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Simulation metamodeling is building a statistical model based on simulation output as an approximation
to the system performance measure being estimated by the simulation model. In high-dimensional meta-
modeling problems, larger numbers of design points are needed to build an accurate and precise metamodel.
Metamodeling techniques that are functions of all of these design points experience difficulties because of nu-
merical instabilities and high computation times. We introduce a procedure to implement a local smoothing
method called Moving Least Squares (MLS) regression in high-dimensional stochastic simulation metamod-
eling problems. Although MLS regression is known to work well when there are a very large number of
design points, current procedures are focused on two- and three-dimensional cases. Furthermore, our pro-
cedure accounts for the fact that we can make replications and control the placement of design points in
stochastic simulation. We provide a bound on the expected approximation error, show that the MLS predictor
is consistent under certain conditions, and test the procedure with two examples that demonstrate better
results than other existing simulation metamodeling techniques.

Categories and Subject Descriptors: C.2.2 [Stochastic Simulation]: Metamodeling
General Terms: Simulation, Metamodeling, Nonparametric Regression

Additional Key Words and Phrases: High-dimensional metamodeling, moving least squares, locally weighted
least squares regression

ACM Reference Format:

Peter Salemi, Barry L. Nelson, and Jeremy Staum. 2016. Moving least squares regression for high-
dimensional stochastic simulation metamodeling. ACM Trans. Model. Comput. Simul. 26, 3, Article 16
(January 2016), 25 pages.

DOI: http://dx.doi.org/10.1145/2724708

1. INTRODUCTION

Stochastic simulation is often used to model complex systems to support decision mak-
ing. For example, Yang et al. [2011] use a simulation model of a semiconductor wafer
fabrication system to estimate the expected throughput for any given scenario. Simu-
lation runs may be time-consuming to execute, especially when many scenarios need
to be investigated; for example, Tongarlak et al. [2010] describe a simulation model of
a fuel injector production line that takes 8h to run a single replication. This burden
can make simulation models impossible for use in decision making, especially when
decisions need to be made quickly. However, when there is enough time between model
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building and decision making, the simulation can be exercised on a set of chosen sce-
narios, the design points, and the results can be used to construct a statistical model.
This statistical model is called the simulation metamodel. Simulation metamodeling
allows the experimenter to obtain more benefits from a simulation because the sim-
ulation can be run when time is plentiful, and quick predictions can be made when
decision-making time is scarce or expensive. Applications that need such metamodel-
ing capability include manufacturing planning [Yang et al. 2011] and financial security
pricing [Liu and Staum 2010]. For instance, in manufacturing capacity or production
planning, decision makers may want to consider trade-offs among system design and
control parameters as they affect, say, throughput or cycle time. Decision-maker time
may be scarce and expensive, and individual simulation experiments on complex man-
ufacturing systems may take too much time to evaluate trade-offs interactively. In this
situation, a metamodel can provide simulation-level fidelity “on demand.” In the secu-
rity pricing context, decisions may need to be made in real time in the face of changing
underlying risk factors, making it impossible to execute numerically intensive simula-
tions. Characteristic of these two (and many other) similar situations is that there is
a large number of possible scenarios that could arise, with no way to know in advance
which ones will be relevant, and insufficient time to execute the simulations necessary
to explore them directly when needed. Even if high-performance computing could the-
oretically allow the simulations to be executed in near-real time, expensive computing
resources are typically heavily utilized; therefore, their use must be scheduled. In other
words, in order for a decision maker to run the simulation and obtain a quick answer
when needed, the high-performance computing environment would have to be idle;
however, these computing resources are usually scheduled for high utilization.

The higher the dimension of the metamodeling problem, for which dimension is the
number of variable factors in a scenario, the more decision points are typically needed
to obtain an accurate and precise metamodel. In this article, we are interested in high-
dimensional metamodeling problems with a very large number of design points, such
as a 75-dimensional problem with 250,000 design points.

Metamodeling techniques that are functions of all of the design points, such as
weighted least squares regression and Gaussian process models, experience difficulties
when there is a large number of design points because of numerical instabilities and
high computation times. For example, fitting a Gaussian process model requires solving
an nxn linear system, which requires O(n?) operations, where n is the number of design
points. Several methods have been developed to deal with these limitations, such as
using pseudo-inputs that maximize the likelihood that the actual data was drawn
[Snelson and Ghahramani 2006], covariance tapering [Kaufman et al. 2008], fixed-
rank kriging [Cressie and Johannesson 2008], and treed Gaussian processes [Gramacy
and Lee 2008].

Some metamodeling techniques are based on the premise that the response surface
may have a sparse representation [Shan and Wang 2010; Lafferty and Wasserman
2008; Vijayakumar and Schaal 2000]. These methods often require a search to deter-
mine the important terms in the representation, and can be slow and time-consuming
since the number of possible terms to consider increases exponentially as the problem
dimension increases. When the variance in the replications is large, determining which
factors are important becomes difficult. Many of these methods also assume a relatively
small number of important factors, and can be ill-suited for problems not satisfying
this assumption.

Instead of using the entire set of design points for prediction, many methods localize
the prediction by only using design points near the prediction point [Vijayakumar and
Schaal 2000; Lafferty and Wasserman 2008; Breiman et al. 1984; Altman 1992; Watson
1964]. The main obstacle for localization methods is choosing the window for prediction.
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The window determines which design points influence each prediction. As the variance
in the replications increases, it becomes difficult for these methods to identify good
windows around the prediction point. Some of these methods (such as Vijayakumar
and Schaal [2000] and Lafferty and Wasserman [2008]) also assume a small number
of relevant variables.

Moving Least Squares (MLS) regression [Lancaster and Salkauskas 1981; Levin
1998] is a localization method that has been studied in the fields of partial differential
equations and image processing. These applications feature low-dimensional problems
with a large number of design points. Much of the research has focused on different
formulations and applications of MLS regression, with relatively little focus on the
construction of efficient procedures to implement MLS regression. The main obstacle
for any MLS regression procedure is the choice of the bandwidths of the weight function,
which determine the window. Lipman et al. [2006] calculates an error bound for the
MLS predictor, then searches for the bandwidth that minimizes this error bound.
The weight function is assumed to be isotropic, that is, there is only one bandwidth
parameter, thus a line search is used to find the optimal bandwidth. The line search
can be time-consuming since the error bound must be calculated during each step of
the search. Furthermore, noise in the observations satisfies a known bound. Adamson
and Alexa [2006] proposed a method that uses the empirical covariance matrix of the
k-nearest neighbors of the prediction point to assign a weight to each of the k-nearest
neighbors. Since the empirical covariance matrix is positive-definite, the eigenvectors
form the axes of an ellipsoid, the lengths of which depend on the eigenvalues. The
weight given to each of the k-nearest neighbors is determined by where the point lies
in the ellipsoid. As pointed out in Adamson and Alexa [2006], there is no way to ensure
that the ellipsoid covers all of the k-nearest neighbors, and no method is proposed to
choose a good value for k.

Locally Weighted Least Squares regression (LWLSR) [Ruppert and Wand 1994] is a
particular type of MLS regression, in which we assume that the noise in the simula-
tion output is of a specified form (given in Section 3.2). As with MLS regression, the
main obstacle for any LWLSR technique is the selection of bandwidths for the weight
function. The most common approach is to minimize the approximate mean squared
error (AMSE) of the LWLSR predictor with respect to the bandwidths [Ruppert et al.
1995a; Hengartner et al. 2002; Fan and Gijbels 1995; Doksum et al. 2000]. The main
difference between each of these methods is how they estimate the AMSE and the
choice of plug-in estimators for the parameters on which the AMSE relies. The major-
ity of LWLSR methods focus on the one-dimensional case or use an isotropic weight
function, which does not work well when there are multiple dimensions [Wand and
Jones 1993]. Also, the proposed plug-in estimators do not exploit the characteristics
of stochastic simulation, namely, access to replications and the placement of design
points. Furthermore, the plug-in estimators for the variance are usually designed un-
der the assumption of homoscedasticity [Ruppert et al. 1995a]. These methods also
have no way of controlling the number of design points used for prediction, which can
slow down computations and detract from the benefit obtained by localization. Other
examples of LWLSR methods include using eigenvalues [Prewitt and Lohr 2006] and
estimating the bias empirically [Ruppert 1997]. See also Cleveland et al. [1988] and
Loader [1999] for a discussion of the related method, called local regression.

