput (CT-

TH) curve as a way to quantify the relationship between cycle time and capacity (Fowler et

al. 1997). A CT-TH curve (e.g., Figure 1) plots the predicted long-run average cycle time
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versus throughput (or start rate).

The following example illustrates the importance of accurate and timely cycle-time esti-

mates. Although the dollar values are not specific to any manufacturer they are close enough

to reality to illustrate the point.

1.1 Impact of Inaccurate CT Estimates

Suppose that a semiconductor manufacturer can sell their product for $15,000 per wafer, and

that their customer base is satisfied with a six week average delivery time. First consider the

consequences of overestimating the true mean CT-TH curve, as illustrated in Figure 1. Since

the manufacturer needs to meet the 6 week average cycle-time constraint, their estimated

curve (see point A) will cause them to initiate a start rate of 24,500 wafer starts per month

(WSPM). In actual operation, they will achieve a 3 week mean cycle time (see point C). In

other words, they will under load the factory. They could have started 25,000 lots (see point

B) and still achieved the desired average cycle time. Even though this error is relatively small,

24,500 instead of 25,000 (an error of 2%), the financial loss can be quite large. Consider that

it will take at least 1.5 months for the manufacturer to realize that they have underestimated

their capabilities. During that time they will have delivered 24,500 WSPM × 1.5 months

= 36,750 wafers, generating revenue of $551.25 million. However, had they known their

true CT-TH curve, they could have delivered 37,500 wafers generating $562.5 million in

revenue. This represents approximately $11.25 million in lost revenue over a single 1.5

month production period. If the error in start rate is not corrected, the annual revenue loss

will be much greater.

Next consider what happens if a firm underestimates the mean CT-TH curve. If the

manufacturer plans on a mean cycle time of 6 weeks, the estimated curve in Figure 2 im-

plies that they can launch 25,000 WSPM and achieve that average cycle time (point A on

Figure 2). However, when they implement that start rate the true CT-TH curve indicates
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Figure 1: Illustration of overestimating the CT-TH curve (cycle time in weeks).
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Figure 2: Illustration of underestimating the CT-TH curve (cycle time in weeks).
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an average delivery time of 7 weeks (point C). Had they known the true CT-TH curve, then

they would have operated at 24,500 WSPM (point B), rather than 25,000.

The economic impact of this error depends on the distribution of cycle time. Assume

the distribution of cycle time is symmetric about the mean and the standard deviation is

approximately σ = 1/2 of a week. Since the company is actually operating at point C (7

week average delivery time) their assumption of a 6 week average delivery time (point A) is

2σ from the true value. This implies that an additional approximately 47% of their orders

will now be classified as late and may incur penalties. The increase in throughput results

in $11.25 million in additional revenue per production cycle; however, penalties and loss of

goodwill from missed delivery dates could be devastating. In fact, a penalty rate greater

than 4.25% of revenue would completely negate the increased revenue from the higher start

rate. An inaccurate mean cycle time estimate in semiconductor manufacturing planning can

clearly lead to substantial revenue loss.

1.2 Generation of Cycle-Time Estimates Using Simulation

Manufacture of the more complicated semiconductor devices can routinely consist of 300–

500 different processing steps. Each step will be performed by a specific tool group. A

factory can have upwards of 135 of these tool groups and a total tool set typically consists of

more than 400 machines. A factory may have five or more distinct technologies (or product

families) simultaneously competing for these tool groups. Simulation models of such large

and complicated systems are by necessity large and complicated themselves.

As discussed above, the impact of using an inaccurate cycle-time estimate for product

planning can be financially devastating. The problem is that decisions regarding what to

set for product mix (PM) and start rates need to be evaluated within a small window of

opportunity. The complexity of a semiconductor factory makes simulation the most likely

tool to be used for predicting cycle time, but the very nature of simulation analysis techniques
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and execution run times make it an insufficient tool if decisions are required within this

window of opportunity. Most semiconductor manufacturers have spent significant resources

on the creation of extremely detailed simulation models of their facilities only to discover that

the run time and analysis issues make them inappropriate for interactive planning exercises.

