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Ranking and selection procedures (R&S) were developed by statisticians to search for the best
among a small collection of populations or treatments, where the “best” treatment is typically

the one with the largest or smallest expected (long-run average) response. R&S procedures have

been successfully extended to address situations that are encountered in stochastic simulation
of alternative system designs, including unequal variances across alternatives, dependence both

within the output of each system and across the outputs from alternative systems, and large

numbers of alternatives to compare. In nearly all cases the estimator of the expected response
is a (perhaps generalized) sample mean of the output of interest. In this paper we derive R&S

procedures that employ control-variate estimators instead of sample means. Control variates
can be much more statistically efficient than sample means, leading to R&S procedures that are

correspondingly more efficient. We also consider the related problem of estimating the expected

value of the best (as opposed to the selected) system design.

Categories and Subject Descriptors: I.6.8 [Simulation and Modeling]: Types of Simulation—Monte Carlo

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: Control variates, ranking and selection

1. INTRODUCTION

In the field of stochastic simulation, procedures from the branch of statistics known as ranking and selection

(R&S: see for instance Bechhofer et al. [1995]) have proven to be quite useful. A standard application for

R&S procedures is identifying the best among alternative system designs. There are published applications

of R&S in simulation (e.g., Stallard and Owen [1998]), and commercial simulation software has incorporated

R&S procedures (e.g., Automod’s AutoStat, AweSim’s Scenario Selector and Arena’s Process Analyzer).

Not surprisingly, there has been a correspondingly high interest within the simulation research community

on extending R&S procedures, which were originally designed for physical experiments, to address situations

that are encountered in stochastic simulation of alternative system designs. These situations include unequal

variances across alternatives, dependence both within the output of each system (in steady-state simulation

problems) and across the outputs from alternative systems (induced by the use of common random numbers,

discussed below), and large numbers of alternatives to compare. See, for instance, Swisher et al. [2003].

In this paper we consider searching among a finite number of alternatives for the simulated system with

the largest or smallest expected value of some designated output performance measure. For instance, we
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may be interested in which inventory policy has the smallest expected cost, which scenario produces the

largest conditional expected loss for a portfolio, or which system design yields the largest expected time to

system failure. Nearly all R&S procedures for such problems employ sample means, or generalized sample

means, as estimators of the expected response. Here we derive new R&S procedures that employ control-

variate estimators instead of sample means. Control variates (CVs) can be much more statistically efficient

than sample means, leading to R&S procedures that are correspondingly more efficient. We also consider

the related problem of estimating the expected value of the best system, which arises when Nature selects

the best (or worst) system for us, as opposed to the more frequently considered problem of estimating the

expected value of the system we select because we think it is best.

This paper contains two contributions: First, we provide new R&S procedures that are no more difficult

to employ than CV estimators themselves; as a side benefit the procedures for screening and selection

also exploit the variance-reduction technique of common random numbers. Of at least equal importance,

however, is that we take the first steps toward developing a theory of R&S based on CV estimators that is

a companion to the existing theory based on sample means. Specifically, we provide tools for proving the

small-sample validity of such procedures under normal-theory assumptions and indicate when the procedures

can be expected to be robust to nonnormality in large samples. Since both R&S and CVs have had a long and

successful history in simulation research and applications, it seems well worthwhile to develop a framework

for reaping the benefits of both.

The paper is organized as follows: In Section 2, we review CV estimators and their basic properties.

Sections 3–5 present new procedures for screening (finding a subset of systems that contains the best),

selection of the best, and estimating the best, respectively. Section 6 provides a numerical illustration of the

procedures. The validity of the procedures is proven in the Appendix.

2. CONTROL-VARIATE ESTIMATORS

This section provides definitions, notation and results for CVs that will be used throughout the remainder of

the paper. We use the following model repeatedly. In it, Xij is the jth simulated observation of the output

of system i. The qi × 1 vector Cij is called the control, and it has known expected value ξi.
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Model 1. For each system i = 1, 2, . . . , k,

Xij = µi + (Cij − ξi)
′βi + ηij , (1)

where βi is a qi × 1 vector of unknown constants and {ηij , j = 1, 2, . . . , n} is a set of independent and

identically distributed (i.i.d.) N(0, τ2
i ) random variables. For each system i = 1, 2, . . . , k, the controls

{Cij , j = 1, 2, . . . , n} are also i.i.d. and independent of {ηij , j = 1, 2, . . . , n}.