In this article, we introduce MLS regression into the field of stochastic simulation
metamodeling and present a procedure to implement MLS regression in high dimen-
sions. Our procedure can also be used for high-dimensional LWLSR problems, since
current procedures focus on the one- and two-dimensional cases. Instead of using an
isotropic weight function, we use an anisotropic weight function whose bandwidths dif-
fer in each dimension. To choose the optimal bandwidths for the MLS predictor, we solve
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an optimization problem whose objective function is the AMSE of the LWLSR predic-
tor. Unlike existing methods, the optimization problem used to choose the bandwidths
is constrained. By putting constraints on the bandwidths, we can control the number
of design points used for prediction, which allows our method to produce predictions
relatively quickly even when there is a large number of design points. Furthermore,
the constrained optimization problem can be solved very efficiently using a variable-
pegging procedure. We also introduce new plug-in estimators for the parameters of
the method, including the density of design points, the variance of a replication, and
the second derivatives at the prediction point. The plug-in estimators for the density
of design points and the variance of a replication at the prediction point exploit the
fact that, in the setting of stochastic simulation, we control the placement of design
points and can make replications. The plug-in estimators for the second derivatives
at the prediction point can be calculated in high dimensions, unlike existing plug-in
estimators (e.g., the plug-in estimators in Ruppert et al. [1995b]). Finally, we provide a
bound on the expected approximation error and show that the predictor is consistent
under certain conditions.

Critically, we do not assume that the number of relevant variables is small or that
the response surface has a low-dimensional representation. Furthermore, we do not
assume that the simulation output has homogeneous variance throughout the design
space. We want to have good predictions by having a very large number of design points
and a space-filling experiment design.

In Section 2, we formulate the simulation metamodeling problem and discuss the
experiment designs that we use in our procedure. Section 3 reviews MLS regression and
LWLSR, on which we base our MLS procedure, followed by the presentation of our MLS
procedure in Section 4. We then provide a bound on the expected approximation error
and establish the consistency of our MLS predictor in Section 5, and discuss estimation
of the parameters in Section 6. We discuss results of numerical experiments using two
queueing examples in Section 7. We present our conclusions in Section 8.

2. EXPERIMENT DESIGN

We are interested in predicting a response surface, for example, the expected waiting
time for a customer in a queue. Denote the response surface at a design point x by y(x).
For the queue example, x could include arrival rates, service rates, and so on. Denote
the design space, the set of all possible values of the design variables, by X, which we
assume is the unit hypercube (which may be attained by rescaling the natural design
variables). Furthermore, let {{X,, R,};n > 0} denote a sequence of experiment designs,
where X, = (x], X3, ..., X]}) is the vector containing the first n generated design points,
and R, = (R}, Rj, ..., R}) is the vector containing the number of replications that we
allocate to each design point in X,,. In other words, for the nth sequential design, we
allocate R! replications to x?. The X,,, n > 1, are not necessarily nested. We introduce
this sequential setting as an asymptotic regime for analyzing our procedure later in
the article. We assume that

ln
lim — » T \xi e A} = [ g(z)d
im ;{xe } /Agzz

n—oo n

for all rectangles A C X, where g(z) is the limiting density of design points at z € X.
We also assume that

1 n
lim — I ;leARflzf”()d
Jim g 211 4L = [ o

for all rectangles A C X, where C, = ) ; R is the total number of replications
allocated in the nth design, and g(z) is the limiting density of effort spent at z € X. In
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our procedure, we assume that g and g are uniform densities on the unit hypercube
[0, 1]¢, that is, g(-) = g(-) = 1 and X = [0, 1]%.

For the nth sequential design, we run the simulation at X, = (x],x},...,x}). At
design point x?, we run R} i.i.d. replications of the simulation, and we denote the
simulation output of the jth replication by Y’(x}'), which we assume is an unbiased

estimator of y(x}). The estimate that we obtain at design point X} is the sample average
R”,

Y (= ZY”

We will also need an estimate of the variance o?(x?) of a replication at x?, which we
estimate by the sample variance

SQ(Xf;R" = R”— T Z Y” x R”))

If we do not have access to replications, such as in the case of steady-state simulations,
we need an estimate only for the variance of the one replication for our procedure.

For ease of notation, we drop the superscripts for the nth sequential design and let
X1, X9, ..., X, denote the design points in the nth sequential design, and Ry, R, ..., R,
denote the replications allocated to each design point in X,,.

3. LOCAL SMOOTHING APPROACHES

In this section, we discuss the smoothing methodologies of MLS regression and LWLSR
[Ruppert and Wand 1994]. Both approaches require a positive weight function of the
form Kg(u) = |H|"Y2K(H 1/2u), where K is a compactly supported d-variate kernel
such that f K(u)du = 1, and H is a d x d symmetric positive definite matrix depending
on n. The matrix H is called the bandwidth matrix; its entries are called the bandwidth
parameters. The bandwidth matrix determines the shape of the contours of the weight
function Kg. The number of nonzero entries in the bandwidth matrix is the number
of bandwidth parameters that must be chosen before one can apply either of the two
smoothing methodologies. In high-dimensional problems, allowing the bandwidth ma-
trix to have nonzero values off the diagonal would result in too many parameters.
Therefore, we will consider only diagonal bandwidth matrices in our procedure. A di-
agonal bandwidth matrix will cause the contours of the kernel to be parallel to the
main coordinate axes, whereas a full bandwidth matrix would allow the contours of the
kernel to be arbitrarily rotated. We do not dwell on this restriction because it has been
shown that the improvement gained by allowing off-diagonal entries to be nonzero is
not nearly as great as the benefit from allowing the diagonal entries to vary from one
another [Wand and Jones 1993]. Furthermore, the choice of kernel is not as important
as the choice of bandwidth matrix, H [Wand and Jones 1993]. We employ a kernel that
is a function of the maximum norm, given by ||u||o, = max{|u1l, [ug], ..., [ug|} foru e R%,
This kernel is
K(u) = max{1 — ||[u||~. 0},

and its support is the d-dimensional unit hypercube, which is shown in Figure 1(a) for
the case d = 2.

The weight function that is induced from this kernel has a compact rectangular
support with the bandwidth parameters lying on the diagonal of the bandwidth matrix
determining the half-length of each edge of the rectangle. The diagonal bandwidth
matrix H = diag{h?, A2, ..., h2} will yield the weight function

Ku(u) = [H| > max{1 — ||[H ?ul|, 0},
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Fig. 1. (a) The compact support of the kernel K(-) in two dimensions, which is the unit hypercube. (b) An
example of the compact support of the weight function Ky(-) in two dimensions, with 2; = 1 and hy = 0.25.

whose support is shown in Figure 1(b) for the two-dimensional case, where 7; = 1 and
hg = 0.25, in relation to the support of the kernel in Figure 1(a).

3.1. Moving Least Squares Regression

MLS regression reinterprets the metamodeling problem as predicting y(x) for any spe-
cific x € X instead of building a metamodel to approximate the entire response surface
y. Each design point is assigned a weight, which is similar to weighted least squares
regression except that the weight given to a design point depends on the particular
prediction point, with the weight being determined by the weight function, Kg(-). There-
fore, every time that we predict the response surface at a different prediction point, we
solve a different weighted least squares problem. In the following, let H‘,ﬁf denote the
space of d-variate polynomials of degree %k, and let p1, po, ..., p,, denote the basis func-
tions of I1¢. In this article, we take the basis functions of I1¢ to be the standard basis,
which is the set of (‘”k) monomials. The polynomial, yMLS used for approximating the

response surface y(Xg) at the prediction point x, is
Jaoji = argmin Z(Y(xl, R) — p(x)*Knu(x; — Xo) (1)
pell

This is the standard approach to MLS regression [Bos and Salkauskas 1989]. The
optimal solution to this problem is obtained from the weighted least squares solution
&i\ng(X) =Px)"(P"W(xo)P) '"PTW(x0)Y,

th

where P is the n x m matrix whose i** row is (p1(x%; — X¢), po(X; — Xq), ..., pn(X; — X)),

and
Y = (Y(x1; R1), Y(x2; Ry), . .., Y(xp; R))T
W(x¢) = diag{Ku(x1 — x0), Ku(x2 — X¢), ..., Ku(x, — %¢)}
P(x) = (p1(x — X¢), pa(X — Xq), ..., (X — X)) .

For each prediction point, x( € X, we get a different approximating polynomial, yMLS

The minimization in Problem (1) is done over the polynomial space I'Id. Since d is
the dimension of the design space, the only factor that we are able to choose is k. The

dimension of Hg is (dzk); thus, for large d, we must be careful to not pick % too large.
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Otherwise, we must invert a (%/*) x (“}*) matrix to obtain the prediction, which is
infeasible when d and % are large. We will use the space of linear polynomials, 1'1‘11 .