If it were possible to generate a robust queueing model that reasonably represented the

manufacturing system, it would generally be a superior approach to simulation. The queue-

ing model could be evaluated quickly under various start-rate product-mix combinations,

producing results as needed. However, semiconductor manufacturing is too complex to be

accurately represented by a tractable queueing model. Instead, we desire a way to produce

simulation-quality results as quickly as a queueing model while maintaining the level of detail

and accuracy needed in semiconductor planning; we call this simulation on demand.

1.3 Simulation on Demand

The difficulties of modeling semiconductor wafer fabs with fast and accurate simulation

models have motivated researchers to pursue methods for increasing the efficiency of model

building and the speed of model execution (e.g., Fowler et al. 2001, Fowler et al. 2005,

Mackulak et al. 2005, Park et al. 2002). Incorporating simulation into a planning role re-

quires significant reductions in both run time and experimentation effort. Unfortunately,

most of these studies have not provided the order of magnitude improvement to what re-

mains the most serious impediment to using simulation for medium to long-term planning

in manufacturing: it still takes too long to run a full sized factory simulation model.

The “simulation on demand” concept addresses this fundamental weakness of simulation.

Simulation on demand focuses on the efficiency of obtaining useful simulation results, rather

than on the efficiency of the simulation itself. The premise is to exploit the availability of

large quantities of idle (perhaps networked) computer resources by exercising a simulation

model in advance of the need to make decisions based on it. A sequential procedure guides
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the simulation through a series of carefully selected design points. We call the results at these

design points a model structure (MS), and it is input to a query engine (QE) that allows the

decision maker to investigate options and trade offs on demand. The QE provides answers to

questions such as the following: What is the weighted cycle time of the factory at a particular

throughput and product mix? What are the feasible values of throughput and product mix

such that average cycle-time constraints are met? What is the impact on the cycle times

of other products if we increase the throughput of product i to meet increased demand?

And what product mix maximizes revenue while keeping average cycle times below required

limits when there is more demand than capacity? Together, the MS and QE constitute a

complete response-surface map (cRSM) of the CT-TH-PM space (Fowler, et al. 2007). The

cRSM provides the fidelity of a detailed simulation with the convenience of a simple capacity

model.

In this paper we present the methodology that supports the construction of a cRSM for

semiconductor manufacturing. The specific implementation details and large-scale evalua-

tion of the software produced for the Semiconductor Research Corporation will be detailed

elsewhere. We do, however, provide a numerical example that illustrates the methodology.

2 Background and Approach

The CT-TH curve has long been used for exploring the relationship between start rate and

cycle time for a single product or for a given product mix. Leonovich (1994) proposed

optimizing WIP, cycle time, and output rate by defining the relationship between WIP and

output rate, and then selecting the output rate that corresponded to some WIP target.

Spence and Welter (1988) used a similar cycle time versus throughput trade-off curve to

define the operational capacity of a given factory. Martin (1994) imposed a cycle-time

requirement on a manufacturing line to improve capacity planning. Aurand and Miller
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(1997) formalized the use of the CT-TH curve (which they called the operating curve) as

a way to measure and benchmark overall fab performance. In addition, Schoemig (1999)

investigated the impact of variability on the CT-TH (operating) curve.

There have been two main streams of research: The first formalized the use of the “ex-

tended X-factor contribution” for capacity planning. The extended X-factor contribution

identifies system capacity constraints based on machine group utilization and raw process-

ing time. The seminal research in this area includes papers from Martin (1998, 1999, 2000),

Ozawa et al. (1999), Kishimoto and Ozawa (2000), Occhino (2000), and Kishimoto et al.

(2001). Recently, Delp et al. (2005, 2006) augmented this approach with an increased em-

phasis on the role of machine availability and on variability. The second stream of research

deals with the efficient generation of the single product (or single product mix) CT-TH curve.

Papers in this area include Fowler et al. (2001), Park et al. (2002), Mackulak et al. (2005),

and Yang et al. (2007ab).

Our goal is to extend the previous research in the second stream to predict long-run

(steady-state) properties of product cycle time—on demand—as a function of product release

rates, allowing us to vary product mix as well as throughput. In this paper we focus on mean

cycle time, but the tools we develop can also be used to predict higher moments of CT (e.g.,

standard deviation), and even percentiles of CT using moment-based approximations (Bekki

et al. 2007, Yang et al. 2007b). We assume the availability of a detailed fab simulation

model and also a corresponding capacity model that can predict the utilization of all major

workstations for any given set of product release rates. The simulation model will be used to

estimate mean CT while the capacity model will identify the bottleneck station or stations.

