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Optimization via Simulation Over Discrete
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Abstract Both the simulation research and software communities have been interested in opti-
mization via simulation (OvS), by which we mean maximizing or minimizing the
expected value of some output of a stochastic simulation. Continuous-decision-variable
OvS, and gradient estimation to support it, has been an active research area with
significant advances. However, the decision variables in many operations research and
management science simulations are more naturally discrete, even categorical. In this
tutorial we describe some of the research directions and results available for discrete-
decision-variable OvS, and provide some guidance for using the OvS heuristics that
are built into simulation modeling software.

Keywords simulation; stochastic optimization; random search; ranking and selection

1. Introduction by Example
This tutorial covers a class of problems that may be solved by optimization via simulation
(OvS). There is not universal agreement on the name “optimization via simulation” for the
problems discussed here, with “simulation optimization” and “optimization for simulation”
often used to mean the same thing. To build some intuition, we start with a collection of
OvS examples.

Designing a Highly Reliable System
A system works only if all of its subsystems work; the subsystems consist of components that
have their own time-to-failure and repair-time distributions. The objective is to decide how
many and what redundant components to use to minimize steady-state system unavailability
given budget constraints. The budget is relatively tight, so altogether there are only 152
feasible configurations. Let x∈ {1,2, . . . ,152} index the configurations.

Flow-Line Throughput
A three-stage flow line has finite buffer storage space in front of stations 2 and 3 (the number
of spaces being denoted by x4 and x5) and an infinite number of jobs in front of station 1.
There is a single server at each station, and the service-time distribution at station i has
service rate xi, i= 1,2,3. If the buffer of station i is full, then station i− 1 is blocked and
a finished job cannot be released from station i− 1. The total buffer space and the service
rates are limited by constraints on space and cost. The objective is to find a buffer allocation
and service rates such that the expected throughput over a one-year planning horizon is
maximized. The constraints are x1 + x2 + x3 ≤ 20, x4 + x5 = 20, 1≤ xi ≤ 20, and xi ∈ Z+

for i= 1,2, . . . ,5, implying 21,660 feasible solutions. This example is adapted from Buzacott
and Shantikumar [9] and Pichitlamken and Nelson [27].
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Inventory Management with Dynamic Customer Substitution
A retailer faces a one-shot inventory stocking decision for six product variants at the begin-
ning of the selling season so as to maximize the expected value of profit. No inventory
replenishment can occur, and there is no salvage value for the products. Each consumer
selects the available product with the highest utility for them, which may be a no-purchase
option. The number of customers is Poisson, and the customer’s choice behavior is modeled
by a multinomial logit model. Pricing is an exogenous decision. Let x1, x2, . . . , x6 denote the
number of each variant the retailer chooses to stock. Taking into account upper bounds of
500 on the number ordered for each variant, there are 5006 ≈ 1.6× 1016 feasible solutions.
This example is adapted from Mahajan and Van Ryzin [20].
These three problems share the following characteristics: The system of interest is stochas-

tic, the objective is to optimize a performance measure that is the mathematical expected
value of a stochastic output (unavailability, throughput, and cost, respectively), and the
system is complex enough that this expected value is neither analytically nor numerically
tractable but it can be estimated by running a simulation. The number of feasible solutions
ranges from modest to monstrous, but in all cases it is finite. Discrete optimization via
simulation (DOvS) addresses these types of problems (as well as problems with a countable
number of feasible solutions, which will not be covered here).
To be precise, the problems considered in this tutorial are of the form

min{g(x) =Ex[Y (x)]}, (1)
x∈Θ=Φ∩Zd, (2)

Ex[Ci(x)]≤ qi, i= 1,2, . . . , s. (3)

In all cases, the distribution of the random variable Y (x), as a function of the decision
variable x, is unknown, but realizations of Y (x) can be observed through simulation exper-
iments at setting x. If the problem is more naturally thought of as maximization, we can
always formulate an equivalent minimization version.
In the first part of the tutorial, x is just an index in the set {1,2, . . . , k}, and the solu-

tions may be categorical (not ordered in any way). In the second part, x is a vector of d
integer-ordered decision variables in a feasible region Φ⊂ �d, possibly defined by a set of
constraints, where Zd denotes all d-dimensional vectors with integer components. In this
case, we typically assume that Φ is compact and convex.
The constraints (3) are on the expected values of additional output performance measures,

