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In this paper, we address the problem of finding the simulated system with the best (maximum or minimum) expected performance when
the number of alternatives is finite, but large enough that ranking-and-selection (R&S) procedures may require too much computation to
be practical. Our approach is to use the data provided by the first stage of sampling in an R&S procedure to screen out alternatives that
are not competitive, and thereby avoid the (typically much larger) second-stage sample for these systems. Our procedures represent a
compromise between standard R&S procedures—which are easy to implement, but can be computationally inefficient—and fully sequential
procedures—which can be statistically efficient, but are more difficult to implement and depend on more restrictive assumptions. We
present a general theory for constructing combined screening and indifference-zone selection procedures, several specific procedures and a

portion of an extensive empirical evaluation.

1. INTRODUCTION

A central reason for undertaking many—perhaps most—
stochastic simulation studies is to find a system design that
is the best, or near the best, with respect to some measure
or measures of system performance. The statistical proce-
dure that is most appropriate for this purpose depends on
the characteristics of the problem at hand, characteristics
that include the number of alternative designs, the num-
ber of performance measures, whether or not the alterna-
‘tives are functionally related in some useful way, and what,
if any, regularity conditions apply to the response surface.
Comprehensive reviews of the available tools can be found
in Fu (1994) and Jacobson and Schruben (1989).

When the number of alternative designs is relatively
small, say 2 to 10, and there is not a strong func-
tional relationship among them, then statistical procedures
based on the theory of ranking and selection (R&S) are
popular because they are easy to apply and interpret.
See, for instance, Bechhofer et al. (1995) for a treat-
ment of the general topic of R&S, and Goldsman and
Nelson (1998) for a survey of R&S procedures applied to

simulation. When mean performance is of interest, the typ-
ical indifference-zone (IZ) selection procedure conforms to
the following recipe:

1. For each alternative, obtain a (usually small) num-
ber of observations of the system performance measure of
interest and calculate a measure of the variability of the
observations.

2. Based on the measure of variability, the number of
alternatives, and the desired confidence level, determine the
total number of observations needed from each alternative
to guarantee that a user-specified practically significant dif-
ference in performance can be detected at the desired con-
fidence level.

3. Obtain the prescribed number of additional observa-
tions from each alternative and select the one with the best
sample performance.

Why are IZ selection procedures well suited for the sim-
ulation environment? First of all, many of these procedures
assume that the data from a particular competitor are inde-
pendent and normally distributed—assumptions that are
roughly satisfied by appropriately batched data or by sam-
ple averages of independent replications of the simulations.
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Second, we can manipulate the underlying pseudorandom
number seeds to produce simulations that are also indepen-
dent between competitors, possibly running the different
competitors on parallel processors.

On the other hand, why are such procedures only recom-
mended for a small number of alternatives? Consider Step 2
for a specific procedure due to Rinott (1978). Rinott’s pro-
cedure specifies N, the total number of independent, nor-
mally distributed observations required from alternative i,
to be

el (3]

where n, is the initial sample size; h is a constant that
depends on the number of alternatives k, the desired con-
fidence level 1 —a, and ng; S? is the sample variance of
the initial n, observations; and & is the practically sig-
nificant difference specified by the user. Two features of
Equation (1) argue against using it when the number of
alternatives is large: (a) the constant h is an increasing
function of k, and (b) the formula is based on the worst-
case assumption that the true mean of the best alternative is
exactly & better than all of the others, and all of the others
are tied for second best. This assumption is “worst case”
in the sense that it makes the best alternative as hard as
possible to separate from the others, given that it is at least
8 better than anything else. The reason for assuming the
worst case is that it allows formula (1) to be independent
of the true or sample means.

The focus of this paper is issue (b). However, it is worth
noting that the growth of % as a function of k is typically
quite slow. Figure 1 plots kh?> versus k for Rinott’s pro-
cedure when the confidence level for correctly selecting
the best alternative is 95%, and the first-stage sample size

Figure 1. The expected total sample size kh* in units
(o/8)* for Rinott’s procedure as a function
of the number of systems k for 95% confi-
dence of making a correct selection.
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is large. Because N,, the number of observations required
from alternative i, is proportional to 4%, the figure shows
the expected total number of observations in the experiment
in units of (0//8)? (under the assumption that the variances
across all alternatives equal o?). Notice that within the
range of k =2 to 100 systems, each additional system adds
approximately 20(o/6)* observations to the experiment; in
other words, the computational effort increases linearly in
the number of systems. Thus, issue (a) is not as serious as
it is often thought to be.

The fact that IZ selection procedures are based on a
worst-case analysis implies that they may prescribe more
observations than needed in order to deliver the desired
correct-selection guarantees.' This is especially unfortunate
when the number of alternatives is large and they differ
widely in performance, because a great deal of simulation
effort may be wasted on alternatives that are not competi-
tive with the best. One situation in which a large number
of heterogeneous alternatives may arise is after termination
of a stochastic optimization procedure. Such procedures
either provide no statistical guarantee or only a guarantee
of asymptotic convergence. We have proposed using R&S
to “clean up” after stochastic optimization—ideally with
minimal additional sampling—to insure that the alternative
selected as best is indeed the best or near the best among
all of those visited by the search (Boesel and Nelson 1998,
Boesel et al. 2001).

Our goal is to provide procedures that are more adaptive
than standard IZ selection procedures without losing the
ease of implementation and interpretation that make them
attractive. Specifically, we will provide simple screening
procedures that can be used to eliminate noncompetitive
systems after Step 1, thereby saving the (possibly large)
number of observations that would be taken at Step 3.
The screening procedures we propose are based on the
subset selection branch of R&S. These procedures attempt
to select a (possibly random-size) subset of the k compet-
ing systems that contains the one with the largest or small-
est expected performance. Gupta (1956, 1965) proposed a
single-stage procedure for this problem that is applicable
when the samples from the competing alternatives are inde-
pendent, equal-sized, and normally distributed with com-
mon unknown variance. The fact that subset selection can
be done in a single stage of sampling is a feature we
exploit, but we first need to extend the existing methods to
allow for unknown and unequal variances across systems.
Unknown and unequal variance subset-selection procedures
do exist, but they require two or more stages of sampling
in and of themselves (see, for instance, Koenig and Law
1985 and Sullivan and Wilson 1989).

In this paper we combine subset selection—to screen out
noncompetitive systems—with IZ selection—to select the
best from among the survivors of screening—to obtain a
computationally and statistically efficient procedure. Pro-
cedures of this type have appeared in the literature before,
e.g., Gupta and Kim (1984), Hochberg and Marcus (1981),
Santner and Behaxeteguy (1992), Tamhane (1976, 1980),
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and Tamhane and Bechhofer (1977, 1979). One purpose of
our paper is to extend this work, which typically assumes
known variances, or unknown but equal variances, so as to
be more useful in simulation experiments.