3.2. Locally Weighted Least Squares Regression

The weight function Ky depends on bandwidth parameters that determine the shape
and size of its contours. The main problem in MLS regression is optimizing these
bandwidth parameters with respect to some criterion. LWLSR is a particular type of
MLS regression, in which we assume that the outputs obtained from the simulation
are of the form Y(x;; R;) = y(x;) + (o(x;)/+/R;)e;, where o(x;) is the standard deviation
of a replication at x; and the ¢; are mutually independent and identically distributed
random variables with zero mean and unit variance. Using this assumption, we can
obtain an expression for the AMSE of the LWLSR predictor and use this expression to
choose the bandwidth parameters for the MLS predictor.

LWLSR with linear polynomials uses a first-order Taylor expansion to approximate
the function value at the prediction point. The LWLSR prediction at x, is $°C(x; H) £
Bo, where S is from the solution to the problem

min Z(Y(Xi; R) — Bo — B1 (x; — %0))*Ku(x; — Xo),

Bo-P1i—7

which is just a reformulated version of the MLS problem in Section 3.1 when we use
the space I in MLS regression. Note that §°¢(xo; H) = 9} §(xo).

To analyze the MSE of the predictor so that we can obtain an expression for the
AMSE at the prediction point Xy € X, assume that we have a sequence of bandwidth
matrices {H,, : n > 1}. We need the following assumptions, taken from Ruppert and

Wand [1994].

Assumption 1. The prediction point X, is in the interior of X. At xg, 02(-) is continuous,
the limiting densities of design points and simulation effort, that is, g and g, are
continuously differentiable, and all second-order derivatives of y are continuous. Also,
g(x9) > 0, 8(X¢) > 0, and 0 < 0%(x¢) < o0.

Assumption 2. The sequence of bandwidth matrices {H,, : n > 1} is such that n~'|H,,|
and each entry of H,, tends to zero as n — oo with H,, remaining symmetric and positive
definite. Also, there is a fixed constant L such that the condition number of H,, is at
most L for all n.

Let x¢ be a point that satisfies Assumption 1 and let {H,, : n > 1} be a sequence of
bandwidth matrices that satisfies Assumption 2. From Ruppert and Wand [1994], we
have

1
E{5"9Cx0; H,) — y(X0)[X1, X2, ..., X} = QMQ(K)tr{HnVyz(xo)} +op{tr(H,)} (2
_ R(K)o?(x)
 CulH,|Y25(x0)
where op denotes order in probability, uo(K) = [ xKx)dx, RK) = [, Kx)?dx,

and Vﬁ(xo) is the Hessian of y evaluated at x(. For the diagonal bandwidth matrix
H = diag{h?, 12, ..., h2}, the AMSE of the estimator -°C(x; H) is given by the sum of

Var{9"9%(xo; Hy)[x1, X2, ..., Xy} {1+0p1)}, (3)
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the leading order terms in Equations (2) and (3):

R(K)o*(x0)

1 9 2 2
— - v 20 207
AMSE = 2ua(KPir (HV; (o)} + sz

RK)o2(xo)
Co8x) [TL, i

where D;(x¢) denotes the second partial derivative 32y(x()/dx2. Equation (4) shows the
bias-variance trade-off with respect to the bandwidth parameters. The first term in the
sum represents the bias of the estimator, while the second term represents variance.
When the bandwidth parameters are small, the bias of the estimator jj is small, but
fewer design points are used in the prediction, making the variance of the estimator
high. For large bandwidth parameters, the opposite happens.

We can use the bias-variance trade-off to choose the bandwidth parameters by min-
imizing the AMSE equation. In the bias term, given by the first part of Equation (4),
directions corresponding to larger changes in the response surface (i.e., larger second
partial derivatives) result in smaller bandwidth parameters corresponding to those
directions. This regulates the bias because weight decays more rapidly in directions
where there are larger changes in the response surface. In the variance term, given
by the second part of Equation (4), a higher variance at the prediction point, o(x),
with all other parameters fixed, will increase the bandwidth parameters, incorporating
more design points in the approximation, therefore filtering out the larger noise. The
limiting density of effort spent at the prediction point, §(x(), with all other parameters
fixed, will give smaller bandwidth parameters to prediction points in regions of higher
density. Intuitively, this is because, in regions where we have spent the most simulation
effort, we would like the prediction to be based on design points closer to the prediction
point, making the bandwidth parameters smaller, hence decreasing the bias.

1
- ZM(K)Z(}IEDl(Xo) +-+ h?ZDd(XO))Q + @

4. MOVING LEAST SQUARES PROCEDURE

We provide a brief outline of the procedure, with details following in Section 4.1,
Section 4.2, and Section 6.

(1) Run the simulation model at design points satisfying the conditions in Section 2.
Compute the sample averages across replications and estimate the variance of a
replication at each of the design points.

(2) For each prediction point xg,

(a) Estimate the second derivatives and the variance of a replication at x( using
the methods in Section 6.

(b) Calculate the bandwidth parameters of the weight function by solving MP(1)
in Section 4.1 using the Bandwidth Procedure in the appendix. Optional:
Put an upper bound on the number of design points used for prediction, as
discussed in Section 4.2.

(c) Predict the mean response at the prediction point. The MLS prediction is given
by the optimal solution of Equation (1), using the bandwidth parameters cal-
culated in Step 2(b). Optional: Include interaction terms in Equation (1), as
discussed in Section 4.2.

4.1. Moving Least Squares Procedure

Let H;, = diag{(h, v }))?, (h, v By)%, ..., (R, v B})?}, where x v y = max({x, y}. For our
procedure, we will use the weight function Kg,, (-), given by

1 _1
Ky, (w) = [H; .| 2 max {1 — ||H, ’ul|, 0},
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with the associated prediction window defined by the region Q £ {x € X : |x; — x¢,;| <
hﬁ Vv K, Vi}. BEach bandwidth parameter /; in Equation (4) has been replaced with two
separate parameters to deal with effects for prediction points lying near the boundary.
The variable hﬁ denotes the distance from the left edge of the prediction window to the
prediction point in the ith coordinate; the variable k] denotes the distance from the
right edge to the prediction point. The bandwidth parameters A’ V R}, By VR, ... K,V A
determine the bandwidth in the corresponding coordinate direction. For example, hll VR,
determines how fast the weight decays in the direction along the first basis vector of
R?. The region € is the intersection of the compact support of the kernel Ki and the
design space X; thus, the design points that fall in the region will be the design points
used for prediction, hence the name “prediction window.”

Assuming that we have estimates s?(xy) and D/i(x\o), of 02(x¢) and D;(xg), for
i =1,2,...,d, the bandwidth parameters are found by solving MP(1), whose objec-
tive function is a modification of the AMSE equation, then transforming the optimal
solution.

R(K)s?(x)

. ; 1 21217 (o 2115 (o )[\2
MP(D): min = 2 ua(K)*(h5|D1(xo)| + -+ hi| Dalxo)]) +—Cn§(xO)l_[§i:1hi

Tyeees d)
d
s.t. dim(M1Y) + 8 < ng(xo) [ [ (4 + )
i=1
2h; =h! +h for i=1,2,...,d
0<h <xp;, fori=12,....d
0<h <1l-—xp;, fori=12...,d
B+ h <f, fori=1,2,...,d,

where f;,, defined in Section 5.2, depends on d, and the density and number of design
points. The constraint A + 2/ < f, is discussed in Section 5.2, as is estimation of o-%(x,)
and the second partial derivatives.

The bandwidths in Equation (4) represent the half-widths of the prediction window,
when the prediction window is symmetric about the prediction point. In an effort to
keep the same interpretation for the bandwidths in the objective function of MP(1),
where the prediction window may not be symmetric about the prediction point, we
have the constraint 2h; = bl + h.

The motivation for the second constraint is the following. To ensure that the number
of design points used for prediction is at least the dimension of l'[‘li and to protect against
having linearly dependent columns in the matrix P of the solution to Problem (1), we
set a lower bound, dim(I1¢) + §, on the number of design points that lie within the
prediction window. We use § = 5d. An approximation to the number of design points
that lie within the prediction window is ng(xg) ]_[;~i:1(lzl1 + AY). This can be interpreted
as the density of design points at the prediction point ng(x() times the volume of the
prediction window, which gives us the total number of design points included in the
prediction window. The limiting density of design points that makes ng(xg) ]_[flzl(hl1 +h)
the best approximation is the uniform density, which is the density that we use in this
procedure. The constraints 0 < hf <x;and 0 < A} < 1—xp; ensure that the bandwidth
parameters are confined to the unit hypercube, so that ]—[flzl(hl1 + A7) is the volume of
the prediction window.