C1(x),C2(x), . . . ,Cs(x). For instance, in the flow-line problem C1(x) might be the overall
system work in process, which we would like to keep below a certain level q, on average.
Stochastic constraints have not yet received much attention in the DOvS literature, so we
focus primarily on problems where there are no such constraints and comment on stochastic
constraints only briefly.
We always assume that Var[Y (x)]<∞ for all x∈Θ, and that we can simulate independent

and identically distributed (i.i.d.) replications, Y1(x), Y2(x), . . . , at any x (with an analogous
assumption for any Ci(x)).
Notice that we are not including problems for which x ∈ Φ, that is, continuous-valued

decision variables. This is an important area of research that has received much study; see,
for instance, Barton and Meckesheimer [4] and Fu [11].
The organization of this tutorial is as follows: We first comment on the gap between OvS

research and practice. We then discuss ranking-and-selection (R&S) techniques, which apply
to DOvS problems where |Θ| is relatively small. Next we present some key approaches for
adaptive random search (ARS), the primary provably convergent methodology for large |Θ|.
Some recent results on working with stochastic constraints are provided in §5. We finish
by describing a public domain DOvS solver and giving some tips on working with the
commercial solvers integrated into simulation software.
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2. OvS Practice and Research
Nearly every commercial discrete-event or spreadsheet simulation software package has a
built-in OvS solver. In the simulation software world, the modeling environment is the
primary point of competition and distinction. As a result, the modeling environments are
all different, and the OvS solver must be customized to work with the specific simulation
software. This contrasts, with a few notable exceptions, to the mathematical programming
world, where the solver is the point of competition and there is relative agreement as to
what constitutes a problem formulation.
There are at least two stand-alone OvS solvers, one commercial (OptQuest, http://

www.opttek.com) and one open source (Industrial Strength COMPASS, http://www.
iscompass.net). In either case the user is responsible for building a connection between the
solver and the simulation, which is probably easiest when the simulation is programmed in
a lower-level language like C++ or Java rather than a commercial modeling environment.
As has been well documented by Fu [10], the commercial OvS solvers have not been

strongly influenced by academic research on OvS. The commercial solvers are driven by meta-
heuristics, such as tabu search and genetic algorithms, that have proven to be effective on
difficult, mixed-decision-variable deterministic optimization problems (see Ólafsson [26] for
a review of metaheuristics for OvS). As a result, they do not provide the sort of convergence
guarantees that are prized in the research literature. However, this gap is beginning to close,
and convergent algorithms that can solve real problems are starting to appear, so this tuto-
rial will emphasize the research literature that is most likely to contribute to eliminating the
gap. We also provide suggestions about how to effectively use the current commercial solvers.
The research we will cover addresses algorithms that either exhaust Θ—that is, simulate

every feasible solution—or are based on some form of ARS. In deterministic mathematical
programming, exhausting Θ guarantees finding the optimal solution; this is not true in
stochastic simulation because we can only estimate the value of the objective function, and
therefore never know it for sure. In ARS, solutions are randomly sampled from Θ, and the
algorithms are “adaptive” in how they use observed performance to decide which solutions
are eligible to be sampled and how much simulation effort is expended on them.
A useful, although not exhaustive, way to categorize DOvS research is as follows (this is

based partially on Andradóttir [2]):

Solution sampling: Does the algorithm use point-based (from one solution to the next),
set-based (from solutions in an eligible set), or population-based (combining components
from a set of solutions) sampling of solutions? To be comprehensive, we include exhausting
x∈Θ as a form of population-based sampling. Most ARS algorithms are set based.

Type of simulation: Does the algorithm work for finite-horizon or infinite-horizon (steady-
state) simulation, or both? In infinite-horizon simulation, the stopping time of the simulation
replication is an experimental factor, along with the number of replications; whereas in
finite-horizon simulation, only the number of replications matters (the stopping time of the
simulation is fundamental to the definition of the problem). In this tutorial we will only
consider the number of replications as an experimental factor, which means that we are
either optimizing a finite-horizon simulation or an infinite-horizon simulation for which the
run length has already been chosen.

Feasible region: Is Θ finite or countably infinite; is it integer ordered or combinatorial?
Our focus is finite and small enough to exhaust, or finite but large and integer ordered.

Guarantee: Does the algorithm guarantee almost-sure (probability 1) convergence to a
globally or locally optimal solution, or guarantee a probability of correctly selecting the
optimal solution, or none of the above?

3. Ranking and Selection
R&S addresses problems for which we can exhaust Θ and we want some statistical guarantee
about the quality of the solution x that we select after simulating them all. R&S prescribes an

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

http://www.opttek.com
http://www.opttek.com
http://iscompass.net
http://iscompass.net


Nelson: Optimization via Simulation Over Discrete Decision Variables
196 Tutorials in Operations Research, c© 2010 INFORMS

experimental design and statistical estimators that provide the desired terminal guarantee.
R&S procedures were invented in the 1950s for statistical selection problems such as choosing
the best treatment for a medical condition, but they have probably found their greatest
application in DOvS. There are two basic paradigms in R&S: frequentist and Bayesian.
Although we focus on the frequentist approach, we give a brief overview of the Bayesian
perspective.
There are two streams of Bayesian R&S procedures: the optimal computing budget allo-

cation (OCBA) procedures and expected value of information (EVI) procedures (see Branke
et al. [8] for an excellent overview and comparison with frequentist procedures). The OCBA
procedures allocate the simulation budget to maximize the posterior probability of cor-
rect selection (PCS), where a “correct selection” means choosing the solution x with the
smallest g(x). The EVI procedures and their extensions try to minimize the expected oppor-
tunity cost of the chosen solution. A strength of the Bayesian procedures is that they provide
strategies for optimally allocating simulation effort to the solutions being considered.
Next we introduce the frequentist approach. Suppose that there are k≥ 2 solutions in Θ,

denoted as x1,x2, . . . ,xk. Let Yj(xi) denote the jth i.i.d. observation from simulating solu-
tion xi. A common assumption is that Yj(xi) ∼N(g(xi), σ2(xi)), where g(xi) and σ2(xi)
are unknown. Without loss of generality, we let g(x1)≤ g(x2)≤ · · · ≤ g(xk), so the goal of an
R&S procedure is to select solution x1 (which is unknown to the user). An R&S procedure
is statistically valid if