The multiplier βi captures the relationship between the output Xij and the control Cij , while ηij represents

that part of the variability in Xij that is not explained by the controls. In practice, the controls are

often averages or standardized averages of the input random variables that drive the simulation (see, for

instance, Wilson and Pritsker [1984a; 1984b]). Model 1 is an approximation that makes the most sense when

{(Xij ,C′ij), j = 1, 2, . . . , n} are obtained from n independent observations and are themselves averages of

some more basic random variables.

CVs are designed to provide a more precise estimator of µi than the sample mean of {Xij , j = 1, 2, . . . , n}.

We define the CV estimator and review basic properties under Model 1 below. The development is based

on Nelson [1990] and Nelson and Hsu [1993].

For each system i = 1, 2, . . . , k, let

Xi(n) =


Xi1

Xi2

...
Xin

 and Ci(n) =


C′i1
C′i2
...

C′in


be vectors of the output and controls across all n observations from system i. Define the sample mean of

the outputs and controls as

X̄i(n) =
1
n

n∑
j=1

Xij and C̄i(n) =
1
n

n∑
j=1

Cij .

The standard or “crude” estimator of µi that CVs try to beat is X̄i(n) which is unbiased and has variance

σ2
i /n, where σ2

i = Var[Xij ]. We append “(n)” to quantities defined across n observations, a convention that

will be important when we derive CV R&S procedures in Sections 3–5 below.
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To define the CV point estimator, for each system i = 1, 2, . . . , k, let

L′i(n) =
[
(Ci1 − C̄i(n)), (Ci2 − C̄i(n)), . . . , (Cin − C̄i(n))

]
.

If 1n×1 is a column vector whose n elements all equal one, then the CV point estimator of µi is

µ̂i(n) =
[

1
n
1′n×1 −

(
C̄i(n)− ξi

)′ (L′i(n)Li(n))−1 L′i(n)
]
Xi(n) (2)

= X̄i(n)−
(
C̄i(n)− ξi

)′
β̂i(n) (3)

[Nelson 1990]. Equation (3) is the more traditional presentation because it shows that µ̂i(n) is the intercept

estimator in a least-squares regression of Xij on Cij − ξi. Likewise, β̂i(n) is the usual slope estimator in

this regression. Equation (2) is useful for seeing that the CV estimator is a weighted average of the outputs

Xij where the (random) weights depend only on the controls.

Assuming (Xij ,C′ij) are i.i.d. multivariate normal, which is sufficient for Model 1 to hold, Lavenberg and

Welch [1981] established that

E[µ̂i(n)] = µi and Var[µ̂i(n)] =
(

n− 2
n− qi − 2

)
τ2
i

n

where τ2
i = (1 − R2

i )σ
2
i and R2

i is the square of the multiple correlation coefficient between Xij and Cij .

Nelson [1990] showed that these results are asymptotically valid under much milder conditions. Thus, strong

correlations lead to a variance reduction.

To derive R&S procedures we need to know the joint distribution of µ̂i(n), i = 1, 2, . . . , k, and we need an

estimator for the variances. For each system i = 1, 2, . . . , k, let

Ai(n) =


1 (Ci1 − ξi)′

1 (Ci2 − ξi)′
...

...
1 (Cin − ξi)′

 .

If I is the identity matrix of rank qi, then

τ̂2
i (n) =

1
n− qi − 1

Xi(n)′
[
I−Ai(n) (A′

i(n)Ai(n))−1 A′
i(n)

]
Xi(n)

=
1

n− qi − 1

n∑
j=1

[
Xij − µ̂i(n)− (Cij − ξi)

′β̂i(n)
]2

(4)
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is the residual variance estimator. Further, let

∆̂2
i (n) =

1
n

+
1

n− 1
(
C̄i(n)− ξi

)′
S−1

Ci
(n)
(
C̄i(n)− ξi

)
(5)

where SCi
(n) is the sample variance-covariance matrix of Cij . Then we have the following key result:

Lemma 2.1 [Nelson and Hsu 1993, Theorem 4.1]. If Model 1 pertains, then conditional on C1(n),

C2(n), . . . , Ck(n) the following properties hold:

P1. µ̂i(n) ∼ N(µi, ∆̂2
i (n)τ2

i ), i = 1, 2, . . . , k.