The second derivatives in the AMSE equations have been replaced by the absolute
values of the second derivatives to ensure that the bandwidth parameters behave well
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when some second derivatives are positive and some are negative. To see the motivation
for this change, consider the case in which the response surface has both positive and
negative second partial derivatives. By setting the bandwidth parameters in the proper
proportion to each other, the AMSE equation would appear to kill the approximate bias.
We could then reduce the variance by increasing the size of the prediction window.
However, this increase in window size reduces the validity of the bias approximation,
so for a fixed value of n, Equation (4) may cease to be a good approximation to the
MSE when a large window is used. Therefore, we take a conservative approach to the
window size and use an upper bound on the AMSE.

The Bandwidth Procedure in the appendix solves MP(1) and then transforms
the optimal solution to get the bandwidth parameters. Denote the output of the
Bandwidth Procedure by h* = /A hi*, hl2* hy, ..., ). K} and let H}jr =
diag{(K* v H*)%, (K" v h5*)2, ..., (B v B;*)?). The weight function used for prediction
is given by

Kg;, (w) = [H,|"* max(1 — |[H}, ?ul|«, 0).

4.2. Modifications to the MLS Procedure

The first constraint in MP(1) controls how many design points (approximately) fall
within the prediction window by regulating the size of the prediction window. For high-
dimensional problems, when there is a very large number of design points, we may want
to limit the amount of design points that we use for prediction for the computing time to
be acceptable. We can limit the number of design points that fall within the prediction
window by placing an upper bound on the first constraint in MP(1). We denote the upper
bound by Massyg, and we use Massyg = 2000 in this article (this could be much higher
depending on computing power). In this case, the bandwidth parameters are found
by solving MP(1) with the added constraint ng(x) ]_[‘ij:l(hi + h}) < Massyg, which can
also be solved using the Bandwidth Procedure in the appendix. We denote the new
optimization problem (MP(1) with the added constraint ng(x) ]_[?Zl(hé + 1)) < Massyg)
by MP(2).

The AMSE expression is the result of using LWLSR for prediction, which results in
second partial derivatives in the bias term. The second partial derivatives arise because
we use a linear approximation, therefore cannot account for higher-order derivatives.
The bias term in Equation (4) is only an approximation to the bias at the prediction
point, and will underestimate the amount of bias since the approximation does not
consider the higher-order partial derivatives, and assumes that the prediction window
is symmetric about the prediction point. Although the bias of the LWLSR predictor
for a prediction point near the center of the design space is of the same order as for
a prediction point lying near the boundary—namely, op{tr(H)}—we would still like
to try to reduce the bias. In an effort to further reduce the bias, we use a stepwise
regression method to determine if there are necessary second-order terms that should
be included in the model. Note that, for higher-order terms to be added, § may have to
be increased to ensure nonsingularity of the matrix P. Denote the prediction window
of Ky by Q*, and let x7,x3, ..., X0 denote the |Q2*| design points that fall into the
prediction window. The stepwise procedure is as follows:

0. Initialize the |Q*| x (d + 1) regression matrix X, with ith row [1, xil, x;2, e xi‘,d],
and let Y denote the vector of observations at the design points in the prediction
window. Also, let R denote the regression matrix consisting of all possible second-
order terms.

1. Normalize and center the columns of R.
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2. Calculate the vector of correlations ¢ = RT(Y — X(X"X)"1X"Y). Choose the ith term
corresponding to, say, x;xz, such that ¢; = max{e}.

3. Add a column to X corresponding to x;x;, and remove the corresponding column
from R. If ¢; < p or the maximum number of iterations is reached, stop. Otherwise,
go to 2.

This stepwise procedure starts with a linear approximation, and adds second-order
terms to the approximating polynomial in a greedy manner by choosing the next term
that is most correlated with the residuals of the current approximating polynomial.
The procedure stops when either the correlations become too weak (are less than p), or
the maximum number of iterations is reached.

5. ERROR ANALYSIS

In this section, we give a bound on the expected approximation error, as well as show
that the estimator is consistent as the amount of simulation effort increases to infinity.

5.1. Approximation Error

We can bound the expected approximation error using the second-order partial deriva-
tives, as well as the variance of the simulation output and number of replications at each
of the design points. Let C%(X) be the space of twice-continuously differentiable func-
tions on X. Furthermore, for the vectors x = (x1, %2, ...,x¢)" and v = (vy, va, ..., vq) ",
let 9Vl /0xY = gutvettua /gl 9x,? - - - dxy’ and XV = xilx? coexy

TuEOREM 1. Let y € C2(X). If Y(x;; R;)) = y(x;) + (0(x))//R))e;, for i = 1,2,...,n,
where the ¢; are mutually independent and identically distributed random variables
with zero mean and unit variance, then

o; 2(x;)
B0~ 00 = 5 3 3 i —%ol"I] +Z e,
|v| 2i=1
where
CY = sup IMy(n(x; —Xo) + o) ,
0<n<1 oxVv

E; = %, and P is the matrix P with the first column replaced with the ith

standard basis vector.

5.2. Consistency Results

We now discuss the consistency of the estimator 9-°¢(xo; Hj,), with the bandwidths
obtained by minimizing MP(1) in Section 4.1. For the purpose of analysis, consider
a sequential design indexed by n. We analyze two cases of the experiment design:
C,/n — oo and C, = O(n), where C, is the total number of simulation replications
allocated in the nth design. In the first case, the number of replications allocated to
each design point becomes infinite; in the second case, the number of replications per
design point is bounded by a constant. We deal with consistency in each of these two
cases separately.

As mentioned in Section 4.1, f, depends on the dimension d, and the density and
number of design points. Furthermore, f, converges to zero as n — oo to ensure that, as
the simulation effort increases, the bandwidths of the prediction window will shrink to
zero. Consider the two-dimensional case in which the x; coordinate has a second partial
derivative of zero and the x2 coordinate has a second partial derivative that is greater
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than zero. This will cause the prediction window to take the shape of a telephone pole,
with the long edge in the x; coordinate. As the simulation effort increases, the volume
of the prediction window will shrink to zero even though A; remains equal to one
(reaching the boundary of the unit hypercube). However, higher-order derivatives in
the x; coordinate may be greater than zero, leading to bias in the prediction that is not
detected by the AMSE Equation (4). Therefore, we do actually want to shrink Ay, which
is the purpose of f;, and the constraint hll + K} < f,. Without these constraints, the
bandwidth parameters may not shrink to zero and the estimator may not be consistent.
Each case of the experiment design will require a different definition of f;,, given in the
respective definition.

All three proofs follow the same format. We first show that Assumption 2 holds,
satisfying all of the conditions of Theorem 2.1 of Ruppert and Wand [1994]. Since the
conditions of Theorem 2.1 of Ruppert and Wand [1994] are met, Equations (2) and (3)
are the conditional bias and conditional variance of $~°°(x¢; Hj,), respectively. Then,
we show that Equations (2) and (3) converge to zero in probability, which proves the
claim of consistency. In the following, the bandwidths, variance, and second partial
derivative estimates are functions of n to explicitly show the dependence on n. For

brevity, let D;(n) denote Zf(_g) for the nth experiment design, and let s?(n) denote s(xq)
for the nth sequential design.
For the following three theorems, we will make use of this condition:

Condition 1. The prediction point xo € X satisfies Assumption 1, P(limsup,,_, .,
Di(n) <oco)=1fori =1,2,...,d, and P(limsup,,_, ., s2(n) < o0) = 1.

In the case that C,/n — oo, the only restrictions we need on the second partial
derivative or variance estimates is boundedness, since the constraint dim(l'[‘f) +5 <

ng(xo) I—[fl:1 h;(n) ensures that the volume of the prediction window converges to zero
slowly enough. However, we need the sequence f, to converge to zero quickly enough
to meet the regularity conditions given in Assumption 2.

THEOREM 2. Assume that C,/n — oo and Condition 1 is satisfied. If the bandwidths
are chosen according to MP(1), with f, = (M/g(x0)Y4(1/n)V, where M > dim(I1%) + ,

then °C(xo; Hy,) £ y(x0) as n — oo.

In the case that C,, = O(n), the second derivative estimates can get arbitrarily large,
as long as they do not stay large. Similarly, the variance estimates can get arbitrarily
small, as long as they do not stay small. These conditions ensure that the volume of
the prediction window converges to zero at the correct rate, resulting in consistency of
the estimator. We need f; to converge to zero slower than in the case of Theorem 2 to
ensure that the volume of the prediction window does not converge to zero too quickly.

THEOREM 3. Assume that P(liminf, ... s*(n) > 0) = 1, C, = O(), and Con-
dition 1 is satisfied. If the bandwidths are chosen according to MP(1), with f, =

(M/g(xo))V4(1/m)M+V, where M > dim(119) + 8, then $O¢(xo; H,) £ y(x¢) as n — oco.