Pr{select solution x1 | g(x1)≤ g(x2)− δ} ≥ 1−α, (4)

where δ > 0 is called the indifference-zone (IZ) parameter and is typically set to the smallest
difference that is practically significant. Under this formulation, the best solution x1 will
be selected with a probability at least 1−α as long as the difference between the objective
values of the best and second-best solutions is large enough to matter. If there are a set
of solutions whose objective values are within δ of the objective value of the best, then all
solutions in that set are acceptable. Some R&S procedures also guarantee to select one of
the acceptable solutions with probability at least 1−α when there is more than one (Nelson
and Goldsman [22]).
R&S originally addressed problems where the number of feasible solutions k was assumed

quite small, say, less than 20. To tackle problems like the design of the highly reliable system,
which had k = 152 feasible solutions, enhancements are needed; this has been a focus of
the simulation research community. Here, we give one example: procedure NSGS (Nelson
et al. [23]). NSGS is valid if the output from each feasible solution is i.i.d. normal and is
independent across different solutions. NSGS is the combination of a subset-selection pro-
cedure that tries to eliminate noncompetitive solutions without expending much simulation
effort, and a ranking procedure applied to the competitive systems remaining in the subset.

3.1. Procedure NSGS
(1) Specify the overall desired probability of correct selection 1/k < 1− α < 1, the IZ

parameter δ > 0, a common initial number of replications from each system n0 ≥ 2, and the
initial number of competing systems k= |Θ|. Furthermore, set

t= tn0−1, (1−α/2)1/(k−1)

the (1−α/2)1/(k−1) quantile of the t distribution with n0−1 degrees of freedom, and obtain
Rinott’s constant h= h(n0, k,1−α/2) from the tables in Wilcox [33], Bechhofer et al. [6],
or Goldsman and Nelson [12].
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(2) Take n0 replications from each feasible solution. Calculate the first-stage sample
means Ȳ (xi;n0) and marginal sample variances

S(xi)2 =
1

n0 − 1

n0∑
j=1

(Yj(xi)− Ȳ (xi;n0))2

for i= 1,2, . . . , k.
(3) Subset Selection. Calculate the quantity

Wij = t

(
S(xi)2 +S(xj)2

n0

)1/2

for all i �= j. Form the screening subset I, containing every feasible solution xi such that
1≤ i≤ k and

Ȳ (xi;n0)≤ Ȳ (xj ;n0)+Wij for all j �= i.

(4) If |I|= 1, then stop and return the system in I as the best. Otherwise, for all xi ∈ I,
compute the second-stage sample sizes

Ni =max{n0, �(hS(xi)/δ)2�},

where �·� is the ceiling function.
(5) Take Ni −n0 additional replications from all systems xi ∈ I.
(6) Compute the overall sample means Ȳ (xi;Ni) for all xi ∈ I. Select the system xB =

argminxi
Ȳ (xi;Ni) as best.

NSGS guarantees that xB = x∗ or g(xB) is within δ of g(x∗), and also that g(xB) ∈
Ȳ (xB ;NB)± δ, all with probability ≥ 1−α.

NSGS has been applied to problems with more than 1,000 feasible solutions and tends
to be very efficient when there are a few competitive solutions and many noncompetitive
ones; this often happens when Θ is obtained by trying every feasible combination of some
more basic decision variables. The procedure works, even if this is not the case, but may
be computationally expensive if the subset-selection step (3) cannot screen out a significant
number of feasible solutions.
In this section we have described R&S procedures as DOvS procedures themselves; how-

ever, R&S has also been used in conjunction with other DOvS optimization algorithms to
improve their efficiency or to make a correct decision at the end of the optimization process.
In particular, Boesel et al. [7] proposed an extension to NSGS that they call a cleanup pro-
cedure. The concept of “cleanup” is to take the solutions simulated by a DOvS algorithm,
eliminate without any additional simulation the ones that are not statistically competitive,
and perform just enough additional simulation on the remaining solutions to provide a sta-
tistical guarantee of selecting the best solution from among those simulated during the search
and provide a confidence interval on how good the selected solution is.
Many search-based OvS algorithms select the best solution from a neighborhood.

Pichitlamken et al. [28] designed a sequential R&S procedure for that purpose. Similarly,
Xu et al. [34] used the comparison-with-a-standard procedure of Kim [19] to test the local
optimality of a solution when solving DOvS problems.