Determining when the bottleneck switches from one station to another turns out to be critical

to our methodology. We also assume that the equipment, personnel and control policies

(such as scheduling and dispatching) remain the same within a given scenario regardless of

product release rates. Finally, we assume that a “greedy” batch policy (Fowler et al. 1992) is
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employed in the factory. This last assumption is necessary so that the CT is monotonically

increasing with throughput for any given product mix.

We conceptualize a wafer fab as a network of queues into which products are released in

a stationary (perhaps even deterministic) fashion, and processing, failure and repair times

are stationary stochastic processes. Let λ = (λ1, λ2, . . . , λI ) be the release-rate vector, where

λi is the release rate of product type i and there are I products. Notice that λ will also be

the steady-state throughput, provided the combined release rates are less than the system

capacity. We let λ∗ =
∑I

i=1 λi denote the overall TH of all the products. To satisfy our

objective of simulation on demand, we want to use simulation to build a precise metamodel

for ci(λ), the steady-state mean cycle time of product i = 1, 2, . . . , I for any feasible release

rate λ, by running simulation experiments at a number of settings. Throughout the paper

we let c(·) denote steady-state mean cycle time; subscripts on c indicate fixed or non-varying

quantities, while the independent variables are functional arguments. From here on we drop

the subscript on c to indicate product and, without loss of generality, specialize everything

to product 1.

A typical approach, which has a long history in simulation research and practice, is to fit

a low-order polynomial model in λ using least-squares regression and classical experimental

design (e.g., Kleijnen 1987, Barton and Meckesheimer 2006). Unfortunately, Cheng and Klei-

jnen (1999) showed that this approach fails even for relatively simple queueing simulations

with a single product because the CT response surface itself, as well as the variance of the

CT estimator, increase explosively as the release rate approaches the system capacity. They

used queueing theory to motivate more appropriate mean and variance metamodels, and fit

them by optimally allocating a fixed budget of simulation effort.

The problem is further exacerbated when PM is also a factor. Hung et al. (2005) at-

tacked this problem by using a data driven partitioning (specifically CART) of the λ space,

attempting to identify regions over which low-order polynomials provide a good fit. With
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this approach, the quality of the fit depends on how well CART is able to identify such

regions.

An entirely different approach is to use an interpolation-based metamodel, such as kriging

(Santner et al. 2003). Although more well known for deterministic simulation, there has been

substantial recent interest in adapting these methods to stochastic simulation (e.g., Kleijnen

and van Beers 2004). The primary drawbacks are that it is difficult to preserve known

properties of the response surface (i.e., interpolated surfaces are often bumpy) or to tune the

interpolation in high-dimensional problems (e.g., large number of products I).

We build on and extend these ideas in ways that are tailored to our specific problem.

For a fixed PM (i.e., fixed percentage of each product), we exploit the approach of Yang

et al. (2007ab) who extend Cheng and Kleijnen (1999) to modeling moments of CT as a

function of overall TH, λ∗ in complex queueing networks and drive the experiment to reach

a prespecified precision rather than expend a fixed budget. This allows us to fit CT-TH curves

at selected product mixes. Like Hung et al. (2005), we partition the PM space, but we do

so using queueing knowledge to identify the homogeneous regions. Finally, we interpolate

between fitted CT-TH curves to predict CT at product mixes we did not simulate, but we use

queueing physics to develop a model-based interpolation that tends to preserve properties we

know the surface should have. In the next section we develop our metamodeling approach

in detail.

3 Developing the Metamodel

We first introduce some key normalizations that facilitate designing our simulation experi-

ments and interpolating the results. We then create the metamodel families, using queueing

theory to motivate the functional forms. Next, the design space is partitioned using infor-

mation from the capacity model. Finally, the models are fit using a novel progressive fitting
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Figure 3: Mixture experiment with 3 products.

algorithm.

3.1 Key Normalizations

Our objective is to approximate the steady-state mean cycle time for all products over the

entire feasible region for λ, which is our natural design space. A point in the design space is

feasible if all products have nonnegative flow and the system is stable, meaning the arrival

rate to any station does not exceed the capacity of that station.