In the case of MP(2), placing an upper bound pushes the volume of the prediction
window to zero faster, and limits the number of design points that are included in the
prediction window. For the estimator to be consistent in this case, we need to allocate
an increasing number of replications to each design point, so that the simulation effort
included in the prediction window goes to infinity. This increase in replications per
design point is given by the condition C,/n — oo as n — oc.
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THEOREM 4. Assume that Condition 1 is satisfied. If the bandwidths are chosen
according to MP(2) with f, = (M/g(xo)"¥1/n)V/4, where M > dim(11%) + &, then

1O (xo; Hy ) £ y(xo) as n — oo if and only if Cp/n — o0 as n — oo.

6. PARAMETER ESTIMATION
As mentioned in Section 4, estimation of 6%(x¢) and D;(xg) is required to solve MP(1).

As is often done in LWLSR, we use plug-in estimates s%(xy) and D;(xo) (e.g., see
Ruppert et al. [1995b]) for 02(x¢) and D;(x(), respectively. In existing LWLSR tech-
niques, estimation of the density g(xy) of design points around the prediction point is
also required. However, in our procedure, we control the placement of design points
and can use the densities discussed in Section 2 as plug-in estimates.

The computationally expensive part of parameter estimation is finding nearest neigh-
bors. A possible solution is to use ¢-approximate nearest neighbors that involves pre-
processing the data using a balanced-box decomposition tree, but we do not discuss
this here and refer the reader to Arya et al. [1998].

6.1. Variance Estimation

Having access to replications from the simulation makes it easy for us to get an estimate
of the variance of a replication at each design point. However, we need an estimate of
the variance of a replication at the prediction point as it pertains to determining the
size of the prediction window. We use the variance estimates at neighbors of x( to
estimate 0%(x¢), and we denote the estimate by

1
2 a 2. P.
s%(xg) = A E S*(x;; R;),
x;el4(x0)

where I;(x() is the set of the £ nearest design points to xy. From our experiments, we
have found that the choice of % is not critical as long as we use enough neighbors to
reduce the noise of the variance estimates at the design points. We have found that
k = min{5d, n} is a sufficient number of neighbors to reduce the noise.

6.2. Second Derivative Estimation

To estimate the second partial derivatives, we fit a third-order polynomial in a neigh-
borhood of the prediction point and use the coefficients of the second-order terms as
estimates of the second partial derivatives. Ruppert and Wand [1994] suggest using
an r-order polynomial to estimate partial derivatives of order m, where r — m is an odd

integer. In this article, we use r = m+ 1. A third-order polynomial with all interaction

terms has (g) + 1 terms, which makes the regression problem too expensive in high

dimensions. Thus, we do not include any interaction terms in the third-order polyno-
mial and solve
2

3
min Z Yx;; R) — Bo — Z ﬂJT-(Xi —-x0) | . (5)

ﬁo’ﬂpﬂz’ﬁ3 xiel (x0) j=1
where (x; — x0)™ £ [(xi1 — %0.1)™, (g — X02)™, ..., (xiq — %0a)"]T. We use 28,, where

B, is from the solution of Problem (5), as our estimate of the second partial deriva-
tives. To find %£*, the optimal number of neighbors to be used in the estimation of the
second partial derivatives, we use the Nearest-Neighbor Procedure in the appendix.
This procedure is a variation of the procedure used in Ruppert et al. [1995b], and
searches for the optimal number of neighbors to fit the cubic polynomial by maximizing
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the goodness-of-fit criterion R2?(k), which denotes the R? statistic using the % nearest
neighbors, over k.

7. NUMERICAL EXPERIMENTS

Our goal is to investigate how the differentiability of the response surface, number of de-
sign points, variance of the simulation output, and dimension affect the procedure. We
use two queueing simulations, a multiproduct M/G/1 queue and a multiproduct Jackson
network, whose simulation response surfaces are the expected number of products in
the queue and expected cycle time of a product, respectively. The response surface for
the multiproduct M/G/1 queue is differentiable everywhere, while the response surface
for the multiproduct Jackson network is nondifferentiable in some places.

The n design points we use in each experiment are the first n points from the Sobol
sequence [Sobol 1967]. We fix the number of replications at each design point to 64.
For each replication, the simulation run-length is chosen to obtain a constant relative
standard deviation over the design space using a heavy-traffic approximation to the
asymptotic variance presented in Whitt [1989]. The relative standard deviation we use
here is (o(x;)/~/N;)/|y(x;)|, so, for example, a relative standard deviation of 0.25 means
o(x;)/|1y(x;)| = 2 = 0.25+/64. Using designs generated by the Sobol sequence and fixing
the number of replications at each design point satisfies our assumption of a uniform
limiting density of design points and simulation effort. In our experiments, we use an
upper bound of 2000 in the MLS procedure, that is, Massyg = 2000.

The prediction points p1, pe, ..., P15so are 150 points uniformly sampled from the unit
hypercube, [0, 1], rescaled to fit inside the hypercube [0.1, 0.9]¢. We use 150 prediction
points in our experiments only for the sake of estimating the quality of the predictions
from the metamodel; we do not envision using the metamodel 150 times in reality.
We repeat the experiment 50 times to get 50 predictions at each prediction point. We
evaluate the predictions using Root Empirical Relative Mean Squared Error

50 150

B 7).\’
RERMSE = 750022( )

y(p:)

where 7;(p;) is the estimated value of y(p;) on the jth experiment at the ith prediction
point.

Alternative methods that we compare against our method are the MLS regression
method of Lipman et al. [2006] using the data-independent error bound and assuming
that we know the magnitude of the error in the simulation output (which we refer to
as the “vanilla MLS” method), Classification and Regression Trees (CART) [Breiman
et al. 1984] implemented using the rpart package in R, RODEO [Lafferty and
Wasserman 2008], stochastic kriging [Ankenman et al. 2010] using the Gaussian
correlation function (implemented using the mlegp package in R), and weighted least
squares regression (WLS). Although global metamodeling methods, such as stochastic
kriging and WLS, are known not to perform well when the number of design points is
large, we include them to show when these methods start breaking down and how our
MLS method overcomes these difficulties.

7.1. Multiproduct M/G/1 Queue

In the multiproduct M/G/1 queue, d — 1 types of products arrive to a queue according to
a Poisson Process. Let the service rate of product i be u;. The vector of design variables
is x = (x1,%s2,...,%4_1, p), where p is the traffic intensity and the x; determine the
arrival rates for the d — 1 types of products. For x = (x1,x9,...,%4_1, p), the arrival

rate for product i is A; = cx; where ¢ = p/ Z?;ll (x;/1;) and pu; € [1,5]. The response
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Table I. Relative Difference for the Multiproduct M/G/1 Queue Example

Relative difference
d n RSD | MLS | vanilla MLS | CART | RODEO SK WLS
0.05 | —58% —14% —42% >0% —49% | >0%
5 500 0.1 —62% —20% —45% >0% —53% | —12%
0.25 | —67% —26% —53% >0% —63% | —62%
0.05 | —48% >0% >0% >0% %} >0%
25 5000 0.1 —52% >0% >0% >0% %} —-10%
0.25 | —59% >0% >0% >0% %} —62%
0.05 | —40% >0% >0% >0% %} %}
75 | 150000 | 0.1 —42% >0% >0% >0% %} %}
0.25 | —53% >0% >0% >0% (%] (%]

surface that we estimate with the simulation is the steady-state expected waiting time
in the queue. The closed-form solution for the steady-state expected waiting time used

for evaluating the predictions is
d—1 ex
P %
1 yd-lex
A-p) 355 %

The design space is [5, 10]%~1 x [0.8, 0.95], which, after rescaling, is the d-dimensional
unit hypercube.

y(x) =

7.2. Multiproduct Jackson Network
In the multiproduct Jackson Network, d — 1 products arrive to the first station of a
system of 3 single-server stations according to a Poisson Process. The service rate at sta-
tion j is p;, which is independent of the product type. The vector of design variables is
x = (x1, X2, ..., %g_1, p), Where p is the traffic intensity and the x; determine the arrival
rates for the d — 1 types of products to the first station. For x = (x1, xo, ..., x4_1, p), the
arrival rate for product ¢ is 1; = cx;, where ¢ = max; p/ Z?;ll(xiﬁij/uj) and u; € [1,5].
We denote the number of visits to station j by product i by §;;. The response surface
that we estimate with the simulation is the expected cycle time of product 1, which has
the closed-form solution
3 51,
yx) = Z 7T :
j=1 Hj — D k=1 CXRORj

The design space is [5, 10]%~1 x [0.8, 0.95], which, after rescaling, is the d-dimensional
unit hypercube.