4. Adaptive Random Search
When |Θ| is large, then ARS procedures dominate the research literature. We consider
only the case where x ∈Θ are integer-ordered decision variables so that there is a natural
concept of a neighborhood, although some of the algorithms we describe can also be used
on combinatorial problems.
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We start with globally convergent algorithms. To simplify the presentation we assume
there is a single, globally optimal solution x∗. The algorithms we present also converge
when there are multiple global optima, but this complicates the definition of convergence
without adding any insight for our purposes. The algorithms we describe have different, but
similar, definitions of “global convergence,” but informally they all produce a sequence of
solutions x∗

k, k = 1,2, . . . , that degenerate to x∗ in a very strong sense. One can also talk
about convergence of ĝ(x∗

k), the estimated optimal value, but we do not do so here. See, for
instance, Andradóttir [1].
An example of a globally convergent random search algorithm for DOvS problems is the

stochastic ruler (Yan and Mukai [36]); examining it helps us understand the objectives of
simulation researchers when creating better ARS algorithms. In the algorithm below, ĝ(x)
is an unbiased estimator of g(x), whose distribution need not change as a function of the
iteration k; e.g., it could be Ȳ (x;n) with n fixed.

Stochastic Ruler
Step 0. Choose a and b such that Pr{a ≤ ĝ(x) ≤ b} = 1 for all x ∈ Θ, an irreducible

Markov chain transition matrix R on Θ such that R(x,x′) = R(x′,x) for all solutions
x,x′ ∈Θ, and a sequence of positive integers mk such that mk →∞ as k→∞. Select an
initial solution x∗

0, and set k← 0.
Step 1. Generate a candidate solution x′ from R(x∗

k, ·); in other words, randomly select
a solution using the x∗

k row of R as the probability distribution on solutions.
Step 2. For i← 1 to mk do:

Generate an independent estimate ĝ(x′) of g(x′)
Generate U ∼U(a, b)
If ĝ(x′)>U , then
x∗

k+1 ← x∗
k; go to Step 3

endif
Next i
x∗

k+1 ← x′

Step 3. k← k+1; go to Step 1.

Why does the stochastic ruler work? First, one can show that the probability of rejection
at Step 2 is minimized at x∗, and furthermore, the transition probability into x∗ is greater
than out of x∗. In addition, the transition matrix of the implied discrete-time Markov chain
is irreducible, aperiodic, and finite, and it can be shown that the steady-state probabilities
of the Markov chain degenerate to a distribution putting probability 1 on x∗ as k→∞.
The algorithm is beautiful and compact (because it retains no past data), but is not really

adaptive and requires increasing effort from iteration to iteration. Therefore, the finite-
time performance is not good, even though it can be proven to converge. Research in ARS
has focussed on improving finite-time performance by being more adaptive—that is, more
sensitive to what has been observed—without sacrificing this sort of convergence guarantee.
Andradóttir [1] noted that there are significant advantages to using the cumulative sample

mean to estimate the value of the optimal solution, even if it is not used for guiding the
ARS. She showed that this approach makes almost-sure convergence of the algorithms easy
to prove, provides a better estimate of the true value of the selected solution whenever the
algorithm terminates, and tends to yield better empirical performance. Thus, an improved
stochastic ruler algorithm would use the same guidance system to select the next x′ to
evaluate, but would report as the estimated optimal the one with the smallest sample mean
Ȳ (x;n(x)), where n(x) is the cumulative number of replications of solution x over all times
it has been visited. Because it is now computationally possible to store sample mean infor-
mation on a very large number of solutions, this insight has had a profound impact on
algorithm design.
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In the following subsections, we examine some important threads in globally convergent
ARS research, then consider the concept of locally convergent algorithms.

4.1. Branch and Bound for DOvS
When solving deterministic integer programming problems, branch-and-bound methods that
relax integrality constraints are often used, which is possible because the objective function
can be evaluated at noninteger values. When solving DOvS problems, however, the simu-
lation may not make sense at fractional values of x. For instance, it is not clear how to
simulate a queueing system with 3.6 servers or queue capacity 5.2. And as opposed to having
a known linear, quadratic, or even convex objective function, the function g(x) is implied
by the simulation model, and little structural information about it is available.
Nevertheless, the principles of branch and bound have had an important influence on

DOvS. We start by describing the stochastic branch-and-bound method (SB&B) of Norkin
et al. [24, 25], and then show how their reasoning leads to the nested partitions (NP) methods
of Shi and Ólafsson [31, 32] and Pichitlamken and Nelson [27], which have seen considerable
practical use.
To describe a simplified version of SB&B, let {Θp} be subsets of Θ creating a partition P.