P2. τ̂2
i (n) ∼

τ2
i χ2

n−qi−1

n− qi − 1
and is independent of µ̂i(n), for i = 1, 2, . . . , k.

P3. If {ηij , i = 1, 2, . . . , k, j = 1, 2, . . . , n} are mutually independent, then {µ̂i(n), τ̂2
i (n), i = 1, 2, . . . , k}

are mutually independent.

The additional condition specified in property P3, that the ηij are independent for all systems i as well as for

all observations j, will hold either if all k systems are simulated independently, or if common random numbers

(CRN) are used but the dependence among the controls Cij and C`j entirely explains the dependence between

the responses Xij and X`j induced by CRN. To use CRN means to drive the simulation of each alternative

system with the same pseudorandom numbers, and the goal is to induce a positive correlation between

different systems’ outputs, thereby reducing the variance of the estimated differences. See Law and Kelton

[2000] for a general discussion of CRN, and Nelson and Hsu [1993] for CRN and CVs. Although it may seem

implausible that the controls capture all of the dependence due to CRN, Yang and Nelson [1991] and Nelson

and Hsu [1993] showed that multiple-comparisons inferences derived under this assumption still provide the

desired coverage and take advantage of at least some of the potential benefit of employing CRN. Therefore,

we will also make use of property P3 to formulate R&S procedures using CRN. For an approach to modeling

any remaining dependence among the residuals (η1j , η2j , . . . , ηkj), see Nelson [1993].

3. SCREENING

We will assume from here on that µk ≥ µk−1 ≥ · · · ≥ µ1 and that a larger mean is better. Thus, unknown to

the investigator, system k is the best. In screening our goal is to produce a subset I ⊆ {1, 2, . . . , k} such that

the event {k ∈ I} occurs with prespecified confidence. Further, we would like the subset to be as small as



6 · B. Nelson and J. Staum

possible. The purpose of using CVs is to try to reduce the size of the subset relative to a screening procedure

based on sample means.

We next present a procedure similar to the “screen-to-the-best” procedure of Boesel et al. [2003], but using

CV estimators instead of sample means. Subsequently, we present a simpler CV screening procedure based

on a more complicated model, which avoids the assumption that the controls explain all of the dependence

due to CRN.

3.1 Individual Controls

Within this subsection, we assume that Model 1 holds with independence among {ηij , i = 1, 2, . . . , k, j =

1, 2, . . . , n}. Let tp,ν represent the p quantile of the Student t-distribution with ν degrees of freedom.

Procedure 1 Screening with Individual Controls.

1. Choose the confidence level 1− α > 1/2.

2. For i = 1, 2, . . . , k, obtain ni > qi + 2 observations from system i and form the CV estimator µ̂i(ni).

3. Let ti = t(1−α)1/(k−1),ni−qi−1 and create the subset

I = {i : µ̂i(ni)− µ̂`(n`) ≥ −Wi`,∀` 6= i} , (6)

where

Wi` =
√

t2i ∆̂2
i (ni)τ̂2

i (ni) + t2` ∆̂2
`(n`)τ̂2

` (n`).

Proposition 1. If Model 1 holds with independence among {ηij , i = 1, 2, . . . , k, j = 1, 2, . . . , n}, then

Procedure 1 produces a subset I such that Pr{k ∈ I} ≥ 1− α.