7.3. Experiment Results

Tables I and II display the relative difference of RERMSE and relative standard de-
viation using our MLS method, the vanilla MLS method, CART, RODEO, stochastic
kriging using the Gaussian correlation function, and WLS. A table entry of & means
that the corresponding R package used to fit the model ran out of memory. Table I
gives the results for the multiproduct M/G/1 queue example; Table II gives the re-
sults for the multiproduct Jackson Network example. These values are calculated by
subtracting the relative standard deviation used to choose the run length in the ex-
periment from the RERMSE and standardizing by dividing the difference with the
relative standard deviation. For example, if we used a relative standard deviation of
0.25, and obtained an RERMSE of 0.1 for that experiment, the value in the table would
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Table II. Relative Difference for the Multiproduct Jackson Network Example

Relative difference
d n RSD | MLS | vanilla MLS | CART | RODEO SK WLS
0.05 | —52% —-10% —37% >0% —43% | >0%
5 500 0.1 —58% —-17% —41% >0% —51% | —6%
0.25 | —63% —23% —51% >0% —60% | —52%
0.05 | —45% >0% >0% >0% %} >0%
25 5000 0.1 —50% >0% >0% >0% %} —T%
0.25 | —57% >0% >0% >0% %} —55%
0.05 | —36% >0% >0% >0% %} %}
75 | 150000 | 0.1 —38% >0% >0% >0% %} %}
0.25 | —44% >0% >0% >0% (%] (%]

Table Ill. Average Runtime (Across All Experiments with Same Dimension
and Number of Design Points) During Setup, for the Multiproduct M/G/1 Queue Example

Runtime
d n MLS | vanilla MLS CART RODEO SK WLS
500 (%] (%] 46.3s (7] 14.3min | 0.26min
5 10000 (%) (%] 1.5min (7] (7] 1.2min
50000 (%] (%] 2.1min (%] (%] 1.7min
5000 (%] (%] 1.7min (%] (%] 0.9min
25 50000 (%] (%] 3.4min (%] (%] 2.3min
100000 (%] (%] 4.1min %] %] 5.5min
150000 (%) (%) 4.9min (%] %] 1%}
75 | 200000 (%] o] 5.23min (%] (%] 1%}
250000 %] (%] 5.98min (%] (%] %]

be 100% x (0.1 — 0.25)/0.25 = —60%. Thus, as can be seen directly from the definition,
a relative difference of —100% is the best possible.

From Tables I and 1II, it is clear that our procedure is successful in filtering out the
noise obtained from using noisy observations at the design points. Our MLS procedure
produced better predictions, in terms of relative difference, in each case except for the
25-dimensional M/G/1 queue example when the relative standard deviation was set at
0.25. However, as will be seen in Table VI, when we increased the number of design
points, our MLS procedure produced better predictions than WLS. Our MLS procedure
works even when the number of design points is large, whereas techniques such as
stochastic kriging and WLS fail to produce results when the number of design points
is larger than 5,000 and 50,000, respectively (represented by @ in the tables).

The local metamodeling methods include our MLS method, the vanilla MLS method,
and RODEO. From Tables V through VII, we can see that our MLS method scales
well in high dimensions when both RERMSE and runtime are considered. The vanilla
MLS method suffered from bad predictions since the method uses an isotropic weight
function and the data-independent error bounds are not close (tight) to the actual
errors, which leads to incorrectly chosen bandwidths. The method also suffered from
long runtimes (which can be seen in Tables III and IV) because of the computations
required at each step of the line search. RODEO suffered from bad predictions in all
cases, possibly because the assumption of sparsity is not met, and RODEO is designed
for problems when the number of relevant variables is sparse. Furthermore, RODEO
assumes a homogeneous variance throughout the design space; this assumption is not
met for the M/G/1 queue since the variance is heterogeneous throughout the design
space.
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Table IV. Average Runtime (Across All Experiments with Same Dimension and Number
of Design Points) for One Prediction, for the Multiproduct M/G/1 Queue Example

Runtime
d n MLS vanilla MLLS | CART | RODEO | SK | WLS
500 1.03s >2min 0.11s >2min 0.2s | 0.03s
5 10000 1.47s >2min 0.21s >2min (%] 0.03s
50000 2.63s >2min 0.48s >2min (%] 0.03s
5000 3.93s >2min 0.69s >2min (%] 0.09s
25 50000 4.5s >2min 0.78s >2min (%] 0.09s
100000 8.9s >2min 1.32s >2min %] 0.09s
150000 | 10.3s >2min 2.03s >2min %] 1%}
75 | 200000 | 12.4s >2min 2.32s >2min 2] 1%}
250000 | 15.9s >2min 2.68s >2min (7] 1%}

Table V. Relative Difference for the 5-Dimensional M/G/1 Queue Example

Relative difference

RSD n MLS | MLS-deriv | vanilla MLS | CART | RODEO SK WLS
500 —58% —53% —14% —42% >0% —49% | >0%

0.05 | 10000 | —64% —84% —28% —63% >0% 1%} >0%
50000 | —72% -91% —37% —75% >0% 1%} >0%

500 —62% —59% —20% —45% >0% —53% | —12%

0.1 10000 | —70% —86% —33% —80% >0% 1%} —12%
50000 | —74% —-92% —46% —85% >0% @ —14%

500 —67% —64% —26% —53% >0% —63% | —62%

0.25 | 10000 | —71% —89% —39% —84% >0% @ —63%
50000 | —78% —94% —52% —86% >0% @ —65%

Table VI. Relative Difference for the 25-Dimensional M/G/1 Queue Example

Relative difference

RSD n MLS | MLS-deriv | vanilla MLS | CART | RODEO | SK | WLS
5000 —48% —60% >0% >0% >0% %} >0%

0.05 50000 | —51% —82% >0% >0% >0% %) >0%
100000 | —56% —89% >0% >0% >0% 1%} >0%

5000 —52% —66% >0% >0% >0% o | -10%

0.1 50000 | —57% —85% >0% >0% >0% o | -11%
100000 | —61% -91% >0% >0% >0% (o} —-14%

5000 —59% —73% >0% >0% >0% o | —62%

0.25 50000 | —67% —86% >0% >0% >0% o | —64%
100000 | —72% —-92% >0% >0% >0% o | —63%

The global metamodeling methods include CART, stochastic kriging, and WLS. In 25
and 75 dimensions, the rpart package reaches the maximum tree depth, which results
in poor prediction of the response surface. Stochastic kriging cannot be used when the
number of design points is large, since the variance-covariance matrix is n x n, and
the inversion of the variance-covariance matrix is O(n?); this inversion causes mlegp
to run out of memory. From Tables I and II, as well as Tables V through VII, we can
see that a significant improvement over WLS can be obtained when we localize the
prediction using MLS. Although a large number of design points is needed for the
bandwidths to remain local in higher dimensions, our method still produces results
that are superior to WLS because MLS assigns a different weight to each design point
depending on the particular prediction point. Therefore, even though design points
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Table VII. Relative Difference for the 75-Dimensional M/G/1 Queue Example

Relative difference
RSD n MLS | MLS-deriv | vanilla MLLS | CART | RODEO | SK | WLS
150000 | —40% —53% >0% >0% >0% %] %)
0.05 | 200000 | —44% —62% >0% >0% >0% %} 1%}
250000 | —53% —~T1% >0% >0% >0% %} @
150000 | —42% —58% >0% >0% >0% %} 1%}
0.1 200000 | —47% —T72% >0% >0% >0% %} @
250000 | —52% —T76% >0% >0% >0% %} 1%}
150000 | —53% —63% >0% >0% >0% %} @
0.25 | 200000 | —59% —76% >0% >0% >0% %} 1%}
250000 | —65% —80% >0% >0% >0% (%] (%)

that fall in the prediction window may be “far” away, they can still be assigned a very
small weight.

7.3.1. Comparison of Runtimes. For a comparison of runtimes, Tables III and IV give an
overview of the average runtimes of the MLS procedure and the alternative methods
that we use for comparison. Table III gives the average runtime during setup; for CART,
this includes building the regression tree; for stochastic kriging, this includes estima-
tion of the parameters and inverting the covariance matrix; for WLS, this includes
estimating the regression coefficients. There is no setup for our MLS procedure, the
vanilla MLS procedure, and RODEO, so the corresponding table entries have an entry
of &. Table IV gives the average runtime for one prediction, given that the metamodels
for CART, stochastic kriging, and WLS have already been built. The majority of time
in the MLS procedure was spent on estimation of the second partial derivatives and
sorting the data matrix in high dimensions.

