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Analytic and External Control Variates
for Queueing Network Simulation
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While external control variates (ECVs) have long been advocated for reducing the variance of simulation
estimators, the lack of tractable external control systems and the almost doubling of the computational
burden has hindered their use. This paper presents preliminary work on a new type of control variate,
the analytic control variate (ACV), that has the advantages of the ECV but requires much less additional
computation. Use of an ACV is demonstrated for open queueing networks.
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INTRODUCTION

Computer simulation is commonly employed for the analysis of stochastic systems, such as
queueing networks. Simulation analysis, however, introduces a host of concerns found in sampling
experiments. One of these, estimator variability, is addressed in this paper.

Simulation estimators are random variables. Reducing the variance of these estimators can
increase the computational efficiency of a simulation experiment, meaning that a specified precision
can be achieved for less computation cost, or increased precision can be achieved for the same
computation cost. Variance reduction techniques (VRTs) have been developed for this purpose.
This paper examines a class of VRTs known as control variates (CVs), and specifically two types
of CVs: the external control variate and the new analytic control variate. The analytic-control-
variate approach breaks new ground in the class of CV estimators, and may have the potential
to simplify the selection and implementation of CVs for simulation analysis. The research reported
here represents a start in assessing this potential in terms of both ease of application and
performance.

The remainder of the paper is organized into five sections. The first reviews CV estimators and
introduces the new analytic control variate. The second and third sections describe the particular
control variate and experiments considered here, and the fourth section presents the experiment
results. The paper concludes with a section discussing open research questions.

CONTROL VARIATES

The idea behind CVs is to exploit the correlation between two or more random variables to
produce a variance reduction. Let Y be a scalar random variable with expectation 6, an unknown
scalar parameter of interest. Let C be another (possibly multivariate) random variable having
known expectation ¢. Control variate estimators attempt to use the difference C — ¢ to counter
the unknown estimation error ¥ — 6. Nelson' gives a characterization of CV estimators in terms
of five properties, and discusses several estimators that exhibit these properties. This paper,
however, will focus only on the linear CV estimator for univariate C, which is described next.

Linear control-variate estimator
The linear CV estimator is
Y(b)=Y —b(C —¢), 1)

where Y(b) is the CV estimator, b is a constant called the control coefficient, and C is a univariate
control with known expectation ¢. The variance of Y(b) is

Var[Y(b)] = Var[Y] + b*Var[C] — 2bCoV[Y, C]. 2
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The value of b that minimizes Var[Y(b)], which can be found by differentiating (2) with respect
to b, is

CovlY, C]
2 T
b Var[C] )
Substituting b* into (1) yields the minimum variance CV estimator Y (b*) with variance
Var[Y (b*)] = (1 — p*)Var[Y], )

where p is the correlation coefficient of ¥ and C. Equation (4) indicates that the greater the square
of the correlation between Y and C, the greater the variance reduction relative to Var[Y].

Equation (3) specifies the optimal value for the control coefficient b for a univariate control.
Unfortunately, Cov[Y, C] is usually unknown. While the value of b could be arbitrarily chosen (for
example, b = 1), (2) shows that variance increases are possible for some values of b. Thus, b* is
usually estimated in the following manner.?> Generate K independent and identically distributed
replications of Y and C, (Y}, C,), k =1,2,..., K, then replace Cov[Y, C] and Var[C] in (3) with
their sample equivalents. We denote this estimator by b*, and note that it is algebraically the same
as the slope estimator in a least-squares regression of ¥ on C — ¢. The CV point estimator of 0
then becomes

Y(b*) =Y - b*(C — ¢), ()

where Y and C are sample means. ,

Since b* is a function of the C,, b* and C are not generally independent. Thus, ¥ (b*) is generally
biased for 6, even if C is unbiased for ¢ and Y is unbiased for 6; the key condition for unbiasedness
is that E[Y|C]=0 +b(C — ¢). The bias does decrease as K increases, however. Kleijnen? and
others recommend splitting or jack-knifing to reduce the bias.

The linear CV estimator can be extended in a straightforward manner to a Q-variate control
vector; see, for instance, Lavenberg and Welch.’ While we shall not consider Q > 1 in this paper,
an important result in Lavenberg and Welch, specialized to Q = 1, is the variance ratio

Var[Y(b*)] K -2

Var[Y] ~ K -3

Equation (6) indicates that the number of replications K should not be too small, otherwise
the variance reduction due to the correlation between Y and C will be significantly diminished.