As a point of comparison, consider the “screen-to-the-best” procedure of Boesel et al. [2003], which sets

I =

i : X̄i(ni)− X̄`(n`) ≥ −

√
t̃2i

S2
i (ni)
ni

+ t̃2`
S2

` (n`)
n`

,∀` 6= i

 , (7)

where S2
i (ni) is the sample variance of {Xi1, Xi2, . . . , Xini

} and t̃i = t(1−α)1/(k−1),ni−1. Typically, the smaller

the screening threshold, the smaller the subset. So, as a rough comparison, we investigate conditions under

which we can conclude that

E
[
t2i ∆̂

2
i (ni)τ̂2

i (ni) + t2`∆̂
2
`(n`)τ̂2

` (n`)
]
≤ E

[
t̃2i

S2
i (ni)
ni

+ t̃2`
S2

` (n`)
n`

]
,
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Fig. 1. Minimum multiple correlation required for improved screening with CVs according to Procedure 1 when there are k = 10

systems, q = 5 controls, and confidence level 1− α = 0.95.

that is, that the screening threshold is expected to be smaller with CVs than without them. To simplify

the result for the purpose of intuition, suppose σ2
i = σ2, ni = n, qi = q and R2

i = R2 for all i = 1, 2, . . . , k.

Consequently, there exist t and t̃ such that ti = t and t̃i = t̃ for all i = 1, 2, . . . , k. Then, assuming that the

response and the controls are jointly multivariate normal, the results of Lavenberg and Welch [1981] can be

used to evaluate these expectations, yielding

2 t2
(

n− 2
n− q − 2

)
(1−R2)

σ2

n
≤ 2 t̃2

σ2

n
.

Thus, screening with CVs according to Procedure 1 will tend to be sharper when

R2 ≥ 1−
t2
(1−α)1/(k−1),n−1

t2
(1−α)1/(k−1),n−q−1

(
n− q − 2

n− 2

)
. (8)

This suggests that, if n is not too small, very little correlation between the output and control is required

for improved screening. For instance, Figure 1 shows a plot of the bound on |R| implied by Inequality (8)

as a function of n for k = 10 systems, q = 5 controls, and confidence level 1− α = 0.95.
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3.2 Paired Controls

To avoid the assumption that the dependence due to CRN is entirely explained by the controls (i.e., {ηij , i =

1, 2, . . . , k, j = 1, 2, . . . , n} are mutually independent), we start by forming pairwise differences across systems,

Xj(i, `) = Xij − X`j ,Cj(i, `) = Cij − C`j , µi` = µi − µ` and ξi` = ξi − ξ`. We can do this only when

the observations and the controls can each be paired across systems, so let n be the common number of

replications and q be the common number of controls for each system. We then assume that an equation

similar to Equation (1) holds for the differences.

Model 2. For each system i = 1, 2, . . . , k,

Xj(i, `) = µi` + (Cj(i, `)− ξi`)
′β(i, `) + ηj(i, `), (9)

and the controls {Cij , j = 1, 2, . . . , n} and residuals {ηij , j = 1, 2, . . . , n} are both i.i.d. sets and independent

of each other.

Unlike Model 1, Model 2 can hold even if some residuals ηij and η`j are dependent. This dependence

can arise because not all of the simulation input random variables affected by CRN are used as controls,

for instance. In short, in this subsection we switch from using controls to explain system performance to

using differences between controls to explain differences between systems’ performances, which allows us to

replace the assumption that residuals are independent across all systems with the assumption that for each

pair of systems the residual and the difference between controls are independent.

For all i 6= `, let µ̂i`(n) be the corresponding CV estimator of µi`, and define τ̂2
i`(n) and ∆̂2

i`(n) in analogy

to Equations (4) and (5), but applying CVs to differences between systems’ output instead of to each system’s

output. In general, µ̂i`(n) 6= µ̂i(n)− µ̂`(n) , but µ̂i`(n) = −µ̂`i(n).

Procedure 2 Screening with Paired Controls.

1. Choose the confidence level 1− α > 1/2.

2. Obtain n > q + 2 observations from each system and form the k(k − 1)/2 CV estimators µ̂i`(n) for all

i 6= `.
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3. Let t = t1−α/(k−1),n−q−1 and create the subset

I =
{

i : µ̂i`(n) ≥ −t ∆̂i`(n)τ̂i`(n),∀` 6= i
}

. (10)

Proposition 2. If Model 2 holds, then Procedure 2 produces a subset I such that Pr{k ∈ I} ≥ 1− α.