7.3.2. Procedure Using Actual Second Derivative Values. Although the procedure can han-
dle many more design points than the number used to calculate the values in Tables I
and II, there was not much observed decrease in the RERMSE when more design points
were used. One possible explanation is that the estimated second partial derivatives
tended to be larger than the true second partial derivatives. These larger estimates
make our procedure choose smaller prediction windows than is actually optimal, hence
limiting the smoothing capability of the procedure and resulting in limited improve-
ment in RERMSE as the number of design points increases. Tables V through VII
show the results of experiments when both the estimated and actual second derivative
values were used in our MLS procedure, along with the other methods that we use for
comparison. We use the name “MLS-deriv” to refer to our MLS procedure when the
actual second derivative values are used. From Tables V through VII, we can see that
there is significant improvement in the prediction ability of our MLS procedure when
the actual second derivative values are used in the procedure. As mentioned before, a
table entry of @ means that the corresponding R package used to fit the model ran out
of memory. We can see that the vanilla MLS, CART, RODEO, stochastic kriging, and
WLS all encounter problems when they are implemented with a large number of design
points. Although the prediction ability is significantly improved when we use the ac-
tual second derivative values, our MLS procedure (with estimated second derivatives)
resulted in better predictions over every other method to which we compared it, except
for CART in the 5-dimensional M/G/1 queue example, and WLS in the 25-dimensional
M/G/1 queue example when the relative standard deviation is set at 0.25.
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8. CONCLUSION AND FUTURE RESEARCH

In this article, we introduced a procedure to implement a local smoothing method
called MLS regression in high-dimensional stochastic simulation metamodeling prob-
lems. Our procedure accounts for the fact that we can make replications and control
the placement of design points in stochastic simulation. Furthermore, we provided a
bound on the expected approximation error and showed that the MLS predictor is con-
sistent under certain conditions. Last, we tested the procedure on two examples that
demonstrated better results than other existing simulation metamodeling techniques.
Since the performance of our procedure was improved significantly when we used the
true values of the second partial derivatives, obtaining better second partial derivative
estimates is a subject of future research.

APPENDIX

Lemma 1. Consider optimization problems MP(1) and MP(2). Denote the optimal
solution to MP(1) by h;1 fori =1,2,...,d, and the optimal solution to MP(2) by h; s for
1= 1,2,...,d. Then, hi,l §hi,2fori = 1,2,...,d.

Proor. Let D; = Di(xq) fori = 1,2,...,d, and s> = s%(xg). The objective function
of MP(1) is strictly convex and the constraints are affine, so any feasible solution
that satisfies the Karush-Kuhn-Tucker (KKT) conditions is a unique global optimum.
Without loss of generality, assume that D; < Dy < --- < Dy. The optimal solution to
MP(l) is of the form hl,l = fn/2, h2,1 = fn/2, ey hd’,l = fn/2, hd’+1,1 < fn/2, ey hd71 <
fn/2 for some 0 < d’ < d. This is because if there exists i, j with i — j > 1 such that
hi1 = fn/2 and hj1 < fn/2, then the objective function can be decreased by swapping
the values of the bandwidths, which is a feasible solution. The corresponding KKT
conditions for MP(1) are

d
R(K)s?
(hi, )" Dipea(K)* | D (hi1)*D; | — <
n (Z ' ) Cogxo) [1; bt

fori =1,2,...,d and

d
R(K)s?
(hi 1)*D; 2 (K)>? (hi1)?D; | — _
v (Z ' ) Cogxo) 10y i

fori =d'+1,d'+2, ...,d. Using the last d—d’ equations from the KKT conditions, we can
see that the free variables are of the form h; 1 = k1(1/4/D;) for some constant %;. Thus,
the optimal solution to MP(1) can be written in the form 4; ; = min{f,/2, k1(1/+/D1)}
fori=1,2,....,d.

Similarly, the objective function of MP(2) is strictly convex and the constraints are
either affine or quasi-convex, so any feasible solution that satisfies the KKT conditions
is a unique global optimum. Using the same arguments as in the case of MP(2), it can
be shown that the optimal solution to MP(2) is of the form h; s = min{f,/2, k2(1//D1)}
fori =1,2,...,d, for some constant ky. However, the KKT condition for a variable that
does not hit its upper bound, f,/2, is

i(h )ZD ) R(K)s? + Ang(xo)Cng(xO)zd(ngl hi,Z)z
1,2 2 - =

Oa

C,8(x¢) l_[‘,-izl hi 2

where A > 0. Since )Ln,g(xo)Cng(xo)2‘1(]_[?:1 hi2)? > 0, we have that k) < k. O

(h; 2)*D; p2(K)> (

=1

ACM Transactions on Modeling and Computer Simulation, Vol. 26, No. 3, Article 16, Publication date: January 2016.



16:20 P. Salemi et al.

Bandwidth Procedure
Input: 8, B = Massyg or co. Output: A", hi*, hlg* Ry, ..., K, hn
Perform a line search over the interval [dim(l'l‘f) + 8, Bl, using the Golden Search

Method [Bazaraa et al. 2006]. For each i € [dim(l'[‘li) + 6, Bl, the value q(i) used in the
line search is the optimal value of the optimization problem

2
| 1 d . R(K)s%(x¢)
2 o (K)2 K| D; RS =" A
min 4M2( ) (; i| (XO)|) +Cn§(Xo)H§i:1hi

d
st. ngxo) [ [ (K +H)=@Q
i=1
2hi=hf~|—hir for i1=1,2,...,d
Oghﬁfxo,i for i=1,2,...,d
O0<hl<l-xp;, fori=12,....d
B+H<f fori=12,...,d

This optimization problem can be solved using the Inner Procedure to follow, with
® = @. This procedure is based on a variation of the variable-pegging procedure
presented in Bitran and Hax [1981]. Denote the optimal solution to the line search by
i* and let the corresponding optimal solution to the associated optimization problem be
denoted by B hi*, hl;, Ry, ..., ). h;*. This solution is optimal for MP(1) or MP(2).

Inner Procedure
Input: ®. Output: B hi*, hlz*, hy*, U R

0. Initialize J' = {1,....d}, P ln(w) and Iteration 8 = 1.
1. For all j € J°, set &} = PP — 1In(1D;(x0)l) + g Ypeps IM(Dpixo)). If 7 <

In(min{1/2, £,/2}) for all j € J*, set b} = hJ’3 for all j € J#, and go to 3. Otherwise, go
to 2.

2. Let J} = {j € I : b > In(min{1/2, f,/2})}. Define 75 £ In(min{1/2, f,/2}),Vj € I}
and let JA1 = J#\ I | PP = PP —|Jf | In(min{1/2, £,/2}). If J**1 = &, go to 3. Else,
B < B+1andgotol.

3. Forall: =1,...,d: Sethi < e b R < minfxo;, 1 — x04, [2/2), set hf* =h* = h.
Else, if xg; < 1 —x,, set hf = min{xo;, f»/2} and A" = 2k — min{xo;, f,/2}. Else,
set I/* = min{1 — xo;, f,/2} and A" = 2k — min{1 — xq;, fn/2}.

Nearest-Neighbor Procedure
Search over the grid A = [7d, 8d, ..., min{20d, |n/d]}]. For each k € A, the value that is

. . . Y] (T —X,(X; Xp) X)), .
used in the line search is R2(k) 2 1 — % ;}T’Q(IX”( k J’“) )Yk) t where Y}, and X,, is the vector
k Lkxk— p9kxk) XE

of observations and the regression matrix of the % nearest neighbors to the prediction
point, respectively, and I, is the £ x k identity matrix, and J,; is the £ x & matrix of
ones. Choose the £ that maximizes R?(k).

Proof of Theorem 1

Proor. Recall from Section 3.1 that
yXOLS(Xo) =P(x0) ' (P"W(x0)P)'P"W(xy)Y,
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where the ith entry of Y is y(x;) + ¢;, and e; is the error associated with the sim-
ulation output at the ith design point. Thus, we can write Y as y + e, where
y = (y(X1), yX2), ..., yX,))", and e = (eq,es,...,e,)". Furthermore, since P(xy) =
(1,0,...,0)T, we have yﬁgﬁ(xo) = ¢1, where c satisfies the normal equations

P'W(xo)Pc = P"W(x)(y + e).