Equation (6) quantifies the degradation from the minimum achievable variance (4) due to
estimating b*.

(1-p?. (6)

Selecting control variates

One difficulty in applying CVs is the need to identify an effective control, C, meaning strongly
correlated with Y. Internal CVs (ICVs) use input random variables as controls. Inputs are random
variables with user-specified probability distributions that describe the randomness in a stochastic
model, e.g. the interarrival times and service times in a queueing system. ICVs are available in any
simulation, but it is sometimes difficult to predict which input random variables, if any, will be
strongly correlated with the output random variables of interest.

External control variates (ECV's) are another source of CVs. ECVs depend on the existence of
a second system that is similar to the system of interest, but which allows for analytical calculation
or numerical approximation of ¢, where ¢ is the parameter of the second system that corresponds
to 0 for the system of interest. We call the second system the control system. When both the system
of interest and the control system are simulated using common random numbers (see, for instance,
Law and Kelton®), it is hoped that C, the estimator of ¢ from the control system, will be strongly
correlated with Y, the estimator of 6 for the system of interest. Since ECVs require a second
simulation, considerable variance reduction must be achieved to warrant the additional com-
putational expense.

Nelson' suggests another method for choosing the control. Let & be a vector of parameters of
the input distributions for a control system, and suppose that ¢ = g (), where g is a function
and ¢ is again the parameter of the control system corresponding to 6 for the system of interest.
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The method is applicable if the system of interest has the same input parameters, 8, but differs
from the control system in other ways. The key step is to simulate the system of interest to obtain
Y and &, where 4 is an estimator of the known quantity 8. Rather than using the difference
6 — 6 as an ICV, however, the analytic control variate (ACV) Y(b)=Y — b(g(8) —g(d)) =
Y — b(g(8) — ¢) is formed. If K replications (Y, 8,), k =1,2,..., K are generated, an estimator
analogous to (5) is

Y(6%) =7 - b* (2(6) - ¢), (7

where b* estimates b* = Cov[Y, g(§)]/Var[g(J)]. Note that g(5) may not be an unbiased estimator
of ¢, but should be made to be a consistent estimator of ¢ (as in the example below).

In contrast to the ECV, the ACV does not require a second simulation. Also, ACVs are not
sensitive to the method of random variate generation used to realize the inputs, while ECVs usually
require the inverse cumulative distribution-function method (see, for instance, Law and Kelton®)
to ensure that using common random numbers induces correlation between the outputs of the
system of interest and the control system. What is required for ACVs is a control system, the
function g (which may be a numerical procedure as well as a closed-form function), and the vector
of realized input parameters 5. The ACV retains the advantage of the ECV that the control variate
is always the estimator of the parameter of the control system corresponding to the unknown
parameter of the system of interest. The remainder of the paper presents an example.

JACKSON NETWORK CONTROL VARIATES

The difficult requirement for both ECVs and ACVs is finding a system model to serve as a
source of controls. It has long been folklore in simulation that, for general queueing networks,
the Jackson network’ could serve as a source of ECVs. Briefly, a Jackson network is composed
of N possibly multiple-server, infinite-capacity queues with exponentially distributed service times
and probabilistic routeing of customers between queues. In the open Jackson networks considered
here, customers arrive to one or more of the queues according to independent Poisson arrival
processes. For the Jackson model, several long-run (sometimes called ‘steady-state’) performance
measures can be analytically derived.

The following notation will be used to characterize a Jackson network:

N is the number of queues in the network.

A =(4,...,4y) is the external arrival rate at queues 1 to N.

w=_(u,...,uy) is the service rate of an individual server at queues 1 to N.

s =(s,...,S8y) is the number of servers at queues 1 to N.

r = {r;} is the matrix of probabilities r; that a customer departing from queue i next
goes to queue j.

e =(e,...,ey) is the effective arrival rate at queues 1 to N, which is a function of
A, u, s and r.

Let 6 = (4, i, r). For fixed N and s, the following performance measures are functions of §:
(@11, ..., ¢1x) =21(5), the long-run utilization of the servers at queues 1 to N.
(@21, ..., Pon) = 8,(3), the long-run customer wait in queue at queues 1 to N.