Define as
g∗(Θp) = min

x∈Θp
g(x)

the value of the optimal solution restricted to Θp. Clearly, g(x∗) = minΘp∈P g∗(Θp).
We assume that there exist two bounding functions l and u defined on subsets of Θ such
that
• l(Θp)≤ g∗(Θp)≤ u(Θp),
• u(Θp) = g(x′) for some x′ ∈Θp,
• if |Θp|= 1, then l(Θp) = g∗(Θp) = u(Θp).
Of course, if we knew l and u, then we could directly apply branch and bound. Instead,

suppose that there are estimators Lk and Uk defined on subsets Θp such that

lim
k→∞

Lk(Θp) = l(Θp),

lim
k→∞

Uk(Θp) = u(Θp),

with probability 1, where k will be an index of algorithm/simulation effort. Under these
assumptions, an SB&B algorithm is as follows:

Stochastic Branch and Bound

(1) Set k= 0, P0 =Θ and generate Lk(Θ) and Uk(Θ).
(2) Set

Θk = argmin{Lk(Θp): Θp ∈Pk},
x∗

k ∈ argmin{Uk(Θp): Θp ∈Pk}.
(3) If |Θk|= 1, then Pk+1 =Pk and go to Step 4.
Else let P ′

k be a partition of Θk, and let Pk+1 = (Pk\Θk)∪P ′
k.

(4) For all Θp ∈Pk+1 generate Lk+1(Θp) and Uk+1(Θp), set k= k+1, and go to Step 2.

In brief, as the algorithm progresses, better and better estimates are obtained of the bound-
ing functions, and the partition with the best lower bound is partitioned finer and finer.
It can be shown that x∗

k converges with probability 1 to x∗ under very reasonable conditions.
There are two obvious drawbacks to direct application of SB&B. First, there needs to

be bounding functions l and u and convergent estimators of them. Norkin et al. [24, 25]
and Gutjahr et al. [13] display some specific stochastic optimization problems for which this
is the case. A second issue is the overhead needed to retain and refine a larger and larger
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partition structure as the algorithm progresses, because no partition is ever eliminated from
consideration as in deterministic branch and bound.
Clearly, the key is the lower bounding function l . Notice that for any subset Θp, it is

trivially true that

l(Θp) = min
x∈Θp

g(x),

Lk(Θp) = min
x∈Θp

Ȳ (x;n(k))

satisfy the required conditions provided n(k), the cumulative number of replications of
solution x through iteration k, increases. But it is also true that the estimator

L̂k(Θp) = min
x∈X p(k)

Ȳ (x;n(k))

works provided X p(k) is a randomly sampled subset of solutions from Θp and X p(k) con-
verges to Θp as k→∞. Thus, L̂k(Θp) is a sampling-based lower bound that is available for
any problem. This addresses the first drawback of SB&B.
To avoid the need to carry along information on an increasing number of partitions, we

can modify the definition of the new partition, Pk+1, to be

Pk+1 = (Θ\Θk)∪P ′
k.

In words, we only maintain the most recently refined partition and aggregate all other
solutions into a single “surrounding region.”
With these two refinements, we have a version of the NP method similar to Pichitlamken

and Nelson [27]. The NP method is relatively easy to implement and does not depend
on special structure, although special structure can be exploited and may be particularly
helpful in designing a partitioning scheme. The NP method uses a very straightforward
adaptation: sample solutions more intensely in the partition that has most recently provided
an apparently good solution. As a refinement of both SB&B and NP, Xu [35] suggests
using a more sophisticated sampling-based bound than L̂k, while still maintaining the full
partitioning structure of SB&B.

4.2. The Global–Local Balance
A goal of globally convergent ARS is to exploit (search intensively) regions of Θ that appear
to have good solutions, while maintaining enough global exploration to be sure to capture x∗

in the limit. In addition, because g(x) can only be estimated, there must be less and less
estimation error in the limit to facilitate convergence. The following subsections describe
two ways to balance these competing objectives.

4.2.1. BEESE. Prudius and Andradóttir [29] proposed the balanced explorative and
exploitative search with estimation (BEESE) scheme, which keeps global exploration, local
exploitation, and solution estimation in play by switching back and forth among them.
Specifically, there is a Global probability distribution that places positive probability on all
elements of Θ for exploration; a family of Local probability distributions that (typically)
assigns probability only to solutions that are close (in some sense) to the current sample best
solution in Θ for exploitation; and an estimation scheme that allocates replications to a solu-
tion x to estimate g(x). The global convergence of an algorithm that falls into the BEESE
framework can be proved if the Global search distribution satisfies certain conditions. The
simplest version of BEESE, known as Randam BEESE (R-BEESE), has the following high-
level structure:

R-BEESE
(1) Sample a solution x∼ Global(Θ) and estimate g(x).
(2) With probability q, take additional replications of the current sample best solution

x̂∗ to refine the estimate of g(bx∗).
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Else with probability p sample a solution x∼ Global(Θ) and estimate g(x) or refine the
estimate of g(x) if x has been visited before.
Otherwise sample solution a x∼ Local(x̂∗) and estimate or refine the estimate of g(x).
(3) Update current sample best solution and go to Step 2.

Clearly, the Global and Local distributions on Θ, and the choice probabilities p and q,
have an impact on performance. Prudius and Andradóttir [29] also describe as Adaptive
BEESE (A-BEESE), which makes these decisions dynamic and adaptive to the progress of
the search. The concept of the BEESE framework is to provide a structure and conditions
that guarantee global convergence, but within which smart heuristics can be employed.