If the idea of sample-screen-sample-select is effective,
then one might naturally push it to the limit to obtain a fully
sequential procedure (see, for instance, Hartmann 1991 and
Paulson 1964). Such procedures take a single observation
from each alternative that is still in play at the current stage
of sampling, eliminate noncompetitive systems, then con-
tinue with a single observation from each remaining alter-
native, and so on.

One disadvantage of a fully sequential procedure is the
overhead required to repeatedly switch among alternative
simulated systems to obtain a vector of observations across
all systems still in play. Another is that existing procedures
require equal variances across systems, an assumption that
is clearly violated in many systems-simulation problems
(in related research we are working on removing this
restriction). Finally, the situations in which fully sequential
procedures such as Hartmann (1991) and Paulson (1964)
tend to beat screen-and-select procedures occur when all of
the alternatives are close in performance (Bechhofer et al.
1990), while we are interested in situations characterized
by a large number of alternatives with heterogeneous per-
formance. On the whole, though, we believe that the use of
sequential procedures is ultimately a good idea—the only
problems lie in overcoming the above obstacles. Thus, we
are also pursuing the development of such procedures (Kim
and Nelson 2001).

The paper is organized as follows: §2 presents a decom-
position lemma that allows us to marry screening proce-
dures to IZ selection procedures while maintaining overall
statistical error control. In §3 we extend the state of the art
in single-stage screening to allow unequal variances across
alternatives; then in §4, we combine these new screen-
ing procedures with IZ-selection procedures for the case
of unequal variances. Section 5 extends our ideas to allow
the systems to be screened in groups, rather than all at
once, which is convenient in an exploratory study or in
conjunction with an optimization/search algorithm, and can
be more efficient. The paper ends with a report on a large-
scale empirical study in §6, and conclusions in §7.

2. A DECOMPOSITION LEMMA

In this section we present a key lemma that simplifies
the construction of combined screening and IZ selection
procedures. The Bonferroni-like lemma, which generalizes
a result in Hochberg and Marcus (1981), establishes that
under very general conditions we can apply an IZ selection
procedure to the survivors of a screening procedure and still
guarantee an overall probability of correct selection (CS)
even if the selection procedure starts with the same data
that was used for screening.

I;et the alternative systems be numbered 1,2, ...,k and

let [k] denote the unknown index of the best alternative.

Suppose 7 is a procedure that obtains data from each sys-
tem, and based on that data determines a (possibly) ran-
dom subset I of {1,2,...,k}, such that Pr{sf} > 1 — a,,
where sf = {[k] € I} is the event that I contains the best
alternative.

. We want to consider combining & with-a multiple-stage
selection procedure % that will take /—and the data used
to determine [—as its initial stage of sampling, and then
obtain additional data in an attempt to determine the best
system. The types of selection procedures we have in mind
can be applied independently of any screening procedure
or, equivalently, can be viewed as retaining all systems after
the first stage of sampling.

Let J,,£ = 1,2,...,5s be the distinct subsets of
{1,2,...,k} that contain [k]. There are s = 2%~ such sub-
sets. We require that % be a procedure that has the fol-
lowing properties: 9 determines a (possibly random) index
K € J, such that Pr{%(J,)} 2 1 — «; for any such sub-
set J, that contains [k], where %B(J,) = {K = [k]} is the
event that K is the best alternative. Further, suppose that
B({1,2,...,k})y € B(J,) for all J,. In other words, if a
correct selection would be made when % is applied to the
entire set, then a correct selection would be made if it were
applied to any subset that contains [k]. This property will
hold for any procedure whose sampling from system i, say,
depends only on the data generated for system i. This will
be true, for instance, when % takes an initial sample of n,
observations from system i, then determines the total sam-
ple from system i by a formula like

!

where S? is the sample variance of the initial n, observa-
tions from system i and both & or & are fixed.

Let % =0,., B(J,), the event that [k] is selected for all
subsets J, to which 9% can be applied.

LEMMA 1. For the combined procedure & + R,

Pr{CS} 2 Pr{sdNAB} 2 1 — (ay+ ;).

PrROOF. Any outcome belonging to the event 93 results in a

correct selection, provided that the subset of systems con-

sidered by % contains [k]. The event s/ only provides out-

comes for which this is the case. Any outcome that satisfies

both conditions will certainly result in a correct selection.
Next notice that

Pr{sd N %} = Pr{sd} +Pr{%B} — Pr{sd U &}
2 Pr{st} +Pr{B({1,... , k})} —Pr{stU %}
2 (1—ay)+(1-a)-1,

where the first inequality follows because Pr{(j_, % x
() > Pr{@®({1.2,... . kD). O

RemARK. The additive decomposition of the screening and
1Z selection procedures in Lemma 1 will not be the most
statistically efficient in all cases. For some specific proce-
dures, we have shown that Pr{st N @B} > (1 — ay)(1 — a;).



Notice that 1 — (ap+a,) — (1 —ap)(1 — ;) = —aya, <0,
implying that the additive decomposition is more conserva-
tive (and therefore less statistically efficient) than the mul-
tiplicative one. However, the difference is quite small—in
the third decimal place or beyond for standard confidence
levels.

3. SCREENING PROCEDURES

The decomposition lemma allows us to derive screening
procedures in isolation from the selection procedures with
which they will be combined. In this section we present
a new screening procedure that yields a subset of random
size that is guaranteed to contain [k] with probability >
1 — . This procedure generalizes others in the literature
by permitting unequal variances, which certainly is the case
in many simulation studies. The procedure also exploits
the dependence induced by the use of common random
numbers.

We will use the following notation throughout the paper:
Let X,j be the jth observation from alternative i, for i =
1,2,..., k. We will assume that the X,; are i.i.d. N(u,, 07)
random variables, with both w, and ¢? unknown and
(perhaps) unequal. These assumptions are reasonable when
the output data are themselves averages of a large num-
ber of more basic output data, either from different repli-
cations or from batch means within a single replication.
The ordered means are denoted by ) < ppy < -+ < iy
We assume that bigger is better, implying that the goal of
the experiment is to find the system associated with ;.
In other words, we define a CS to mean that we select a
subset that contains the index [k]. We will require that the
Pr{CS|up) — ppe—y = 6} 2 1 —a, where “puyg — pp_yy 2 87
1s a reminder that the guarantee is valid, provided the dif-
ference between the best and second-best true mean is at
least 6. Throughout the paper, we use [i] to denote the
unknown index of the system with the ith smallest mean.

The following procedure can be applied when an initial
sample having common size has been obtained from all
systems. No further sampling is required, but as a result
the size of the subset is random.

Screen-to-the-Best Procedure.

1. Select the overall confidence level 1 — «, practically
significant difference &, sample size n, > 2, and number of
systems k. Set 1 = t(l_aﬁ)k:ﬁ.”ﬂ_], where Ig, denotes the 8
quantile of the 7 distribution with v degrees of freedom.