The advantage of this alternative approach is that it does not assume that all of the dependence due to

CRN is explained by the controls. Its disadvantages are that it requires computing k(k−1)/2 CV estimators

rather than only k of them, and that it employs the very conservative Bonferroni inequality rather than the

tighter Banjeree inequality on which the first screening procedure is based (see the Appendix).

Screening according to Procedure 2 will be effective when the difference between controls from systems

i and `, Cij and C`j , is strongly correlated with the difference between outputs of the systems, Xij and

X`j . Strong correlation between the controls Cij and C`j themselves is not essential. In fact, if CRN causes

Cij = C`j for all j then the controls simply cancel in Equation (9), and thus produce no benefit. In this case,

which indeed occurs in the inventory planning example of Section 6, Procedure 2 should be modified not to

use CVs, but simply to work with the differences Xj(i, `) = Xij −X`j . The relative merits of Procedures 1

and 2 depend on how much correlation CRN induces between systems, and how much of this dependence is

captured by the controls.

4. SELECTING THE BEST

We now turn our attention to selecting the best system under Model 1 when the assumption of independence

among the residuals {ηij , i = 1, 2, . . . , k, j = 1, 2, . . . , n} applies. We adopt the indifference-zone formulation

in which we require a guaranteed probability of selecting system k whenever the difference µk − µk−1 ≥ δ,

where the indifference-zone parameter δ > 0 is set to the smallest difference the analyst feels is worth

detecting. As we will see in Inequality (13), the procedure also guarantees that, with high probability, the

true mean of the system we select is within δ of the best system’s mean, regardless of the configuration. Our

procedure parallels Rinott’s [1978] procedure, which is based on sample means. For simplicity we assume

that all systems have the same number of controls, q, and mention the required adjustment for unequal

numbers of controls in Remark 4.2.
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The following procedure is based on decomposing the allowable error α into a part α0 that is spent on

controlling the dispersion of the controls and a part α1 that is spent on controlling the dispersion of the CV

estimators, given that the controls are not too far from their means.

Procedure 3 Selecting the Best with Controls.

1. Choose the indifference-zone parameter δ > 0, confidence level 1− α > 1/k and choose α0, α1 > 0 such

that α = α0 + α1.

2. For each system i = 1, 2, . . . , k, obtain n0 > q + 2 observations and calculate τ̂2
i (n0).

3. For each system i = 1, 2, . . . , k, set the total sample size

Ni = min
n≥n0

{
n :
(

n− q

q

)(
nδ2

h2τ̂2
i (n0)

− 1
)
≥ Fγ,q,n−q

}
(11)

where h = hk,1−α1,n0−q−1 is Rinott’s [1978] constant, Fγ,q,n−q is the γ quantile of the F distribution

with (q, n− q) degrees of freedom, and

γ =
{

(1− α0)
1
k , if the systems are simulated independently

1− α0/k, otherwise.

4. Collect Ni − n0 observations from system i and form the CV estimators µ̂i(Ni) for i = 1, 2, . . . , k.

5. Select system B = argmaxi µ̂i(Ni), and form the (1− α)100% simultaneous confidence intervals

µi −max
` 6=i

µ` ∈

[(
µ̂i(Ni)−max

` 6=i
µ̂`(N`)− δ

)−
,

(
µ̂i(Ni)−max

` 6=i
µ̂`(N`) + δ

)+
]

(12)

for i = 1, 2, . . . , k.

Proposition 3. If Model 1 holds with independence among {ηij , i = 1, 2, . . . , k, j = 1, 2, . . . , n} and the

distribution of each control Cij is multivariate normal, then Procedure 3 produces a selected system B and

(1− α)100% simultaneous confidence intervals in Equation (12) such that

1. If the difference between the means of the best and second-best systems is at least δ, then the selection is

correct with high confidence: Pr{B = k} ≥ 1− α if µk − µk−1 ≥ δ.

2. With high confidence, the mean of the selected system is within δ of the mean of the truly best system:

Pr
{

µB − max
`=1,...,k

µ` ≥ −δ

}
≥ 1− α. (13)
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3. The confidence intervals have at least nominal coverage:

Pr

{
µi −max

` 6=i
µ` ∈

[(
µ̂i(Ni)−max

` 6=i
µ̂`(N`)− δ

)−
,

(
µ̂i(Ni)−max

` 6=i
µ̂`(N`) + δ

)+
]

,∀i

}
≥ 1− α.