Individual product flow through the system is represented by λi, the release rate of

product type i into the system. However, there are advantages to representing the cycle

time surface as a function of λ∗ and α = (α1, α2, . . . , αI), rather than λ, where αi = λi/λ
∗

is the fraction of type i products entering the system. Clearly, αi ∈ (0, 1) and
∑I

i=1 αi = 1.

Given α and λ∗, the individual product release rates λi are easily derived.

A key benefit of this representation is that experiment design over the α space is a mixture

experiment (Myers and Montgomery 2002). The mixture setting provides a structure for

space-filling designs and has been well studied. Figure 3 illustrates the experimental region

for a 3-product system, which is a simplex.

We also normalize the system throughput. A critical assumption that facilitates this is

that we have a capacity model that can identify the bottleneck (BN) station (or stations) and
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compute its utilization as a function of release rates. Such capacity models are a standard tool

in the analysis of wafer fabs; in most companies this is an internally developed spreadsheet

tool, but some commercially available tools do exist (Wright, Williams, and Kelly, 2007).

Although beyond the scope of this paper, the capacity calculation is often based on first

solving some version of the system of flow equations, such as

λ(j) = e(j) +

J∑

`=1

p(`, j)λ(`) ∀j = 1, 2, . . . , J

where J is the number of stations, λ(j) is the overall arrival rate into station j, e(j) is the

arrival rate into station j from outside the system, and p(`, j) is the fraction of products

leaving station ` and going to station j. The utilization of station j, denoted xj, is then

computed from an equation such as

xj =
λ(j)

s(j)µ(j,λ)
(1)

where µ(j,λ) is the effective service rate of a machine or resource at station j given λ, and

s(j) is the number of parallel resources at station j. The utilization of the bottleneck station

is therefore x = maxj xj. To incorporate machine failure and repair, batching, re-entrant

flow, etc. a more sophisticated capacity model is often necessary.

We assume that for a fixed product mix α, the bottleneck station (or stations) does not

change as a function of overall throughput λ∗. This allows us to specify system throughput

in terms of x, which is also called the network “traffic intensity.” To maintain positive flow

of all products requires x > 0, while x < 1 guarantees stability.

Therefore, the space we want to map consists of product mixes α1, α2, . . . , αI with αi > 0

and
∑I

i=1 αi = 1, and throughput 0 < x < 1. More specifically, we enforce αi ≥ αL and

xL ≤ x ≤ xU , where αL, xL and xU are user defined bounds.1 We partition the PM space

into subregions of constant bottleneck, fit CT-TH metamodels as a function of x for specific

1We will often ignore αL in figures and plots since it is typically quite close to 0.
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product mixes within each subregion, and interpolate between these curves as needed for

new product mixes α using a metamodel that is appropriate for constant-bottleneck queues.

We describe this approach in more detail in the following sections.

3.2 CT-TH Curves

Yang et al. (2007a) considered the problem of estimating CT-TH curves for general queueing

networks, extending the work of Cheng and Kleijnen (1999). Based on known results for

tractable queueing models, heavy-traffic analysis of queueing networks, and extensive empir-

ical study, they showed that the steady-state mean cycle time of, say, product 1 with fixed

product mix α could often be well approximated by a metamodel of the form

cα(x) =

∑t
`=0 a`x

`

(1 − x)p
(2)

where a`, t and p are unknown parameters. They developed sequential experimental designs

to place design points x and allocate experimental effort to those design points to obtain a

prespecified precision across x ∈ [xL, xU ], the range of throughput of interest. Yang et al.

(2007b) further developed this approach to simultaneously estimate the first three moment

curves of steady-state CT, and to derive moment-based approximations of the percentiles of

CT from them.

In the present paper, the methodology of Yang, et al. (2007a) is used to fit steady-state

mean CT models of the form (2) to any desired precision at every selected PM design point.