2. Sample X, i=1,2,...,k;j=1,2,...,n.

3. Compute the sample means and variances X, and 52
fori=1,2,...,k Let

52 S\
W, =r<—L+—’>
‘ nyg Ny

for all [ j.

4.8et I ={i:1<i<kand X; 2 X, —(W; -0,
vV j i}, where y* = max{0, y}.

5. Return /. '
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The subset / can be thought of as containing those alter-
natives whose sample means are not significantly inferior
to the best of the rest. In addition, notice that the subset /
will never be empty for this procedure. In the appendix we
prove that Pr{[k] € I | sty — b1y 2 8} 2 1 — ;. In the spe-
cial case of 6 = 0 this is a generalization of Gupta’s (1965)
subset-selection procedure to allow unequal variances.

ReEMARK. If common random numbers (CRN) are used
to induce dependence across systems, then the subset-
selection procedure described above is still valid, provided
S?/ny+S87/ny is replaced by S7/n,, where

S2 —

y

1 " — = \2
Z(Xll——Xj[—(X!—Xj)) '

VLO_ 1 f=1

and l = rl_ao/(k_n‘n‘)_l.

4. COMBINED PROCEDURES

The decomposition lemma makes it is easy to apply an IZ
selection procedure to the systems retained by a screen-
ing procedure, while still controlling the overall confidence
level. The key observations are as follows:

e For overall confidence level 1— a, choose confidence
levels 1 —a, for the screening procedure, and 1 —a, for the
1Z selection procedure such that ay+a; = . A convenient
choice is o = a; = a/2.

e Choose the critical constant ¢ for the screening proce-
dure to be appropriate for k systems, n, initial observations,
and confidence level 1 — «,.

e Choose the critical constant & for the IZ selection pro-
cedure to be appropriate for k systems, 5, initial observa-
tions, and confidence level 1 — ;.

Below we exhibit one such procedure that combines
the screening procedure of §3 with Rinott’s IZ selection
procedure.

Combined Procedure.

1. Select overall confidence level 1 — «, practically sig-
nificant difference &, first-stage sample size n, > 2, and
number of systems k. Set r = t(l—a(,)ﬁ‘w.n(,-l and h = h(1—
ay. ng, k), where h is Rinott’s constant (see Wilcox 1984
or Bechhofer et al. 1995 for tables), and o+ @, = a.

2. Sample X,»j, i=1,2,...,kj=12,...,n,

3. Compute the first-stage sample means and variances
X" and §? for i=1.2,... k. Let

§2 §3\11
W= t(”l—+ _J>
ng Iy

for all i 5 j.

4. Set I={i:1<i<kand K(” P Y}”—(Wii——&*,
v j# i}

5. If I contains a single index, then stop and return that
system as the best.
Otherwise, for all € I compute the second-stage sample
size

e (2]
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6. Take N, —n, additional observations from all systems
i € I and compute the overall sample means

pe—- l%x
N, | J

i j=

foriel.

7. Select as best the system i € I with the largest )—(:r(z).

The conclusion that Pr{CS|u;; — py_yy 2 8} 21—«
for the combined procedure follows immediately from
Lemma 1 because the screening procedure is calibrated to
retain the best with probability >1 — o, while Rinott’s
selection procedure guarantees a probability of correct
selection 2 1 -« for k (or fewer) systems. Thus, the over-
all probability of correct selection is > 1 — (ap + ;) =
l—oa.

ReEMARK. The goal of a procedure like the one above is to
find the best system whenever it is at least 8§ better than
any other. However, we also obtain statistical inference that
holds no matter what the configuration of the true means.
We claim that with probability greater than or equal to 1 — o
all of the following hold simultaneously:

e Forall i € I°, we have u, < max ., u; + 8; that is, we
can claim with high confidence that systems excluded by
screening are less than 8 better than the best in the retained
set. If we use 6 = 0 for screening, this means that we can
claim with high confidence that the systems excluded by
screening are not the best.

e Foralliel,

w(2) (2) -
— max w; €| —(X;” — max X, —~6> ,
M jel,j;éiMj l: ( ! jel, ji 7/

— — +
<X,»(2>—— max X;2>+8> },

Jel, j#i

where —y~ = min{0, y} and y* = max{0, y}. These confi-
dence intervals bound the difference between each alterna-
tive and the best of the others in 7.

e If K denotes the index of the system that we select as
the best, then

PI‘{/.LK —ierﬂ?;(K/.Li z2-0t21-qa.
In words, the system we select will be within & of the best
system in / with high confidence.

The first claim follows because the screening proce-
dure is in fact one-sided multiple comparisons with a
control with each system i taking a turn as the control
(Hochberg and Tamhane 1987). The second claim follows
from Proposition 1 of Nelson and Matejcik (1995), while
the third claim follows from Nelson and Goldsman (2001),
Corollary 1.

REMARK. Because we prefer working with sample means
as estimators of the true system means, the procedure pre-
sented here is based on sample means. However, many
subset-selection and 1Z selection procedures have been

¢

based on weighted sample means, and these procedures
are typically more efficient than corresponding procedures
based on sample means. Examples include the restricted
subset-selection procedures (RSSPs)* of Koenig and Law
(1985), Santner (1975), and Sullivan and Wilson (1989);
and the IZ selection procedure of Dudewicz and Dalal
(1975). The decomposition lemma in §2 allows us to form
combined procedures based on weighted sample means if
we desire. Two obvious combinations are:

e Combine the screening procedure of §3 with the IZ
selection procedure of Dudewicz and Dalal (1975) to obtain
a two-stage procedure for selecting the best.

o Combine either the RSSP of Koenig and Law (1985)
or Sullivan and Wilson (1989) with the IZ selection proce-
dure of Dudewicz and Dalal (1975) to obtain a three-stage
procedure for selecting the best that bounds the number of
systems that survive screening. :

We investigate one of these combinations later in the
paper.

5. A GROUP-SCREENING VERSION OF
THE COMBINED PROCEDURE

One difficulty with the combined screening and 1Z selec-
tion procedure presented in the previous section is that all &
of the systems must receive first-stage sampling before pro-
ceeding to the second stage. In this section, we show that
it is possible—and sometimes advantageous—to break the
overall screening-and-selection problem into a screening-
and-selection problem over smaller groups of systems. As
we will show, if one or more very good alternatives are
found early in the process, then they can be used to elim-
inate a greater number of noncompetitive systems than
would be eliminated if all were screened at once.

To set up the procedure, let G|, G,, ... , G,, be groups of
systems such that G, UG,U---UG, ={1,2,... . k},G,N
G;=@fori#j,|G|>1foralliand |G,|>2. When we
screen the £th group in the experiment, the systems in G,
will be screened with respect to each other and all systems
retained from the previous groups. However, the systems
retained from previous screenings have already received
second-stage sampling, so screening in group £ is based on

s s\ ”
W, = t<—~'~ + —:4) ,
N, N,

J

where

ng, if system i has only received
first-stage sampling,

<

e N,, if system i has received
second-stage sampling.