Remark 4.1. Readers familiar with indifference-zone ranking procedures might have anticipated a formula

for Ni, the total sample size from system i, of the form

Ni = max
{

n0,

⌈
h2 τ̂2

i (n0)
δ2

⌉}
.

We prove the correctness of Equation (11) in the Appendix, but we provide some intuition here. The need for

the complication in Equation (11) arises because the variance of the final CV estimator µ̂i(Ni), conditional

on the controls, is ∆̂2
i (Ni)τ2

i , not τ2
i /Ni, and ∆̂2

i (Ni) depends on values of the controls not yet observed after

the first stage of sampling. To account for this, we spend α0 of the allowable error α on bounding ∆̂2
i (Ni).

We can do this because, as shown in the Appendix, ∆̂2
i (Ni) has a shifted and scaled F distribution. In the

Appendix we also show that an approximation for Ni is

max
{

n0,

⌈
h2τ̂2

i (n0)
δ2

+ χ2
γ,q

⌉}
, (14)

where χ2
γ,q is the γ quantile of the chi-squared distribution with q degrees of freedom. This formula illustrates

the inflation in sample size needed to account for the unknown value of ∆̂2
i (Ni). Equation (14) is also useful

as an initial value for solving the minimization in Equation (11).

Remark 4.2. Suppose that the number of controls differs across systems. This causes the first-stage

residual-variance estimators τ̂2
1 (n0), τ̂2

2 (n0), . . . , τ̂2
k (n0) to have different degrees of freedom. One fix is to

select first-stage sample sizes for each system, say n0i, such that n01 − q1 = n02 − q2 = · · · = n0k − qk.

Another approach is to use the adjusted constant

h′ = h2,(1−α1)1/(k−1),mini(n0−qi−1)

which is valid when degrees of freedom are unequal [Boesel et al. 2003].

To gain some sense of when this new procedure will be effective we provide a rough sample-size comparison

with Rinott’s [1978] procedure (see Section 6 for a numerical example). Suppose that we choose α0 very

small and n0 large enough that h = hk,1−α1,n0−q−1 ≈ hk,1−α,n0−1, where the latter is the constant that
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would be used in Rinott’s [1978] procedure. Further, suppose δ is small enough that, using the approximate

sample size formula (14) and ignoring rounding,

Ni ≈
h2τ̂2

i (n0)
δ2

+ χ2
γ,q.

The sample size of Rinott’s [1978] procedure for each system i = 1, 2, . . . , k is

NR
i ≈ h2 S2

i (n0)
δ2

.

Then the expected savings from using the CV procedure is approximately

E[NR
i −Ni] ≈

h2 σ2
i

δ2
− h2 σ2

i

δ2
(1−R2

i )− χ2
γ,q

=
h2 σ2

i

δ2
R2

i − χ2
γ,q.

Therefore, an approximate criterion for the CV procedure to be more efficient in simulating system i is

R2
i >

(
δ2

h2σ2
i

)
χ2

γ,q ≈
χ2

γ,q

E[NR
i ]

The correlation between the response and the controls must overcome the fixed cost χ2
γ,q of using CVs.

Specifically, the square of the multiple correlation coefficient must be larger than the ratio of the fixed

cost χ2
γ,q to the expected sample size of Rinott’s [1978] procedure. This threshold is easier to overcome

for problems with large marginal variance σ2
i or small indifference level δ. In other words, the harder the

problem is, the more likely it is that selection of the best via Procedure 3 will be more efficient.