The selected PM design points constitute the design set, denoted D. Therefore, our focus

is on (a) deciding at what product mixes D to obtain CT-TH curves, and (b) interpolating

between the available curves {cα(·),α ∈ D} to estimate mean cycle time at a specified

normalized throughput, x, for product mixes that were not simulated. The interpolation in

(b) is curve fitting to the data {cα(x),α ∈ D}, with a model that is motivated and presented

in Section 3.3. Notice that because we normalize throughput to be 0 < x < 1, the CT-TH
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curve at every design point α ∈ D can provide input to the interpolation at (x,α′) for a

new product mix α′ 6∈ D.

3.3 A Model for CT-PM Curves

To motivate a metamodel for interpolation in the PM space, consider a multi-product M/G/1

queue. Let µi, i = 1, 2, . . . , I be the service rate for product type i; let σ2
i , i = 1, 2, . . . , I be

the variance of the service time of product type i; and let λi be the arrival rate of product

type i. Then using standard M/G/1 results (e.g., Gross and Harris 1998) we can show that

the steady-state mean cycle time for product 1 is

c(λ) =
1

µ1
+

∑I
i=1 λi(1/µ

2
i + σ2

i )

2
(
1 −

∑I
i=1 λi/µi

) . (3)

However, if we reparameterize in terms of the product mix vector α = (α1, α2, . . . , αI) and

define the utilization to be x = λ∗∑I
i=1 αi/µi then we can rewrite (3) as a function of (x,α)

as

c(x,α) =
1

µ1
+

(
x

1 − x

)(∑I
i=1 αi(1/µ

2
i + σ2

i )

2
∑I

i=1 αi/µi

)
. (4)

Expression (4) shows why a polynomial model is not very suitable for the CT-TH-PM surfaces

of interest to us, even though it is a smooth, differentiable function.

For fixed x, the ratio x/(1− x) is a constant and so (4) is a ratio-of-planes (ROP) model

that can be manipulated to take the form

cx(α) =

∑I
i=1 βiαi∑I−1

i=1 τiαi + αI

=
α′β

α′τ
. (5)

The unknown parameters are β′ = (β1, β2, . . . βI) and τ ′ = (τ1, τ2, . . . , τI−1, 1), and they

depend on the choice of x.

Of course, a semiconductor wafer fab or any nontrivial manufacturing system will consist

of a number of stations, not just one. If there are J stations, and every product is processed
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by every station, then a plausible metamodel is

cx(α) =
J∑

j=1

( ∑I
i=1 βijαi∑I−1

i=1 τijαi + αI

)
(6)

the sum of J ROP models. Clearly (6) is greatly over parameterized, particularly since we

want to be able to fit it by controlling (α, x) and observing only estimates of the mean

CTs {cα(x),α ∈ D}, rather than by modeling station-by-station performance. Further, this

model is only appropriate if the bottleneck station does not shift as a function of product

mix. Nevertheless, a simplified version of (6) will provide the basis for our interpolation, and

motivates our choice of how to partition the experiment design space into regions of constant

BN.

3.4 Partitioning the Product-Mix Space

The previous section showed that in a queueing network where a single station remains the

bottleneck for all feasible product mixes, the CT response surface tends to be smooth and

differentiable in α over the entire region. However, if the bottleneck can shift as a function of

α because the products place differing loads on the stations, then the CT response surface

may have a sharp, non-differentiable boundary between different bottleneck regions. We

provide an illustration below.

Figure 4 is an example of a system with more than one constant-BN subregion. This

system is based on a 3-product, 3-station Jackson network taken from Yang et al. (2007c).2

In this figure the subregion where station j is the BN is denoted Vj (e.g., V2 implies x =

x2 = maxj=1,2,3 xj). To create a response surface in a design space with two or more BNs,

we partition the product-mix space so that the bottleneck is unchanging in each subregion.

When we interpolate, we only use available CT-TH curves for product mixes within the same

2In this example each station has a single server, and the service rate is the same for all products at a
given station, but the routing of the products varies by product type. This makes the mean CT analytically
tractable.
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Figure 4: Constant-BN subregions shown in the product-mix space of a 3-station Jackson
network.

subregion as the PM of interest. We exploit a capacity model (as described in Section 3.1)

to identify the constant-BN regions.