The potential savings occur because typically N, > n,,
which shortens W, providing a tighter screening proce-
dure.

dn the following description of the group-screening
peocedure, we let )?fs) denote the sample mean of all obser-
vations taken from system i through s =1 or 2 stages of



sampling; and we use /, to denote the set of all systems that
have survived screening after £ groups have been screened.
Group-Screening Procedure.
1. As in Step 1 of the combined procedure in §4.
2. Letly=@.
3. Do the following for £=1,2,...,m:

(a) Sample X, j=1,2,...,ny, for all i € G,; com-
pute X\ and S?; and set N, = n,,.
Comment: G, is the current group of systems to be
screened.

(b) Let [, =I""UJI where

e ={i:ieG, X" 2 X"~ (W, ~8)*, V jeG,
and XV > X7 — (W, - 8)*, ¥ jel,_],

and

I°‘d={i:ielﬂ_1,5f,.(2)2)?§”~(Wij—8)+, vV jeG,
and XV > XY — (W, ~8)*, ¥ jel,_,].

Comment: 7™ is the set of newly screened systems that
make it into the next screening, while /°¢ is the set of
previously retained systems that survive another round.
At the cost of some additional data storage /° can sim-
ply be set to I,_, so that all systems that survive one
round of screening survive to the end.

(c) For all i € I"*" compute the second-stage sample
size N; based on Rinott’s procedure, sample N, — n, addi-
tional observations, and compute the second-stage sam-
ple mean X7, Set N, = N..

4. Select as best the system i € [, with the largest sam-
ple mean )7,(2).

In the appendix we show that Pr{CS|u, — w5 > 6) >
1 —2a; — ;. However, we conjecture that Pr{CS|ug, —
Mpp—1) = 8} 2 1 —ay—a; = 1—a. In the online companion
to this paper we show why we believe that the conjecture
is true, and henceforth, we operate under this assumption.

REMARK. There are several contexts in which this type of
procedure might be useful.

¢ Consider exploratory studies in which not all system
designs of interest are initially known or available. Sup-
pose the user can bound k& so that the critical values can
be computed. Then the study can proceed in a relatively
informal manner, with new alternatives added to the study
as they occur to the analyst, or as suggested by the per-
formance of other alternatives. The analyst can terminate
the study at any point at which acceptable performance has
been achieved and still have the desired correct-selection
guarantees.

e Certain heuristic search procedures, such as genetic
algorithms, work with groups or “populations” of systems
at each iteration. The group-screening procedure allows
new alternatives generated by the search to be compared
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with the best alternatives previously visited, while main-
taining the overall confidence level for the system finally
chosen (provided, again, that the user can bound % in
advance). See, for instance, Boesel et al. (2001).

ExampLE. To illustrate the potential savings from group
screening, consider a situation with k = 3 systems having
the following characteristics:

System

1 2 3
po 3 0 1
o? 10 10 10

If the first-stage sample size is n, = 10, and we want an
overall confidence level of 1 —a = 0.95, then the required
critical values are £ gs)12 ¢ = 2.68 and £(0.975, 10, 3) =
3.72.

Suppose that the practically significant difference is § =
1, and (for simplicity) the sample averages and sample
variances perfectly estimate their population counterparts.
Then, when all systems are screened at once we have

172
W, = 2.68(% + %) ~3.79 for all i # j.
Clearly, System 1 survives because it is the sample best,
System 2 is screened out, but System 3 also survives
because

X =15XY — (W, = 8)" =3—(3.79-1)* =0.21.

Thus, both Systems 1 and 3 receive second-stage sampling,
in which case

72 :
N, = Kﬂ) 1:139 fori=1,3.

Now suppose that the systems are grouped as G, = {1, 2}
and G, = {3}. In the first step of the group screening pro-
cedure System 1 survives and System 2 is eliminated, as
before. System 1 again receives a total sample size of 139
observations. The value of Wy, then becomes

10 10\
=268 —+— ] =~277.
W (1o+139>

Thus, System 3 is screened out because
X =1%3-(277-1)" =1.23.

In this case we save the 129 second-stage observations that
are not required for System 3. Of course, the results change
if the systems are encountered in a different order; in fact,
group screening is less efficient than screening all systems
at once if G, = {2, 3} and G, = {1}. We explore this trade-
off more fully in §6.4.4.

6. EMPIRICAL EVALUATION

In this section we summarize the results of an extensive
empirical evaluation of two of the screening procedures
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described above: The combined procedure in §4—which
uses screening to deliver a random-sized subset to Rinott’s
IZ selection procedure—and the group-screening version
of this same procedure as presented in §5. We also report
one set of results from a smaller study that combined the
RSSP of Sullivan and Wilson (1989) with the IZ selection
procedure of Dudewicz and Dalal (1975). Recall that an
RSSP controls the maximum number of systems that sur-
vive screening at the cost of an additional stage of sam-
pling. These procedures are based on weighted sample
means; such procedures tend to be more statistically effi-
cient than procedures based on standard sample means, but
are also more difficult to justify to practitioners.

Rather than use systems simulation examples, which
offer less control over the factors that affect the perfor-
mance of a procedure, we chose to represent the systems as
various configurations of k normal distributions (to assess
the impact of departures from normality, we also repre-
sented the systems as configurations of k lognormal dis-
tributions). In all cases System 1 was the best (had the
largest true mean). We evaluated the screening procedures
on different variations of the systems, examining factors,
including the practically significant difference &, the initial
sample size n,, the number of systems k, the configuration
of the means p;, and the configuration of the variances o?.
As a basis for comparison, we also ran Rinott’s IZ selec-
tion procedure without any screening. The configurations,
the experiment design, and the results are described below.

6.1. Configurations

To examine a “difficult” scenario for the screening pro-
cedures, we used the slippage configuration (SC) of the
means.” In the SC, the mean of the best system was set
exactly 6 or a multiple of 6 above the other systems, and
all of the inferior systems had the same mean.

To investigate the effectiveness of the screening pro-
cedure in removing noncompetitive systems, monotone-
decreasing means (MDM) were also used. In the MDM
configuration, the means of all systems were spaced evenly
apart.

Group-decreasing means (GDM) formed the final con-
figuration. Here the inferior systems were divided into two
groups, with means common within groups, but with the
first group’s mean larger than the second group’s. The
percentage of systems in each group and the difference
between the second group’s mean and the best system’s
mean changed as described below.

In some cases the variances of all systems were equal
(o7 = 1); in others they changed as described below.