5. ESTIMATING THE BEST

We now consider a problem that is closely related to selection of the best system: estimating the value of

µk. This is different from estimating µB , the expected value of the selected system B. Notice that the

natural estimator µ̂B(NB) is biased high since µ̂B(NB) ≥ µ̂k(Nk). Lesnevski et al. [2005] provide a set of

conditions sufficient for estimators to provide a (1−α)100% fixed-width confidence interval for µk. Here we

restate the conditions and show how to form CV estimators that satisfy them when Model 1 applies. The

confidence interval will have the form [µ̂B(NB)− a, µ̂B(NB) + b] where a + b = L, the desired fixed width of

the confidence interval.
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To restate the conditions of Lesnevski et al. [2005], let µ̂i denote a generic estimator of µi. To obtain

a (1 − α)100% confidence interval of fixed width L, Lesnevski et al. [2005] show that it is sufficient that

a + b = L, αa + αb = α, and

Pr {µk > µ̂k + b} ≤ αb, and (15)

Pr {µi < µ̂i − a} ≤ αa/k, i = 1, 2, . . . , k. (16)

Remark 5.1. Lesnevski et al. [2005] split the error α into αa + αb because it may be useful to spend

unequal amounts of error on the lower and upper confidence bounds. If errors in one direction are no more

important than in the other, αa = αb = α/2 is a good choice.

Lesnevski et al. [2005] show that Inequalities (15)–(16) will be satisfied if there are increasing functions

Ga and Gb defined on the positive part of the real line, such that, for all i = 1, 2, . . . , k and x > 0,

Pr {µ̂i − µi > x} ≤ 1−Ga(cx) and Pr {µ̂i − µi < −x} ≤ 1−Gb(cx), (17)

where

c =
1
L

(
G−1

a (1− αa/k)−G−1
b (1− αb)

)
, (18)

a =
1
c
G−1

a (1− αa/k), and (19)

b =
1
c
G−1

b (1− αb). (20)

They further require that Ga(0) < 1 − αa/k < limx→∞Ga(x) and Gb(0) < 1 − αb < limx→∞Gb(x), which

guarantee that a and b exist and are positive. Then by Inequality (17) and Equation (19), Pr {µ̂i − µi > a} ≤

αa/k, while by Inequality (17) and Equation (20), Pr {µ̂i − µi < −b} ≤ αb. These inequalities, for all

i = 1, 2, . . . , k, are sufficient for Inequalities (15)–(16).

The following procedure is also given in Lesnevski et al. [2005]; our contribution is to prove that it provides

estimators that satisfy Inequality (17). We state the procedure under the assumption that all systems have

the same number of controls, q, relaxing this assumption in Remark 5.2.

Procedure 4 Estimating the Best with Controls.
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1. Choose the fixed interval width L > 0 and confidence level 1−α. Also choose α0, αa, and αb all positive

such that αa + αb = α, α0 < αa/k, and α0 < αb.

2. Obtain n0 > q + 2 observations from each system and calculate τ̂2
i (n0) for i = 1, 2, . . . , k.

3. For each system i = 1, 2, . . . , k, compute the final sample size

Ni = min
n≥n0

{
n :
(

n− q

q

)(
n

c2τ̂2
i (n0)

− 1
)
≥ F1−α0,q,n−q

}
(21)

where c is given by Equation (18) with Ga(x) = Gb(x) = Ftn0−q−1(x) − α0 and Ftν
is the cumulative

distribution function of the Student t-distribution with ν degrees of freedom.

4. Collect Ni − n0 observations from system i and form the CV estimators µ̂i(Ni) for i = 1, 2, . . . , k.

5. Let B = argmaxi µ̂i(Ni), and form the (1− α)100% confidence interval

µk ∈ [µ̂B(NB)− a, µ̂B(NB) + b] .

Proposition 4. If Model 1 holds and the distribution of each control Cij is multivariate normal, then

Procedure 4 produces CV estimators µ̂1(N1), µ̂2(N2), . . . , µ̂k(Nk) that satisfy Inequality (17) with Ga(x) =

Gb(x) = Ftn0−q−1(x)− α0.

Notice that we have not assumed independence of residuals across systems. The joint distribution of

quantities simulated from different systems is irrelevant. In particular, using CRN in Procedure 4 poses no

problem, even if CVs do not explain all the dependence induced by CRN; on the other hand, CRN also

produces no benefit for this procedure.

Applying the same argument as in the Remark in Appendix B, we can show that a good approximation

for Ni is

Ni = max
{
n0,
⌈
c2τ̂2

i (n0) + χ2
1−α0,q

⌉}
. (22)

Remark 5.2. If the systems have different numbers of controls, then the only adjustment required is to

use

Ga(x) = Gb(x) = Ftn0−d−1(x)− α0 (23)
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where d = maxi{qi}. The approximation for Ni then becomes

Ni = max
{
n0,
⌈
c2τ̂2

i (n0) + χ2
1−α0,d

⌉}
,

where c is obtained using Equation (23) in Equation (18).