To examine the response surface more closely for this example, we look at a cross section

of the surface created by fixing α3 = 0.1 and letting α1 vary from 0.0 to 0.9 (so that

α2 = 1 − 0.1 − α1). This path through the design space is shown as a dashed line on the

left plot in Figure 5. On the right in Figure 5 is a plot of the mean cycle time at x = 0.95,

c0.95(α), versus α1 along this path. For this example there are 3 constant-BN subregions in

the design space; within each subregion the cycle time curve is smooth and differentiable,

but not at the bottleneck shifts, which motivates our choice of partition.

3.5 Progressive Fitting

Continuing the example from Section 3.4, now only consider the mean CT curves for product

2. In Figure 6 the overall CT curve for product 2 is separated into individual CT curves for

each station. The figure on the left shows the whole range of α1, while on the right only the

curves for constant-BN subregion V2 are shown. In subregions V1 and V3, CT for stations

other than the BN increase while moving toward the BN shift. As a consequence overall CT
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Figure 5: Product-mix path created by fixing α3 and varying α1 (left) and the corresponding
CT-PM curves created along this path at x = 0.95 (right).

Figure 6: CT-PM curves of individual stations for product 2 over the entire region (left) and
in BN subregion V2 (right).

is monotonic. However, in subregion 2 the cycle time of station 2 stays the same, station

3’s CT increases approaching V3, and station 1’s CT increases approaching V1. As a result

of being surrounded by two BN shifts, the overall CT curve in constant-BN subregion 2 is

influenced greatly by two different stations’ CT curves.

Even though we cannot extract individual station curves in a real problem, we want a

model that can represent the sort of behavior observed in this example. Thus, in a subregion

surrounded by b BN shifts, we propose progressively fitting b ROP models, one dedicated

to each of the BN shifts. To do so we will utilize a weighted least squares (WLS) approach

to emphasize fitting the points closer to each BN shift well. “Progressive fitting” (see Ap-
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pendix A.2) implies fitting to the error surface remaining from previous fits. After fitting b

ROP models, each one specialized to capture the behavior of the response surface near to

one of the BN shifts, we fit one last ROP model using ordinary (unweighted) least squares.

More precisely, in a multiproduct wafer fab we approximate the expected cycle time for,

say, product 1, for fixed x, in a constant-BN subregion bordered by b BN shifts, with the

following model:

cx(α) ≈
b+1∑

k=1

( ∑I
i=1 βikαi∑I−1

i=1 τikαi + αI

)
=

b+1∑

k=1

α′βk

α′τ k
. (7)

This approach reduces the total number of parameters to (b + 1)(2I − 1). To mitigate the

chances of overfitting we use the progressive fitting scheme so that only 2K − 1 parameters

are fit at a time, and we perform an overfitting test described in Appendix A.6.

We use Model (7) in two ways: During the design phase, when we build up the PM’s

in D, we employ the model with x = xU to decide when enough design points have been

obtained. We use x = xU because it tends to be the most difficult level of throughput to fit.

Once the design set D is fixed, we employ interpolation based on Model (7) each time there

is a query for a pair (x,α′) with α′ 6∈ D.

4 Algorithm

In this section we present a high-level description of our method for building up the design

set D and then delivering predictions of steady-state mean CT on demand. We do so in the

form of a high-level algorithm with technical details relegated to the Appendix.

The high-level algorithm begins by fitting CT-TH curves using the method of Yang et al.

(2007ab) for enough product mixes that we can interpolate CT for other product mixes not

simulated using these curves. We fit the CT-TH curves to very high precision, as measured

by relative error across the curve, and therefore treat them as “the truth” in the interpolation

steps. To judge the adequacy of our PM design set we check the goodness of fit at the most
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extreme TH of interest xU , since that is typically the hardest to fit.

In our algorithm, “design points” refers to PM settings α; the Yang et al. (2007ab)

procedure adaptively chooses throughputs x for each CT-TH curve we fit. Let Dj denote the

set of design points supporting the interpolation metamodel for constant-BN subregion j,

Vj . Without loss of generality we number the stations that could become the bottleneck as

j = 1, 2, . . . , B; in the worst case B = J , the number of stations, but in real applications B

is typically 1 to 3. If two or more stations are simultaneously the bottleneck for some PMs,

then we treat them as a single station for the purpose of describing the algorithm. Design

points are chosen from a finely spaced grid of potential design points; let Pj denote the set

of potential design points in Vj . We enforce Dj ∩ Pj = ∅ so that a design point is either

supporting a model or is a potential design point to be added, but not both.