4.2.2. MRAS. Hu et al. [18] distinguish between instance-based DOvS search algo-
rithms—where new candidate solutions are generated directly from previous candidates—
and model-based DOvS search, where new candidate solutions are sampled from a global
probability distribution over Θ that adapts based on the performance of previous candidates.
Model-based search is always global but concentrates the search on promising areas by chang-
ing the global distribution; this is a different approach to staying global than BEESE, which
always returns to global sampling but does not update the global distribution. We briefly
describe the model reference adaptive search (MRAS) algorithm of Hu et al. [17, 18] and its
OvS counterpart SMRAS, which are closely related to the cross-entropy method (Rubinstein
and Kroese [30]) and estimation of distribution algorithm (Mühlenbein and Paaß [21]).
To provide intuition, consider a problem where the goal is maximization, g(x)≥ 0, and g

can be evaluated exactly; that is, we have a zero-variance estimator of g(x), so the optimiza-
tion problem is deterministic. Let r( · ) be a probability mass function over x ∈ Θ, which
defines a random variable X∼ r; in other words, X is a randomly sampled solution from Θ,
sampled according to distribution r. Notice that r induces a distribution on the random
variable g(X), the value of the objective function at X, making quantities such as Er[g(X)]
or the (1−α)-quantile of g(X) well defined.
Hu et al. [18] show that there is a recursive sequence of reference distributions {rk; k =

0,1,2, . . .) on Θ with the property that

lim
k→∞

Erk
[g(X)] = g(x∗).

Because x∗ is unique, this sequence of distributions converges to a distribution that places
probability 1 on x∗. Specifically, starting from some initial distribution r0(x) that assigns
positive probability to all x∈Θ,

rk+1(x) =
g(x)rk(x)∑
z∈Θ g(z)rk(z)

.

In theory, if we could generate samples from rk, we could empirically estimate rk+1, and
continue to do this until the reference distribution essentially degenerates onto x∗. Unfortu-
nately, rk may have no special structure, making sampling from it computationally difficult.
Therefore, Hu et al. [18] suggest that sampling from Θ be from a convenient parametric
distribution f(·;βk), where at each iteration we choose βk to minimize the Kullback–Leibler
divergence between the parametric distribution and the reference distribution; this is what
Step 3 in the MRAS algorithm below does.

MRAS
(1) Choose initial distribution f(·;β0) over Θ, α∈ (0,1] and k= 0.
(2) Calculate γk+1, the (1−α)-quantile of g(X) with X∼ f(·;βk).
(3) Solve for

βk+1 = argmax
β

Eβk

{
[g(X)]k

f(X,βk)
I(g(X)≥ γk+1) lnf(X,β)

}
.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Nelson: Optimization via Simulation Over Discrete Decision Variables
202 Tutorials in Operations Research, c© 2010 INFORMS

(4) Let k= k+1; go to 2.

The MRAS algorithm above assumes that the (1−α)-quantile in Step 2 and the expecta-
tion in Step 3 can be calculated exactly. In practice they are estimated via samples from Θ
according to f(·,βk). The quantile threshold in Step 2 selects out only the most promising
samples in Step 3 to use for updating β; convergence of the MRAS algorithm does not
depend on the choice of α, but empirical performance does. When the simulation output is
stochastic, then g(x) also must be estimated, as described in Hu et al. [17].
MRAS avoids the need to make a decision between searching globally and locally.

4.3. Locally Convergent ARS
All of the random search algorithms that we have discussed so far are globally convergent,
which means that the search will eventually find a globally optimal solution of the DOvS
problem as the simulation effort goes to infinity. Unless we assume that the DOvS problem
has special structure, the only way to ensure global convergence is to evaluate all feasible
solutions with an infinite number of replications. Globally convergent ARS algorithms are
designed to make sure that all solutions are simulated infinitely often in the limit, while
aggressively pursuing good solutions subject to that requirement.
If we could actually evaluate all feasible solutions, then we could treat the DOvS problem

as an R&S problem. In practice, however, the total number of feasible solutions can be
very large, and only a small fraction of them can be simulated. In that situation, global
convergence has little practical meaning.
A different approach is to seek a convergence property that can be used to design a prac-

tically meaningful stopping criterion for the algorithm. An example is the local convergence
criterion initiated by Hong and Nelson [14]. Let N (x) = {y: y ∈ Θ and ‖x− y‖ = 1} be
the local neighborhood of x ∈Θ, where ‖x−y‖ denotes the Euclidean distance between x
and y. Hong and Nelson [14] define x as a local minimizer if x∈Θ and either N (x) =∅ or
g(x)≤ g(y) for all y ∈N (x).
Notice that, to statistically establish the global optimality of a solution in DOvS, all

solutions in Θ have to be simulated (unless there is special structure). To check the local
optimality of a solution, however, only the solutions in its local neighborhood need to be
simulated and the local neighborhood has at most 2d solutions. Therefore, it is more practical
to verify local optimality than global optimality. Xu et al. [34] showed that an R&S procedure
due to Kim [19] can be applied to test the local optimality of a solution with controlled
Types I and II errors by sequentially simulating all solutions in the local neighborhood of a
candidate optimal along with the candidate itself. Thus, local optimality can be established
with statistical confidence while simulating only a small fraction of the solutions in Θ.
Hong and Nelson [15] designed a framework for locally convergent DOvS algorithms and

showed that local convergence can be achieved while still leaving a great deal of freedom
to design efficient and aggressive DOvS algorithms. The COMPASS algorithm of Hong and
Nelson [14] is an instance of this framework. The following is a high-level description of
COMPASS.