Equations for determining e, (¢, ..., ¢,y) and (¢, . . ., ¢,,) can be found in texts such as Giffin.®

EXPERIMENT METHODOLOGY

Three different queueing networks were investigated experimentally, each network meeting
the requirements of the Jackson model, except possibly for the distribution of service time. The
service-time distributions investigated were the exponential, the Weibull and the uniform. ECVs
and ACVs iwere used to estimate (6,,...,6,y) and (0,, ..., 6,y), the long-run server utilization
and long-run wait in queue, respectively, for each queue in the network. Note that additional
performance measures, such as expected queue length, can be obtained from these performance
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measures via Little’s formula.” From here on, let (8,,6,) and (¢,, ¢,) be generic for the server
utilization and queue time at any queue in the network of interest and the corresponding Jackson
network, respectively.

Application of control variates

The ECV estimator requires two simulations. The first is a simulation of the network of interest,
and it estimates 6, and 6,; denote the estimators by Y, and Y,, respectively, which are averages
over a single replication. The second simulation is of a similar Jackson network that approximates
the network of interest and estimates (the known parameters) ¢, and ¢,; denote the estimators by
C, and C,, respectively, which are also averages over a single replication. Since the exponential
service-time distribution yields the Jackson model itself, ECVs were only obtained for the Weibull
and uniform cases. For these two distributions the second simulation was run using common
random numbers, using the inverse cumulative distribution-function method to generate input
realizations, and using the means of the Weibull and uniform distributions as the means of the
exponential service-time distributions of the Jackson model. Thus, both the network of interest and
the corresponding Jackson network share the same parameters N, s and 6.

The ACYV requires only the simulation of the network of interest. Additional code was added
to the simulation to record the vector of observed parameters, §. Both the observed & and the
known 6 were substituted into the Jackson network equations g, and g, to obtain g,(§) and
¢,=g,0), i=1,2, for the ACV. The extra effort required to use the ACV is the additional
computation time needed to record &. This effort is insignificant relative to the cost of the second
simulation required for the ECV. Once the controls or parameters needed to compute the controls
have been obtained, the computational effort to compute both types of CV estimators is the same.
However, in general we need only that the network of interest and the Jackson network share some
parameters.

One drawback of the Jackson ACV is that, as the traffic intensity at, say, queue n (which is
e,/s, 1) increases, obtaining a realization of § that violates the Jackson model assumption that the
traffic intensity is less than 1 becomes more likely, even though the actual traffic intensity is less
than 1. The Jackson network results are invalid when this occurs. As the length of a replication
increases, the probability that this occurs goes to zero, but there is always a positive probability
for finite-length replications. A satisfactory solution to this problem has not yet been obtained.
Another drawback is that the ACVs are biased estimators. However, because we used method of
moments estimators for J, they are consistent. Determination of the severity of the bias is open
to further study, since reduced variance at the expense of significantly larger mean-squared error
is unacceptable. In the experiments reported here the bias was not significant.

Networks considered

To evaluate the effectiveness of the Jackson-based CVs, three networks with different structure
and complexity were simulated. Network I consists of two queues, each with its own external
Poisson arrival process. Customers completing service at each queue may be routed to the other
queue or may depart from the system entirely (see Figure 1).

Network II is a three-queue, tandem, acyclic network. An external Poisson arrival process occurs
only at queue 1, where customers complete service and move to the second and then the third
queues for service. Departure from the network occurs only when service is completed at the third
queue (see Figure 2).

roy= 0.4

1 riz=04 _/2\)

A =1 /)\;‘i{‘ )‘:,@__.@__‘®—>

sy=1 s,=2 5. =1 s,=2 53=3

FI1G. 1. Network I. FIG. 2. Network II.
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FiG. 3. Network III.

Network III consists of four queues, with an external Poisson arrival process at queue 1.
Customers completing service at the first queue are routed to either the second or third queues,
and then to the fourth. Customers completing service at the fourth queue may return to the first
queue or depart from the system entirely (see Figure 3).

Three service-time distributions were studied: the exponential, the Weibull and the uni-
form. This selection provides three references for studying the Jackson-based CVs: the
exponential, the requisite for the Jackson model, infinite in the right tail and highly variable;
the Weibull, for which the exponential is a special case, but hump-shaped in our examples;
and the uniform, a finite-range distribution with considerably less variability. Each network
contains single and multiple-server queues, and parameters were chosen so that the traffic
intensity at each queue in the network is the same. While it is hoped that ACVs can be
applied to networks that depart even further (than just service-time distribution) from the
Jackson network assumptions, these three networks were considered adequate for the initial
investigation.