Design-Phase Algorithm

Initial Tasks:

Step A: Partition the experimental region into constant-BN subregions V1, V2, . . . , VB

(see Section 3.4).

Step B: Select the initial set of design points for each subregion D1,D2, . . . ,DB. (see

Appendix A.1).

Step C: Using the Yang et al. (2007ab) procedure, fit cα(x), ∀α ∈ Dj , j = 1, 2, . . . , B

and for each product to the selected precision level (see Section 3.2).

Main Loop: In each constant-BN subregion Vj , j = 1, 2, . . . , B, perform the following until

the stopping criterion is achieved. [Note: The stopping criterion is based on a user

selected precision level for relative error of the metamodels. A metamodel for a given

product in a given subregion is said to be “precise” if it meets the specified precision

level. For the stopping criterion to be met the metamodels for all products in all
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subregions must be precise. See Appendix A.5. The user may also specify a maximum

number of design points, Dmax, allowed for Dj which acts as a secondary stopping

criterion for cases where computation time must be limited.]

Step 1: Identify the products for which there is no precise metamodel and include

them in a set UNFIT; the remaining products belong to the set FIT. If the set

UNFIT is empty then proceed directly to Step 4.

Step 2: Do the following steps for every product labeled UNFIT.

Step 2a: Fit a single ROP model (5). If the resulting model is precise then

classify the product as FIT and begin again at Step 2 for the next product.

If not precise, then proceed.

Step 2b: Fit a metamodel using progressive weighted least squares (see Appen-

dices A.2–A.3). If the metamodel is precise then proceed to Step 2c, otherwise

go to Step 2d.

Step 2c: Perform a test to detect overfitting (see Appendix A.6). If there is no

overfitting problem then classify the product as FIT and begin at Step 2 for

the next product.

Step 2d: Find the candidate design points in Pj for which the relative difference

between a pseudosurface (see Appendix A.4) and the fitted surface for each

product in UNFIT is the greatest. Add these design points to the set Dj and

fit cα(x) for each product using the procedure of Yang et al. (2007ab). [Note:

The pseudosurface is a standard interpolation model that helps identify loca-

tions for new design points; see Appendix A.4.]

Step 3: Verify that each product labeled FIT is still classified as precise for all design

points that now constitute Dj. If a metamodel fails to be precise at any of these

newly added points then classify it as UNFIT. Go back to Step 1.
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Step 4: If |Dj| ≥ Dmax then the loop terminates. Otherwise, select b + 1 additional

design points from Pj using a space-filling criterion. These points are used for

validation of the models. Fit cα(x) for each product using the procedure of Yang

et al. (2007ab) for these points. If the fitted model predictions at these points are

precise for each product then the loop terminates. If, however, a metamodel fails

to be precise then classify it as UNFIT and go back to Step 1.

At the end of this procedure we have a model structure consisting of design points

D = ∪B
j=1Dj and CT-TH curves cα(x) for each product and each product mix α ∈ D.

To answer a query about the CT for, say, product i at (x,α′), we first identify to which

constant-BN subregion α′ belongs, say j; we then use progressive fitting to fit a model of

the form (7) using data {cα(x),α ∈ Dj} and plug in α′ to obtain the desired result.

5 Illustration

We demonstrate our algorithm with the modified Minifab model (El Adl et al., 1996). This

model features the main aspects of semiconductor manufacturing including batching, parallel

machines, sequence dependent setups, recurrent flows, and stochastic tool break downs. It

has three stations (five machines) and three products that share the same route, yet have

different processing times. Those products will be released into the fab by three Poisson

processes representing a particular product mix and TH configuration. Figure 7 shows the

common processing flow for the three products.

The station families have the following characteristics:

Station Family 1 (A, B) has two parallel machines, each of which can process batches of

up to 3 lots in the same processing stage following a greedy batching policy (i.e., it

does not wait to fill up a batch). The two machines have independent exponentially
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Figure 7: Processing flow in the Minifab model.

distributed time to failure and time to repair with mean values MTTF = 29 hours

and MTTR = 1 hour.