6.2. Experiment Design

For each configuration, we performed 500 macroreplica-
tions (complete repetitions) of the entire screening-and-
selection procedure. The number of macroreplications was
chosen to allow comparison of the true probability of cor-
rect selection (PCS) to the nominal level. In all experi-
ments, the nominal PCS was 1 — a = 0.95 and we took

oy = a; = 0.025. If the procedure’s true PCS is close
to the nominal level, then the standard error of the esti-
mated PCS, based on 500 macroreplications, is about
/0.95(0.05)/500 ~ 0.0097. What we want to examine
is how close to 1 —a we get. If PCS > 1 —a for all
configurations of the means, then the procedure is overly
conservative.

In preliminary experiments, the first-stage sample size
was varied over ny = 5,10, or 30. Based on the results
of these experiments, follow-up experiments used n, = 10.
The number of systems in each experiment varied over
k=2,5,10, 20, 25, 50, 100, 500.

The practically significant difference was set to 6§ =
do,/ ﬁ , where 0'12 is the variance of an observation from
the best system. Thus, we made 6 independent of the first-
stage sample size by making it a multiple of the standard
deviation of the first-stage sample mean. In preliminary
experiments, the value of d was d = 1/2, 1, or 2. Based
on the results of the preliminary experiments, subsequent
experiments were performed with d = 1 standard deviation
of the first-stage sample mean.

In the SC configuration, u; was set as a multiple of §,
while all of the inferior systems had mean 0. In the MDM
configuration, the means of systems were spaced accord-
ing to the following formula: u; = u, — b(i—1), for i =
2,3,...,k, where b= 56/1. Values of 7 considered in pre-
liminary experiments were 7 =1, 2, or 3 (effectively spac-
ing each mean &, 6/2, or 8/3 from the previous mean). For
later experiments, the value T =2 was used.

In the GDM configuration, the experimental factors con-
sidered were the fraction of systems in the first group of
inferior systems, 7, and the common mean for each group.
The fraction in the first group was examined at levels of
7 = 0.25,0.5,0.75. The means in the first group were all
M; = @) — O, while the means in the second group were all
;= py — y8. The spacing of the second group was varied
according to y =2, 3, 4.

The majority of the experiments were executed with
the mean of the best system & from the next-best sys-
tem. However, to examine the effectiveness of the screening
procedure when the best system was clearly better, some
experiments were run with the mean distance as much as
48 greater. On the other hand, in some cases of the MDM
and GDM configurations the mean of the best was less than
6 from the next-best system.

For each configuration we examined the effect of unequal
variances on the procedures. The variance of the best sys-
tem was set both higher and lower than the variances of
the other systems. In the SC, o} = po?, with p =0.5, 2,
where ¢ is the common variance of the inferior systems.
In the MDM and GDM configurations, experiments were
run with the variance directly proportional to the mean
of each system, and inversely proportional to the mean of
each system. Specifically, 07 = |u; — 8|+ 1 to examine the
effect of increasing variance as the mean decreases, and
o7 =1/(Jju; — 8]+ 1) to examine the effect of decreasing



variance as the mean decreases. In addition, some experi-
ments were run with means in the SC, but with variances
of all systems either monotonically decreasing or monoton-
ically increasing as in the MDM configuration,

To assess the impact of nonnormality, we also gener-
ated data from lognormal distributions whose skewness and
kurtosis (standardized third and fourth moments) differed
from those of the normal distribution.

In evaluating the group-screening procedure, we also
considered the additional experimental factors of group
size, g, and the placement of the best system. The sizes of
groups considered were g = 2, k/2. Experiments were run
with the best system in the first group and in the last group.

When employing restricted-subset selection for screen-
ing, we fixed the maximum subset size r to be the larger
of r=2 and r =k/10 (that is, 10%) of the total num-
ber of systems, k. This seemed to be a reasonable imitation
of what might be done in practice, because a practitioner
is likely to make the subset size some arbitrary but small
fraction of k.

6.3. Summary of Resulis

Before presenting any specifics, we briefly summarize what
was observed from the entire empirical study.

The basic combined procedure performed very well
in some situations, whereas in others it did not offer
significant improvement over Rinott’s procedure with-
out screening. In configurations such as MDM, the
screening procedure was able to eliminate noncompeti-
tive systems and reduce the total sample size dramatically.
However, in the SC, when the practically significant differ-
ence and true difference between the best and other systems
was less than two standard deviations of the first-stage sam-
ple mean, the procedure eliminated few alternatives in the
first stage. The key insight, which is not surprising, is that
screening is very effective at eliminating systems that are
clearly statistically different at the first stage, but is unable
to make fine distinctions. Thus, the combined procedure is
most useful when faced with a large number of systems
that are heterogeneous in performance, not a small number
of very close competitors. Restricting the subset size could
be more or less efficient than not restricting it, depending
on how well the restricted-subset size was chosen.

The PCS can be close to the nominal level 1 — « in
some situations, but nearly 1 in others. Fortunately, those
situations in which PCS is close to 1 were also typically
situations in which the procedures were very effective at
eliminating inferior systems and thus saved significantly on
sampling.

In the robustness study, we found the PCS of the basic
combined procedure to be robust to mild departures from
normality. However, more extreme departures did lead
to significant degradation in PCS, sometimes well below
1—a. ‘

The performance of the group-screening procedure was
very sensitive to how early a good (or in our experiments,
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the best) system was encountered. Encountering a good
alternative in an early group resulted in savings, while
encountering it late (say, in the last group of systems exam-
ined) substantially increased the total sampling required
relative to screening all systems together. Thus, if groups
can be formed so that suspected good candidates are in
the first group then this approach can be effective. Boesel
et al. (2001) show that it is statistically valid to sort the
first-stage sample means before forming the groups, which
makes early detection of a good system more likely.

6.4. Some Specific Results

We do not attempt to present comprehensive results from
such a large simulation study. Instead, we present details
of some typical examples. The performance measures that
we estimated in each experiment include the probability
of correct selection (PCS), the average number of sam-
ples per system (ANS), and the percentage of systems
that received second-stage sampling (PSS). Notice that PSS
is a measure of the effectiveness of the screening proce-
dure in eliminating inferior systems. We first examine the
basic combined procedure from §4, then compare it to
the group-screening procedure from §5. We also compare
the basic combined procedure to a procedure that employs
an RSSP for screening and an IZ selection procedure based
on weighted sample means for selection.

6.4.1. Comparisons Among Configurations of the
Means. Comparing the performance of the basic com-
bined procedure on all of the configurations of the means
shows the areas of strength and weakness. Table 1 provides
an illustration. The estimated ANS depends greatly on the
configuration of the systems. In the worst case (the SC),
the procedure obtains a large number of samples from each
system; the ANS grows as the number of systems increases,
and it is less efficient than simply applying Rinott’s pro-
cedure without screening. However, for the MDM the pro-
cedure obtains fewer samples per system as the number of
systems increases because the additional inferior systems
are farther and farther away from the best for MDM. The
PSS values indicate that the procedure is able to screen out
many systems in the first stage for the MDM configuration,
thus reducing the overall ANS. These and other results lead
us to conclude that the screening procedure is ineffective
for systems within 26 from the best system (when the §
is exactly one standard deviation of the first-stage sample
mean), but quite effective for systems more than 26 away.