COMPASS
(1) Either randomly or by design, select some initial feasible solutions and simulate

them.
(2) Build the most promising area around the current sample best solution based on

geometry.
(3) Sample new solutions from the most promising area.
(4) Simulate the new solutions and the solutions that define the most promising area a

little bit more.
(5) Calculate the cumulative sample average for each active solution, and choose the

solution with the best cumulative sample average as x∗
k. Go to Step 2.
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The “most promising area” is the part of Θ that we want to explore most intensely. In the
original COMPASS algorithm, the most promising area consisted of all feasible solutions
that have not yet been simulated, and are closer to the current sample best solution than
to any other feasible solution that has been simulated. Specifically,

{x: x∈Θ and ‖x− x̂∗
k‖ ≤ ‖x−y‖, ∀y ∈ Vk and y �= x̂∗

k},

where Vk is the set of all visited solutions through iteration k. This area is easily defined by
linear constraints, but other choices are possible (Xu et al. [34]). By continuing to improve
the estimates of g(x) for the “active” solutions—solutions in the most promising area and
those that define it—the algorithm has a way to back out from the current most promising
area if no locally optimal solution is discovered.

5. Stochastic Constraints
For many problems it is natural to have a stochastic constraint E [C(x)]≤ q. Notice that a
chance constraint is of this form when C(x) is an indicator random variable that takes the
value 1 if the event of interest happens, 0 otherwise.
In principle, we could take DOvS algorithms like BEESE or COMPASS and roll the

constraint into the output estimator as a penalty, e.g.,

Ȳ (x;n)+ b(x;n) · [C̄(x;n)− q]+.

Another approach is to first run simulations at a carefully designed collection of x’s, fit
a metamodel ĉ(x) that approximates E [C(x)], and then include ĉ(x) ≤ q as just another
deterministic constraint.
Batur and Kim [5] have proposed using ideas from R&S to check the feasibility of all

x ∈Θ with respect to a stochastic constraint. Instead of classifying each solution as either
feasible or infeasible with respect to E [C(x)]≤ q, they recognize that in a stochastic setting
it may be reasonable to allow some relaxation of the constraint. In particular, they suggest
the user provide an ε > 0 such that they are comfortable with the following.

• If E [C(x)]≤ q− ε, then it is desirable to declare that x is feasible: x∈D.
• If q− ε <E [C(x)]≤ q+ ε, then it is acceptable to declare that x is feasible or infeasible:

x∈A.
• If E [C(x)]> q+ ε, then it is unacceptable to declare that x is feasible: x∈U .

Batur and Kim [5] provide a sequential classification procedure that returns a subset
F ⊂ Θ with the guarantee that Pr{D ⊂ F ⊂ (D ∪A)} ≥ 1− α. The procedure is valid as
stated for normally distributed C(x) and valid as ε→ 0 otherwise. Batur and Kim [5] show
that the procedure can be effective for |Θ| ≈ 1,000.
But what if x has to satisfy s > 1 stochastic constraints that may be correlated? Then, of

course, all constraints must be checked, and significantly more simulation may be required
to provide the probability guarantee simultaneously for all of them. To speed the decision
that a solution x is unacceptable, Batur and Kim [5] also check the linear combination
constraint

s∑
i=1

aiE [Ci(x)]≤
s∑

i=1

aiqi

for constants a= (a1, a2, . . . , as). Notice that any unacceptable x is also unacceptable for this
constraint; therefore, adding this constraint can accelerate recognition of an unacceptable
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solution. The choice of the constant vector a matters, and because the optimal a is typically
unknown in advance, Batur and Kim [5] propose a heuristic.

6. Solvers
In this final section we discuss the use of DOvS solvers.

6.1. Industrial Strength COMPASS
To further improve the finite-time performance of the COMPASS algorithm and make it
competitive with commercial DOvS solvers, Xu et al. [34] developed the Industrial Strength
COMPASS (ISC). The ISC has the COMPASS algorithm as its core but adds other steps
to make the algorithm more efficient in solving practical problems.
The ISC algorithm divides the optimization process into three phases: a global phase that

explores the entire feasible region and identifies several areas that possibly contain compet-
itive locally optimal solutions, a local phase that searches for a locally optimal solution in
each of the regions identified in the global phase, and a cleanup phase that selects the best
solution among all solutions identified as locally optimal and estimates its true expected
performance to within a user-provided precision.
The ISC uses a niching genetic algorithm for the global phase, the COMPASS algorithm

for the local phase, and an R&S procedure for the cleanup phase. It also defines meaningful
and testable transition rules between the phases. Xu et al. [34] compared the ISC with a
stand-alone version of OptQuest—a commercial solver that is embedded in many commercial
simulation packages—for a number of examples with different characteristics. They found
that the ISC is competitive with OptQuest, despite enforcing finite-sample and asymptotic
guarantees. The C++ implementation of ISC with its instructions and related papers are free
for downloading from http://www.iscompass.net.