Station Family 2 (C, D) also has two parallel machines. The two machines also have

independent exponentially distributed time to failure and time to repair with mean

values MTTF = 9 hours and MTTR = 1 hour.

Station Family 3 (E) a single machine that requires a setup of 9 minutes whenever it

changes to a different processing stage than the stage currently being processed. Time

to failure and time to repair are exponentially distributed with mean values MTTF =

18 hours and MTTR = 2 hours.

Table 1 shows the processing times of the three products. This set of processing times

generates three regions of constant bottleneck. Product 1 has station family 3 as bottleneck,

product 2 has station family 2 as bottleneck, and product 3 has station family 1 as bottleneck.

The following capacity model has been derived:

CapStnFam 1(α) = 1
102.9866α1+102.9866α2+102.9866α3

CapStnFam 2(α) = 1
94.9131α1+141.0137α2+73.2186α3
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Table 1: Processing times in minutes for the three products.

Product 1 First Visit Second Visit Load/Unload per Visit
Station Family 1 225 255 60
Station Family 2 50 65 30
Station Family 3 50 5 20

Product 2 First Visit Second Visit Load/Unload per Visit
Station Family 1 225 255 60
Station Family 2 95 105 30
Station Family 3 60 10 20

Product 3 First Visit Second Visit Load/Unload per Visit
Station Family 1 225 255 60
Station Family 2 30 45 30
Station Family 3 35 5 20

CapStnFam 3(α) = 1
107.33α1+123.78α2+89.89α3

specifying the station family’s capacity in lots per minute for some product mix α.

The region of interest for this example is given by minimal product percentage constraints

of αL = 0.07 for each product and by the throughput range of xL = 0.5 to xU = 0.95. The

simulation model is configured to collect 200, 000 CT observations after having truncated

100, 000 observations from the transient phase. Together with the minimal product percent-

age constraints the capacity model generates the three constant bottleneck regions shown in

Figure 8.

The proposed cRSM methodology provides a MS in about 35 minutes based on the

capacity model, minimal product percentage constraints, traffic intensity range, and a target

of 6.5% for the relative prediction error. At each of the PM points in the design our CT-TH

curve fitting algorithm (Section 3.2) decides the TH levels to simulate and allocates about

17–25 simulation replications to them until a 5% relative error criterion is achieved. In the

final design we have |D| = 39 PM points, each having simulation replications at 5 TH levels.

In total, 714 simulation replications were executed. Figure 9 shows the final design.
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Figure 8: Product mix regions of constant bottleneck.

Figure 9: Final set of design points.
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Figure 10: Relative prediction error for the mean cycle time of product 1. The largest dots
represent an error between 5% to 6%. The smaller dots represent the smaller error intervals
with 1%-width.

Since the true mean cycle time response surface for this Minifab model is unknown,

we generate reference values for the x = 0.95 on a uniform PM grid of step size 0.05 via

simulation using 50 replications at each grid point. These 120 values provide mean CT

estimates with a confidence interval half width of less than 2% relative error.

Figures 10–12 show the relative errors of the model structure’s predicted mean product

cycle time in comparison to the reference values. The maximal observed error was about

6.5%, similar to the configured target relative error. Larger error values are shown in those

figures around the pure mix for product 2. This appears to be caused by a certain deficiency

of the capacity model in that area. Also, decreasing the target prediction error below the

level 6.5% did not decrease the errors in that region.
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Figure 11: Relative prediction error for the mean cycle time of product 2. The largest dots
represent an error between 5% to 6%. The smaller dots represent the smaller error intervals
with 1%-width.

Figure 12: Relative prediction error for the mean cycle time of product 3. The largest dots
represent an error between 6% to 7%. The smaller dots represent the smaller error intervals
with 1%-width.
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6 Conclusions

This paper has provided a methodology that performs a limited set of simulation runs for a

complex manufacturing system and then uses the results of those runs to develop metamod-

els that predict mean steady-state cycle time as a function of product mix and throughput.

These predictions can be made “on demand,” i.e., without performing any additional simu-

lation runs, for product mixes and throughput levels not previously simulated.

While this paper focused on the mean cycle time, a similar approach to predict higher mo-

ments of cycle time is being developed which will allow prediction of percentiles of cycle time.

In addition, extensive empirical evaluation of the approach is currently being conducted.
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