The three configurations also indicate PCS values can be
close to or far from the nominal level. For instance, PCS is
almost precisely 0.95 for k =2 in the SC, but nearly 1 for
most cases of MDM.

The results in Table 2 illustrate the advantages and dis-
advantages of using a restricted-subset-selection procedure
for screening, and also the gain in efficiency from using a
procedure based on weighted means.

Comparing the first set of results from Table 1 (which
is Rinott’s procedure without screening) to the first set of
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Table 1. Comparisons across all configurations of the means. In all cases ny = 10, 0?7 = 1 for all
i, 6 =1/./ng, and nominal PCS = 0.95.
k

Procedure/ ,
Configuration Measure 2 5 10 100 500
no screening PCS 0.948 0.960 0.960 0.974 0.972
SC ANS 69 135 184 356 554
=20 PSS 100% 100% 100% 100% 100%
screening PCS 0.960 0.964 0.984 0.978 0.968
SC ANS 86 170 225 453 538
My =0 PSS 89% 91% 94% 99% 99%
screening PCS 1.000 0.998 0.960 1.000 1.000
MDM ANS 88 166 177 66 27
T=2 PSS 90% 88% 70% 12% 3%
screening PCS 0.960 0.982 0.994 0.974
GDM ANS 128 173 393 505
n=1/2,y=4 PSS 65% 69% 80% 89%

results from Table 2 (which is Dudewicz and Dalal’s proce-
dure without screening) shows that Dudewicz and Dalal’s
two-stage indifference-zone procedure is always at least as
efficient, in terms of ANS, as Rinott’s procedure.* Rinott
(1978) proved that this is true in general.

When we compare the MDM results from Table 1 with
the second set of results in Table 2, we see that restricting
the maximum subset size can be either more or less effi-
cient than taking a random-sized subset after the first stage
of sampling. In this example, there are exactly 2 systems
within 8 of the best (the best itself and the second-best
system). Therefore, a subset size of r = 2 is ideal, mak-
ing restricted-subset screening more efficient than random-
size subset screening when k =5 or 10, because r = 2.
However, in the k = 100, 500 cases a maximum subset of
size r = k/10 is larger than necessary; thus, the random-
size subset screening is substantially more efficient in these
cases.

6.4.2. Other Factors. In this section, we look briefly at
the effect of varying the number of systems, the practically
significant difference, the initial sample size, and the sys-
tems’ variances.

Increasing the number of systems, k, causes an approx-
imately linear increase in the ANS for the SC (as we
saw in Table 1, ANS can decrease when the means are

widely spaced as in MDM); see Table 3. For example, with
8 =p;=1//ng in the SC (and all other systems having
mean 0), an increase from 2 systems to 500 systems causes
the estimated ANS to increase from 86 to 538.

The practically significant difference 6 had a greater
effect on the ANS (roughly proportional to 1/8%) than did
k (roughly linear), again with the most significant effect in
the SC. For example (see Table 3), at k = 500 systems with
6 =p, =1//ny the ANS = 538, but with 6 = u, =2/, /n;
the ANS = 134. It is worth noting that linking the 8 and the
true difference w; = i — Myi—1y> s we did here, hampers
the screening procedure. If instead we fix § and increase
only gy — Mp—y)> then screening is more effective. Table 4
shows such results when & is fixed at 1/,/n; and the gap
between py; and ;) goes from one to four times this
amount.

The estimated PCS varied widely with &, again indicat-
ing that the estimated PCS could be close to the nominal
value of 95%, ranging from 94.8% to 98.4% in the SC
configuration.

The initial sample size, n,, also had a significant effect
on ANS and PCS, particularly in the SC (see Table 5). For
instance, with k = 100 systems, ANS is greater than 750
for ny =5 and ny = 30, but for n, = 10 the ANS = 453. The
conclusion is that we would like to have a large enough

Table 2. Results for Dudewicz and Dalal, and Sullivan and Wilson combined with Dudewicz and Dalal,
for the MDM configuration with 7 =2, n, = 10, 0',.2 =1 for all i,6 =1/./ny, and nominal
PCS =0.95.
k
Procedure Measure 2 5 10 100 500
no screening PCS 1.000 1.000 0.998 1.000 1.000
r=| _ ANS 69 128 165 312 457
(D&D) PSS 100% 100% 100% 100% 100%
screening PCS 1.000 0.998 1.000 1.000
r=max{2, k/10} ANS 106 144 175 209
(S&W +D&D) PSS 40% 20% 10% 10%
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Table 3. The effect of number of systems k and the difference between the best and next-best system
for the SC In a'l} cases ng =10, 07 =1 for all i, u, = &, uy = py = - - =, = 0, where & is
measured in units of 1/, /7, and nominal PCS = 0.95.
k
o/Procedure Measure 2 5 10 100 500
1/2 PCS 0.952 0.966 0.976 0.984 0.964
screening ANS 362 715 925 1820 2155
PSS 94% 97% 98% 99% 100%
1 PCS 0.960 0.964 0.984 0.978 0.968
screening ANS 86 170 225 453 538
PSS 89% 91% 94% 99% 99%
1 PCS 0.948 0.960 0.960 0.974 0.972
no screening ANS 69 135 184 356 554
PSS 100% 100% 100% 100% 100%
2 PCS 0.970 0.982 0.984 0.978 0.968
screening ANS 16 34 48 109 134
PSS 64% 64% 70% 91% 97%

initial sample to obtain some sharpness for the screening
procedure, while not taking so many observations that we
have more precision than really necessary.

The effect of unequal variances was insignificant com-
pared to other experimental factors in the cases we
considered, so we limit ourselves to a few comments: When
the variance of the best system was increased and the vari-
ances of the other systems held constant and equal, then
ANS also increased in the SC. However, if all variances
were unequal, then as the variance of the best system
became larger than those of the inferior systems, the ANS
decreased in all configurations. The effect on PCS was not
consistent with changes in variances. Overall, the values of
the means were more important than the values of the vari-
ances, showing that our procedure sacrifices little to accom-
modate unequal variances.

6.4.3. Robustness. To assess the impact of nonnormal
data on the basic combined procedure, the procedure was
applied to lognormally distributed data with increasing lev-
els of skewness and kurtosis, relative to the normal distri-

Table 4.

bution (which has skewness 0 and kurtosis 3). Parameters
of the lognormal distribution were chosen to obtain the
desired variance, skewness, and kurtosis, then the distribu-
tion was shifted to place the means in the SC,

Table 6 shows the estimated PCS for three lognormal
cases, with the corresponding normal case included for
comparison. When skewness and kurtosis differ somewhat
from normality (1.780, 9.112), the procedure still main-
tains a PCS > 0.95. However, as the departure becomes
more dramatic, the achieved PCS drops well below the
nominal level. A larger number of systems (k = 100 vs,
k = 10) exacerbates the problem, and the degradation is not
alleviated by increased sampling (which occurs when 6 is
smaller). Thus, the procedure should be applied with cau-
tion when data are expected or known to differ substantially
from the normal model; mild departures, however, should
present no difficulty.