6.2. Using Commercial OvS Software
This section is based on Hong and Nelson [16] and Chapter 12 of Banks et al. [3].
As noted earlier, a standard feature of simulation modeling software is an OvS tool.

Considering the difficulty of establishing connections between a stand-alone OvS solver and
simulation modeling software, it is not surprising that most simulation practitioners use the
integrated OvS tool. In this section we provide some guidance on using them to obtain good
results.
Robust heuristics are the most common algorithms found in the integrated OvS tools.

A “robust heuristic” is an OvS procedure that does not depend on strong problem structure
to be effective, and is somewhat tolerant of some sampling variability. Genetic algorithms
and tabu search are two prominent examples, but there are others and many variations. Most
of the integrated tools can be applied to problems with continuous, integer, and categorical
decision variables. These heuristics have been observed to be highly effective on difficult
deterministic optimization problems, but they usually provide no performance guarantees,
either in the deterministic or stochastic case. Therefore, we offer three suggestions to make
them more effective for OvS: control sampling variability, restart, and cleanup.

6.2.1. Control Sampling Variability. In many cases, it will be up to the simulation
user to decide how many replications will be obtained at each feasible solution examined by
the solver. This is a difficult problem in general. Ideally, the number of replications should
increase as the heuristic discovers better and better solutions because it is statistically much
more difficult to distinguish solutions that are close in performance than ones that differ
substantially. At the beginning of the search, very little error control may be needed for the
heuristic to identify good solutions and search directions; later in the search, however, this
might not be the case.
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If the OvS software has an “adaptive” setting—meaning it adjusts the number of replica-
tions based on the variance of the simulation estimates—then use it. If, on the other hand,
you must specify a fixed number of replications per solution, then a preliminary experiment
should be conducted: Simulate several solutions, some at the extremes of the feasible region
and some nearer the center. Compare the apparent best and apparent worst of these solu-
tions. Find the minimum number of replications required to declare them to be statistically
significantly different. This is the minimum number of replications that should be used,
which may be substantially more than the default minimum number of replications specified
by the OvS tool because the software designers want their tool to deliver results quickly.
But remember, if the decision that the optimization will support is important, then waiting
hours or even days for the best decision may well be worth the wait.

6.2.2. Restarting the Optimization. Because robust heuristics provide no guarantees
that they converge to the optimal solution, it makes sense to run the optimizer several
times to see which run yields the best solution. Each optimization run should use different
random number seeds or streams and should start from different initial solutions. Be sure
to start at solutions on the extremes of the solution space, in the center of the space,
or even at randomly generated solutions. If people familiar with the system suspect that
certain solutions will be good, include them as starting solutions too. The inconvenience of
initializing several optimization runs is worth it if it leads to a better solution.

6.2.3. Statistical Cleanup. After the optimization run or runs have completed, it is
critical to perform a second set of experiments on the top solutions identified by the heuris-
tic; we call these “cleanup experiments.” In an OvS problem you can never be sure you
have found the optimal solution (or that you even simulated it, unless you exhausted Θ);
that is an error that you have to live with. But there are two additional types of error that
are avoidable: failing to recognize the best solution that actually was simulated during the
search, and poorly estimating the performance of the solution that is selected in the end.
These errors occur because no optimization algorithm can hope to make any progress while
at the same time maintaining statistical error control every step of the way, and there is
a natural bias toward solutions that, by chance, received favorable simulation estimates.
Therefore, we recommend performing a rigorous statistical analysis employing the compari-
son techniques described in §3 to decide which are the best or near best solutions discovered
during the search. Include the apparent top 5% to 10% of the solutions simulated during
the search in this controlled experiment. The “cleanup” concept was introduced in Boesel
et al. [7].
In summary, the outcomes from using commercial OvS software can be improved by

(a) doing a bit of preliminary study to assess output variability, (b) making a number of
optimization runs to improve the chances of identifying good solutions, and (c) performing
a sound statistical analysis of the top solutions to provide a statistical guarantee of selecting
the best among them and estimating its performance well.
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[32] L. Shi and S. Ólafsson. Nested Partitions Method, Theory and Applications. Springer,
New York, 2009.

[33] R. R. Wilcox. A table for Rinott’s selection procedure. Journal of Quality Technology
16:97–100, 1984.

[34] J. Xu, L. J. Hong, and B. L. Nelson. Industrial strength COMPASS: A comprehensive algorithm
and software for optimization via simulation. ACM Transactions on Modeling and Computer
Simulation 20:1–29, 2010.

[35] W. L. Xu. Flexibility, lifecycle planning and simulation-based optimization in integrated sup-
ply chains. Ph.D. thesis, Department of Industrial Engineering and Management Sciences,
Northwestern University, Evanston, IL, 2010.

[36] D. Yan and H. Mukai. Stochastic discrete optimization. SIAM Journal of Control and Opti-
mization 30:594–612, 1992.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.