Experiment design

The CV estimators investigated were (5) for the ECV and (7) for the ACV, both requiring K
replications of the simulation. However, since measures of interest are long-run measures, and since
pilot experiments indicated the potential for excessively long initial-transient periods, a single
replication divided into approximately independent batches of time length ¢ was used rather than
independent replications; see, for instance, Schmeiser® for the method of batch means. The number
of batches per estimator was set at K = 25, since that number yields a loss ratio (K — 2)/(K — 3)
of only 5% from (6). A test of independence’ was used to determine a batch size, ¢, such that
batch means were approximately independent. Table 1 shows the selected batch size for each
network.

All simulations were initialized with no customers in the network. An initial transient period of
10,000 time units was deleted from the beginning of each replication. This period was chosen based
on pilot experiments on the exponential service-time networks, and was conservatively long in
hopes of eliminating initial-condition effects from the experiment results. Following the initial
period of 10,000 time units, 250 batches were collected. This allowed J =10 ECV and ACV
estimates to be calculated, each based on K = 25 batches. To summarize, the simulation of a given
network involved deleting an initial period of 10,000 time units, collecting 250 batches of length
t, and then computing J = 10 CV estimators, each based on 25 batches. The summary statistics
from the J estimators are reported in the next section.

TABLE 1. Selected batch lengths

Network t (time units)

1 150
11 200
11 300
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RESULTS

The results listed in Tables 2, 3 and 4 are for the ACV estimates of 8, and 6, for networks
I, II and III, respectively, at the 0.9 traffic intensity for each queue in the network. Variance
reductions for the 0.5 traffic intensity followed a similar pattern: substantial reductions for 6,
(approx. 98%) and somewhat less substantial reductions for 6, (usually in the 15%-75% range).
There was one variance increase for a parameter of network III. The ECVs were consistently less
effective than the ACVs, and did not warrant the expenditure of the second simulation. A complete
listing of results can be found in Sharon.!

For the networks considered, the true value of 6, is available for the networks with exponential
service times. Seven of the nine .crude estimators for 6, fell within one standard deviation of
the known value. This provides a check on the coding of the simulation model. The estimates
are not equal to the true values because of sampling variability and any remaining initial-condition
bias. g
The most prominent feature of the results is the performance of the ACVs for 6,, the long-run
server utilization, relative to the ACVs for 6,, the long-run wait time. In every case the utilization
estimator yielded greater variance reductions. One reason for this may be that the analytic control
for utilization is a simple ratio, as opposed to the complex function for the queue time.® While 6,
can be calculated for all the networks, it was included in this study to investigate the performance
of the ACV approach.

Another feature of the results is that the ACV estimate of 6, is consistently lower than the crude
estimate. One possible cause of the difference is the introduction of bias in the ACV estimator, in

TABLE 2. Experiment results for network I with p; = 1.2 and p, = 0.46, giving traffic
intensity 0.9

Parameter Crude Variance ACV Variance % Reduction
Exponential service time
6, 0.8872 0.0008 0.9025 0.0001 84.5
6,5 0.9076 0.0006 0.9130 0.0002 67.6
05, 5.9196 2.1802 5.0694 1.1656 46.5
[ 9.6711 4.3639 8.4098 3.3497 23.1
Weibull service time
0, 0.8934 0.0005 0.9010 0.0001 87.2
0\, 0.9033 0.0003 0.9034 <0.00005 85.1
0, 4.1025 0.8210 3.7813 0.5469 334
05, 49167 1.0489 4.1912 0.5425 48.8
Uniform service time
0, 0.8991 0.0002 0.9023 <0.00005 77.2
6, 0.9023 0.0002 0.9017 <0.00005 76.1
0y, 3.7309 0.5230 3.3113 0.3808 27.2
05, 3.9522 0.4220 3.4828 0.3020 28.5

TABLE 3. Experiment results for network IT with p, = 1.11, p, = 0.56 and p, = 0.37,
giving traffic intensity 0.9