6.4.4. Effectiveness of Group Screening. In the second
portion of the empirical evaluation, the basic combined pro-
cedure was compared to a procedure that separated systems

The effect of number of systems & and the difference between the best and next-best system

for the SC with & fixed. In all cases n, = 10, o*f =1forali,d= L/ /figs phy = g =+ =
ty =0, p; is measured in units of 1/,/ng, and nominal PCS = 0.95.

k
M /Procedure Measure 2 5 10 100 500
1 PCS 0.960 0.964 0.984 0.978 0.988
screening ANS 86 170 225 453 561
PSS 89% 91% 94% 99% 99%
1 PCS 0.948 0.960 0.960 0.974 0.972
no screening ANS 69 135 184 356 554
PSS 100% 100% 100% 100% 100%
2 PCS 0.998 0.998 1.000 1.000 1.000
screening ANS 64 155 221 451 537
PSS 71% 82% 89% 98% 99%
4 PCS 1.000 1.000 1.000 1.000 +1.000
screening ANS 22 89 147 422 .1 532
PSS 55% 48% 58% 88% * 97%
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Table 5. The effect of number of systems k and the first-stage sample size n, for the SC. In all cases
ol =1forall i,u, =8 =1/ /g, by = 3 = - - - = p, = 0, and nominal PCS = 0.95.
k

1y Measure 2 10 100 500

5 PCS 0.968 0.976 0.968 0.988 0.992
ANS 69 162 246 765 1651
PSS 92% 97% 99% 100% 100%

10 PCS 0.960 0.964 0.984 0.978 0.968
ANS 86 170 225 453 538
PSS 89% 91% 94% 99% 99%

30 PCS 0.952 0.958 0.952 0.978 0.980
ANS 282 365 468 817 1074
PSS 85% 86% 89% 94% 96%

into groups and performed group screening. The perfor-
mance of the group-screening procedure was mixed.

In the MDM configuration, the performance of the group-
screening procedure depended on the placement of the best
system, the group size, and interactions between the two
factors. When the distance between the best system mean
and the inferior system mean was large enough in the SC,
then analogous results were obtained.

In general, if the best system was placed in the first
group, then the group-screening procedure outperformed
the basic combined procedure. For example, for k£ = 10
systems, ANS = 152 and 154 for group screening (with
group sizes 2 and k/2, respectively), while ANS = 177 with
no group screening and 184 with no screening at all; see
Table 7. However, if the best system was placed in the last
group, then it was better to screen all systems at once.

If the best system was discovered early, then a smaller
group size was better. For instance, with k = 25 systems,
if group size was g =2 (with the best in the first group),
then ANS = 105. But if group size was g = k/2 (with the
best in the first group), then ANS = 126. However, if the
best system was in the last position, a larger group size was
better (ANS = 314 compared to ANS = 235).

7. CONCLUSIONS

In this paper we have presented a general methodology
and several specific procedures for reducing the sampling
effort that is required by a two-stage indifference-zone
selection procedure. Our approach is to eliminate or screen
out obviously inferior systems after the initial stage of

sampling, while still securing the desired overall guarantee
of a correct selection. Such procedures preserve the sim-
ple structure of IZ selection, while being much more effi-
cient in situations where there are many alternative systems,
though some are not really competitive.

We focused on procedures that can use screening after an
initial stage of sampling—because of our interest in large
numbers of systems with heterogeneous performance—and
IZ selection procedures based on sample means—because
of our preference for standard sample means over weighted
sample means. However, in some situations restricting the
maximum subset size and using a procedure based on
weighted sample means can be advantageous. As a rough
rule of thumb, we use first-stage screening when there are
a large number of systems and their means are expected
to differ widely, but use restricted-subset screening when
a substantial number of close competitors are anticipated.
The development of more formal methods for choosing
among the two is the subject of ongoing research.

All of the combined procedures presented in this paper
are based on the assumption that all systems are simulated
independently. However, it is well known in the simulation
literature that the use of common random numbers (CRN)
to induce dependence across systems can sharpen the com-
parison of two or more alternatives. In the case of R&S,
“sharpening” means reducing the total number of observa-
tions required to achieve the desired probability of correct
selection. Two IZ selection procedures that exploit CRNs
have been derived in Nelson and Matejcik (1995), and we
have derived combined procedures based on them. How-

Table 6. The effect of nonnormality on PCS for the SC. In all cases o7 =1 for all i, u; = 8, u, =
My ==, =0,n, =10, § is measured in units of 1/,/1;, and nominal PCS = 0.95.
5=1/2 §=1
k=10 k=100 k=10 k=100
Distribution (Skewness, Kurtosis) PCS PCS PCS PCS
normal (©, 3) 0.976 0.984 0.984 0.978
lognormal (1.780, 9.112) 0.958 0.966 0.962 0.954
lognormal (4, 41) 0.850 0.774 0.900 0.814
lognormal (6.169, 113.224) * 0.796 0.562 0.848 0.648




Table 7. The effect of group screening relative to

screening all at once in the MDM configura-

tion with 7 =2. In all cases o? =1 for all i,

ny =10, uy =8 =1/,/n;, and nominal PCS =

0.95.

Scenario k=10 k=25
g =2 with PCS 0.992 0.996
best in first ANS 152 105
group PSS 56% 28%

g =2 with PCS 0.998 1.000
best in last ANS 233 314
group PSS 99% 100%

g =k/2 with PCS 0.996 1.000
best in first ANS 154 126
group PSS 59% 35%

¢ =k/2 with PCS 1.000 1.000
best in last ANS 225 235
group PSS 94% 70%
g=1,no PCS 0.960 1.000
group screening ANS 177 129
PSS 70% 36%

PCS 1.000 1.000
no screening ANS 184 264
PSS 100% 100%

ever, these procedures are not desirable when the number of
alternatives is very large, which is the focus of this paper.
One procedure is based on the Bonferroni inequality, and

will become increasingly conservative as k increases. The )

other assumes that the variance-covariance matrix of the
data across all alternatives satisfies a condition known as
sphericity. This is an approximation that works well as long
as the true variances do not differ too much from the aver-
age variance, and the true correlations between systems do
not differ too much from the average correlation. As the
number of systems increases, the validity of this approxi-
mation becomes more and more suspect.

APPENDIX

The following lemmas are used in proving the validity of
the screen-to-the-best procedure and the group-screening
procedure. A much more complete proof of Lemma 4, as
well as a proof of the validity of the screen-to-the-best pro-
cedure under common random numbers, and a proof of our
inference for systems in the eliminated set are contained in
the online companion to this paper.