Since y € C%(X), we can use the second-order Taylor expansion for y to express y as

a (x )
y= y(XO) P]1+Z Sl P]l+1+2 ZQV Vs
[v|=2
where [P];, is the kth column of P, Q, = dlag{va('“(’g;vXO)J’x") . 3‘v‘y("”(x” X%y ) s
ascalar with 0 <n; <1lfori =1,2,...,n,and Ey 1s an n x 1 vector w1th ith entry

(x; — x¢)". Substituting this representatlon into the normal equations and solving for
c, we get

¢ = (PTW(xo)P) P  W(xo) | y(x0)[P 1+Z w (x°) Pliy1 + Z Q.E, +e
|v| 2

Therefore,

1
= yx0)+ 5 Y (PTWxo)P) ' PTWxo)QuEy), + (PTWxo)P) P Wixoe),
[v|=2

1 = 9Vy(n;(x; — -
= yxo) 4 5 30 3 TR XX (BT Wik Y BT WEo)),

oxv
[v|=2 i=1

+ Y ei(PTW(xo)P) ' [PTW(xo)l;),.
i=1
Using Cramer’s rule, we have (PTW(xo)P) }[PTW(x¢)];)1 = %V&W 2 g (eg,

see Lipman et al. [2006]), where P! is the matrix P with the first column replaced with
the ith standard basis vector. Therefore, we have

al ! I\ — -
yxoLS(XO) —y(Xo) = Z Z YOni(Xi = o) + XO)( X; —Xo0)' 8 + ZeiEi~

oxv
|v| 2i=1

Using the Cauchy-Schwarz inequality, we have the bound

2

1 L My (i (x; — =
(VLS (xo) — y(x0))? < 3 D y(n (XavaO) + XO)(xi —xVE | + ) e?a?

v|=2 i=1
2
1 n n
v Vi 22
<5 X e - xoriE |+ e
v|=2 i=1 i=1

vl . .
where CY = sup,_, ., | -2UE_X0tx%0)| The result follows since Ele?] = 02/R;. O
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Proof of Theorem 2

Proor. Condition 1 ensures that MP(1) will have an optimal solution for large enough
n, almost surely. Let 25(n), hi(n), ..., h(n) denote the optimal solution to MP(1). Since
fo > 0 asn — oo, hi(n) > 0 asn — oo fori = 1,2,...,d, we have that n~*|Hj,|
and each entry of the bandwidth matrix tends to zero as n — oo. Let L, (n) and
L,;n(n) denote the maximum and minimum eigenvalue of the bandwidth matrix for
the nth design. Since the bandwidth matrix is diagonal, the eigenvalues are just the
bandwidth parameters. The optimal solution satisfies dim(l'[‘ll) +§ < ng(xg) ]_[?:1 ki (n),

thus dimat)-» < Ly;in(n). Therefore,

> ng(xo) it

Linax() nflg(xo) M

Lyin(n) ~ 2(dim(1) +8)  2(dim(1§) + 8)”
Therefore, all of the conditions in Assumption 2 are satisfied; thus, by Theorem 2.1 of
Ruppert and Wand [1994], Equations (2) and (3) are the conditional bias and variance
of §L9C(x¢; Hy,), respectively. From the constraint dim(I1¢) + § < ng(xo) ]_[Ei:1 hi(n), the
solution Af(n), fori =1,2,...,d, satisfies dim(l'[‘f) + 6 < ng(xg) ]_[?:1 ki (n). Thus,

d

< Cig(xo) [ [ i (m).

i=1

dim(l'[‘f) +8

C.8(x¢) ngxo)

Since C,,/n — oo as n — oo, C,8(x0) ]_[:-i:1 hi(n) - oo as n — oo. From the conditions
C,8(x¢) ]_[?:1 hi(n) — oo and A}(n) — 0, Vi, as n — oo,

MSE{&LOC(XO;HZ,NXL Xo, ..., Xy} 20 as n— .
Therefore, the estimator 1°C(xo; H;,) is consistent. O
Proof of Theorem 3

Proor. Condition 1 ensures that MP(1) will have an optimal solution for large enough
n, almost surely. Let Aj(n), hi(n), ..., hj(n) denote the optimal solution to MP(1). Since
fo > 0asn — oo, Bi(n) > 0 asn — oo fori = 1,2,....d, we have n"'|Hj,| and
each entry of the bandwidth matrix tends to zero as n — oo. Let Ly (n) and L,,;,(n)
denote the maximum and minimum eigenvalue of the bandwidth matrix for the nth
design. Since the bandwidth matrix is diagonal, the eigenvalues are just the bandwidth
parameters. We must show that there exists a constant L such that %’::;‘EZ)) < Lforn > 1.
Since P(limsup,_,., Di(n) < oo) = 1fori =1,2,...,d, for almost every sample path,
there exists ann;; < oo and A; < cosuch that D;(n) < A; forn>ny;andi =1,2,....d.
Similarly, since P(liminf,_, s?(n) > 0) = 1, for almost every sample path, there exists
an ne < oo and m > 0 such that s2(n) > mVn > ng. Let A = max{A1, ..., Aq}. Denote the
optimal solution to MP(1) with the constraint dim(I1¢) + § < ng(xo) T, (R () + K (n))
removed by fl’{(n), ﬁ;(n), ..., h5(n). Assume without loss of generality that d' = d'(n)
variables hit their upper bound, and let H = {1 <i < d|f1;-k(n) = f/2}and H- = {1 <
I < dlﬁ;‘(n) < fn/2}. The Karush-Kuhn-Tucker (KKT) conditions for the variables ﬁl’-‘(n),
fori e H, are

2 K 2
D) (B (s(K))’ (Z Lo+ Y Bj-(n)%i(m) S LY U R—
jeH+ jeH- C,8(x¢) (%) jelilﬂﬁj(n)
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Rearranging these equations, we get the implicit solution

1/2
() 4Dy (n)* 5~ RK)s2(n) [ T1 D)
hi(n) = ~ = . ®
Cigx0) (%) na(K)? [(d — Dk +(4) ¥ Dk(m}
keH~

for i € H™. From the condition C,, = O(n), there exists an n3 < oo and ® < oo such that
C, < ®nVn > ng. Let np = max{ny1,n21...,n14, N2, n3}. Using Equation (6) and the
fact that le’f(n) < fu/2fori=1,2,...,d, we can get a lower bound on fzf(n),

REX)m / _H:Dj(n) ﬁ
hin) = ki(n) 2 e

d+4

£\ H2
ong(xo) (&) dM*F (K

’

for i € H™ and n > ng. From the KKT conditions, we can get a lower bound on the
second partial derivatives associated with the bandwidths that do not hit their upper
bounds. Indeed, for n > ny,

R(K)m

Di(n) > 3
Ong(xouz(K2dM (4 )

Substituting this lower bound for D;(n) into A}(n), we can get a lower bound on A} (n),
which we denote by &} (n). For n > ny,

7 (d +2)+(d+2)(d—d")
fl;"(n) > hi(n) > k() o n” A fnJ s

From Lemma 1, h(n) > hi(n), fori =1,2,...,d, and n > ng. Therefore, for n > ny,
L () fn d—d'+2 % —(d-d)-6

[0 fnnZ(d—d’+2) fn X N2d+Dd-d'+2) |

< —
Loin() ~ 2R (n)

. —(d-d')-6 .
Since n2@idd+» — (0 as n — oo, there exists an L such that Ii—“"((r’g < L. Thus,
‘mun

all of the conditions in Assumption 2 are satisfied; therefore, by Theorem 2.1 of
Ruppert and Wand [1994], Equations (2) and (3) are the conditional bias and variance
of $10C(x; H;,), respectively. We now show that C,g(xo) ]_[?:1 h;(n) — oo asn — oo. For
n > ny,

d d
C.8x0) [ [hi(n) = Cog(xo) [ [ ()

i=1 i=1

d
~ T %
> ng(xo) [ | B ()
i=1
tdq)?  8d-4d-(d+2)xd-d)?
X nTaam f, 2d-d'+2)

(d=d)?+8d-d')+4
=n 2d+Dd-d'+2 — 00 as n — oQ.
From the inequality []"; 2(n) > [%; A(n), the limit C,g(xo) [T}, Af(n) — oo implies
that C,2(xo) [Ty 4 (n) — 00, asn — oo. Because C,g(x0) [T, hf(n) — 0o and £(n) — 0
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fori =1,2,...,d,asn— oo,
MSE{§°¢(x0; H},)IX1, X2, ..., X} = 0 as n — oo.
Therefore, the estimator $~°°(xo; Hy,) is consistent. D

Proof of Theorem 4

Proor. Condition 1 ensures that MP(1) will have an optimal solution for large enough
n, almost surely. Let hj(n), hj5(n), ..., hj(n) denote the optimal solution to MP(2). Since
the optimal solution is a feasible solution, it must satisfy the constraint dim(l‘[‘f) +6 <

ng(xop) ]_[:-izl h;(n) < Massyg. Thus,

d
B B Massyg
C h: C ————
< ng(xo)g *(n) < C,8(x¢) o)

dim(I19) + 8

Cr8(x0) ngxo)

From the last inequality, we can see that C,/n — oo as n — oo is necessary and
sufficient for C,8(xo) []%_, k(n) — oo as n — oc. The rest of the proof is the same as
the proof of Theorem 2. O

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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