Parameter Crude Variance ACVY Variance % Reduction
Exponential service time
[ 0.8872 0.0005 0.9008 <0.00005 92.4
0 0.8947 0.0001 0.9010 <0.00005 63.8
03 0.8906 0.0004 0.8985 0.0001 67.8
0, 6.3363 1.1857 5.6212 0.2973 74.9
0y, 7.3719 4.4346 6.4935 1.8028 59.3
0,3 6.1086 3.0807 5.6702 2.5672 17.1
Weibull service time
0, 0.8941 0.0002 0.8997 <0.00005 93.7
0., 0.8939 0.0001 0.8999 <0.00005 87.3
0,5 0.8918 0.0002 0.8978 <0.00005 81.3
0,, 4.2966 0.4055 3.8640 0.1924 52.6
0,y 2.9552 0.4286 2.7459 0.3320 22.5
0,3 2.2526 0.2985 2.1985 0.2648 11.3
Uniform service time
0, 0.8964 0.0001 0.9015 <0.00005 84.8
9, 0.8946 0.0001 0.8995 <0.00005 88.2
8, 0.8950 0.0001 0.8996 <0.00005 84.7
0,, 4.1722 0.3479 3.8384 0.4355 43.5
0,, 1.0114 0.0388 0.9515 0.0314 18.9
0y 0.5184 0.0072 0.4910 0.0054 24.5
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TaBLE 4. Experiment results for network III with p, = 1.48, y, = 0.44, 3 =0.59 and
ue=0.74, giving traffic intensity 0.9

Parameter Crude Variance ACV Variance % Reduction
Exponential service time
6, 0.8912 0.0005 0.8989 0.0001 87.8
6, 0.8999 0.0003 0.9053 <0.00005 82.0
6, 0.8874 0.0006 0.9044 0.0001 79.6
0, 0.8972 0.0003 0.9019 0.0001 64.8
0,, 6.0750 7.5294 5.4466 4.2202 439
0, 9.0400 8.1951 7.8507 4.6498 43.3
[ 13.1571 12.4821 10.8947 6.9876 44.0
0,4 5.4977 0.5474 5.0025 0.7746 —~41.5
Weibull service time
6, 0.9320 0.0003 0.9132 0.0001 81.7
0, 0.8943 0.0001 0.9007 <0.00005 77.0
8, 0.8943 0.0003 0.9047 0.0001 71.5
0, 0.8963 0.0001 0.8990 <0.00005 67.5
0,, 6.5081 6.2433 5.7123 4.1207 34.0
0,, 4.3736 0.7746 4.0249 0.5064 34.6
[ 7.9743 4.4438 7.2919 3.0851 30.5
0y 1.9755 0.0951 1.8792 0.0878 7.7
Uniform service time
0, 0.9353 0.0002 0.9143 0.0001 46.4
6, 0.8939 0.0002 0.9019 <0.00005 91.7
0, 0.8946 0.0004 0.9043 0.0001 85.2
0., 0.8935 0.0002 0.8977 <0.00005 75.4
6y, 6.0980 7.2565 5.2239 4.9088 323
0,, 2.8475 0.2466 2.5843 0.1150 53.4
0,3 5.3534 1.0206 4.5992 0.6964 317
0y 0.5270 0.0056 0.5125 0.0053 5.3

addition to the initial-condition bias that both estimators face. As previously mentioned, bias can
arise from the need to estimate b*, and because E[g(d)] # g(d) [although g(§) is a consistent
estimator of g(d)]. These are important effects to investigate, because variance reduction at the
expense of increased bias may not be acceptable.

DISCUSSION

This research indicates the promise of ACVs, and highlights areas requiring further study.
These areas fall into two categories: the identification of parametric models to serve as sources of
control variates, and the development of appropriate output-analysis methodology.

A ready supply of appropriate control models would greatly reduce the effort and uncertainty
involved in selecting controls. This also holds a degree of promise for automating or embedding
the ACV approach in existing simulation-support packages, since only a class of models rather than
a particular control variate would have to be identified.

In our experiments, the Jackson model served well for the estimation of long-run utilization;
however, its application to the queue-time measure was not as effective. Further study is required
to determine whether this poorer performance was due to limitations of the Jackson model or other
factors, discussed below. A modification that still uses the Jackson model, and might be more
effective, is to observe parameters other than §; for example, observing the effective arrival rate,
e, and the probability of an empty queue, p, then computing the Jackson values from these
parameters.® Extensions to closed queueing networks are already in progress. Also, other
approximate queueing models besides the Jackson models should be considered, and extensions
to other types of systems (e.g. inventory) should be possible.

The second category, the output-analysis methodology, offers many unanswered questions.
The effects due to the method employed to eliminate initialization bias and the use of batch means
both have an impact on the performance of the CV estimators. To a large extent, our approach
was dictated by cost considerations. It is possible that some aspects of the ACVs’ performance
were confounded with the performance of the output-analysis method. Recently, Nelson!! has
analytically investigated the combined effects of simultaneously applying multivariate CVs and
batching. Finally, procedures such as jack-knifing could be used to reduce the bias of ACV
estimators. ‘
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