LEMMA 2 (BANERJEE 1961). Let Z be an N(0,1) random
variable that is independent of Y,,V,,... Yy, which are
independent chi-squared random variables, with Y, hav-
ing degrees of freedom v,. Let v,,v,,..., v, be arbitrary
weights such that 3t_ v, =1 and all v, 2 0. Then

k
2 Y,
Pr{Z~ < Ztl.zy,;—} >1l—a,
i=1 i

when t; = t,

—a/2,v;"
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LeEMMA 3 (TAMHANE 1977). Let V,,V,,... , Vi be inde-
pendent random variables, and let gV, vy, yy), =
1,2, ..., p, be nonnegative, real-valued functions, each one
nondecreasing in each of its arguments. Then

EI:H (Vi Vy, .., Vk):l > [1E[g;(Vi, Vs, ..., Vol

j=1 j=1

We are now in a position to prove that Pr{[k] € I Ity —
Kie-1) 2 6} 2 1 —ay for the screen-to-the-best procedure.
In the proof we let 8y = =M

PRrROOF. Notice that
Pr{[k]eliﬂ[k}‘ﬂ[kq]?ﬂ
=Pr{Xy > X~ (W= 8)", ¥ j# k| — py_y; >0}

v 5 — N+
_pr) X=X =8 2_(W[k1m OF
("ﬁcﬁ”fn ) 12 ( o+ ) 12 ( g +or > 12

ny ngy ngy

Vj¢klﬂlk]*#[k—1}>3}~ (A1)

To simplify notation, let

7 = X~ X = By

J 2 2N\ 1/2
MOREIT /
g

and let

2 2 172
v = [ Ja o\
J ”0

Now, by the symmetry of the normal distribution, we can
rewrite (A1) as

Wina—0)T 6,
(Wi —9) 220y
v v;

Pr{Zj<

M = M-y 2 5}

vj

Wi
>Pr{zj<—[ﬂ“—], vj';ék}. (A2)

The inequality leading to (A2) arises because Sy = 6
under the assumed condition, ( Wip =0 +6 > Wi
and Z; does not depend on wu;, iy, ... , 1.

To further simplify notation, let

2 @2 1
g;= LCT IS F1—aq)/te=n (S[kJ+S[j]> "
T T HI=ag) Y ng—1 2 2 '
vj T oyt
We now condition on S7, 53, ..., 5 and rewrite (A2) as

E[Pr{Z,<Q;, V j#k|S, ..., S

k—1
> E[H Pr{Z; < 0,lS%,..., SZT}}
j=1

k—1

> []EPr(Z, < 0], (A3)

j=1
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where the first inequality follows from Slepian’s inequal-
ity (Tong 1980), since Cov[Z;, Z;] > 0, and the second
inequality follows from Lemma 3, since Pr{Zj <0 j} is
increasing in @, and Q; is increasing in Sf, sy SE

To complete the proof, we attack the individual product
terms in (A3). Notice that Q; > 0 and Z; is N(0, 1), so we
can write

1
Pr{Z, < Q;} = §+Pr{O<Zj < Q;}

1,1
=5 +5Pr{Z} <))

1 1 S?. SZ
= §+-2-P {Z2 Py, -4 +t2')/2—[§—]
oy 0
1 1 1
> 2+2(1—~ (1-(1=ay)F))
= (1-a)™, (A4)

where the inequality in (A4) follows from Lemma 2 with
1 =L=y, =0}/ (ofy+ i)

Substituting this result into (A3) shows that

k-1

Pr{CS|pyy ~ kg 28} 2 [[(1—a)FT =1-a,. DO

j=1

To establish the correct selection guarantee for the group-
screening procedure, we first prove the following lemma.
LEMMA 4. Let £* be the index such that (k] € G, and
define F = G,UG,U---UGp_, (With F =@ if {*=1)
and S = Gp  UGu U UG, (with S=@ if £*=m).
Consider the event

€= {X[(,:]) X(l)_(Wk -8, VjeG, and

X = X7 (W, ~8)", Y jeF and

@) < T ‘
X =X, =Wy, =", VjeS}

Then Pr{&|mp — tp—y 2 6} 2 1 —2a,,
Proor. The proof of this lemma is quite long and tedious,
so we only provide a sketch here; the complete details can
be found in the online companion.

Using the same initial steps as before, we can show that

Pr{€|my; — tpemry = 0}

%
> Pr{zjgl,l) < [k}

VeGP < Wiy

1.2)°
j UJ
vjeF z8Y g M,v,es} (A5)
J
where
2 2\ 1/2
o (G )"
ny N
2
(1.2) AR
vj = —+_ )
ng N,
2 2\ 1,2
oo ()"
K o

The proof then proceeds as follows:

1. Condition on S, ..., S? and use Slepian’s inequality
to break (AS5) into the product of three probabilities.

2. Use Slepian’s inequality and Lemma 3 on each piece
to break any joint probab1ht1es into products of marginal
probabilities for the Z Altogether there will be k —1
terms in the product.

3. Show that each marginal probability is >(1 —2a,)#.
It is critical to the proof that W;; is based only on the first-
stage sample variances, S?, because S? is independent of
both the first- and second-stage sample means. In the online
companion to this paper we provide compelling evidence,
but not a proof, that each marginal probability is in fact
>(1—ap)m. O

We are now in a position to establish the probability
requirement for the group-screening procedure. We claim
that

Pr{CS|upu — ty—y) = 8}
>Pr{% and Xy > X3, ¥ j # kluy — gy > 8).

First, the event € implies that system [k] survives screen-
ing the first time it is evaluated and that it is not eliminated
by the first-stage sample means of any systems evalu-
ated after [k]. This event occurs w1th g)robablhty 21-2q,
by Lemma 4. Then the event k > X(2 ., Y j#E k)
insures that the second-stage sample mean of system [k] is
not eliminated by any other system’s second-stage sample
mean; this event occurs with probability >1 — «; because
we used Rinott’s constant to determine the second-stage
sample size. Therefore, using Lemma 1, the probability of
the joint event is 21 —2ay— ;. O

ENDNOTES

I However, it can be shown that indifference-zone selec-
tion procedures are quite efficient when the worst-case
really happens; see for instance Hall (1959), Eaton (1967),
and Mukhopadhyay and Solanky (1994).

2 An RSSP insures that the maximum size of the sub-
set does not exceed a user-specified number of systems by
using two or more stages of sampling to form the subset.

3 The slippage configuration is the least favorable con-
figuration for Rinott’s procedure, which forms the second
stage of two of the procedures presented here. “Least favor-
able” means that this configuration attains the lower bound
on probability of correct selection over all configurations
of the means with iy — pye_y) 2 6.

4 Notice that in the absence of screening the ANS of
Rinott or Dudewicz and Dalal is Ijndependant of the con-
figuration of the true means.
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