6. ILLUSTRATION

In this section we use a small example to illustrate the use of the screening procedure of Section 3, the

selection procedure of Section 4, and the estimation procedure of Section 5. See Lesnevski et al. [2005] for

additional financial applications of the procedure for estimating the best.

For the purpose of illustration we use an (s, S) inventory planning example from Koenig and Law [1985].

In an (s, S) inventory system some discrete item is periodically reviewed. If the inventory level is found to

be below s units then an order is placed to bring the inventory level up to S units; otherwise no additional

items are ordered. Ordering, unit, holding and shortage costs are incurred. The only stochastic element is

the demand for inventory in each period, which is i.i.d. Poisson with a mean of 25 items per period. We will

consider k = 5 different (s, S) inventory policies where the performance measure is the expected value of the

average cost over 30 periods. The five policies are shown in Table I along with their true expected average

costs (thus, policy 2 is actually the best). See Koenig and Law [1985] for a detailed description of the model.

Following the suggestion of Wilson and Pritsker [1984a; 1984b]), we take as the control on replication j

the standardized average of the demands over the 30 periods:

Cj =
√

30(D̄j − 25)√
25

where D̄j =
∑30

m=1 Dmj/30, and Dmj is the Poisson demand in period m of replication j.

Because the policy does not affect the distribution of demand, using CRN makes the controls identical for

each inventory policy. As discussed at the end of Section 3.2, this makes CVs ineffective in Procedure 2. We

report the performance of Procedures 1, 3 and 4 for this example.

Because we are interested in the minimum expected cost we apply our procedures to −Xij , where Xij is

the observed average cost of policy i on replication j. The impact of CRN can be observed in the estimated
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Table I. The Five (s, S) In-

ventory Policies and their Ex-
pected Average Costs per Period

in Thousands of Dollars

Policy i s S µi

1 20 40 114.18

2 20 80 112.74
3 40 60 130.55

4 40 100 130.70

5 60 100 147.38

Table II. Fraction of Time that Each Inventory Policy was

in the Retained Subset Based on 1000 Trials

Policy
Procedure 1 2 3 4 5

Boesel et al. [2003] 0.89 1.00 0.00 0.00 0.00

Procedure 1 0.59 1.00 0.00 0.00 0.00

correlation matrix of (X1j , X2j , . . . , X5j), which is
1.00 0.56 0.90 0.48 0.65

1.00 0.51 0.95 0.43
1.00 0.43 0.61

1.00 0.36
1.00

 .

Similarly, the vector of estimated correlation coefficients

(R1, R2, . . . , R5) = (0.87, 0.68, 0.81, 0.58, 0.66)

documents the dependence between the output (cost) and the control (demand).

Table II shows the results from 1000 applications of the screening procedure of Boesel et al. [2003] and our

Procedure 1 with n = 30 replications per application and confidence level 1− α = 0.95. Although screening

turns out not to be particularly difficult in this problem, screening under Procedure 1 is much less likely to

retain policy 1 than the procedure of Boesel et al. [2003]; in other words, the expected size of the subset is

smaller.

In the next experiment, we applied Procedure 3 and Rinott’s [1978] procedure to the problem of selecting

the inventory policy with the minimum expected cost. We set δ = 1000 dollars, the initial sample size to

n0 = 10 replications, the probability of correct selection to 1−α = 0.95, and split the allowable α = 0.05 error

into α1 = 0.048 for correct selection and α0 = 0.002 for controlling the control. We used the approximate

sample size in Equation (14). In 100 trials, both Rinott’s [1978] procedure and our Procedure 3 selected
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Table III. Average Sample Size per Policy in 100 Trials of Selecting

the Best with CRN

Policy
Procedure 1 2 3 4 5 Total

Rinott [1978] 203 267 254 221 114 1059

Procedure 3 68 175 111 192 87 623

the true best (policy 2) 100 times. Table III shows the average sample sizes per policy over the 100 trials.

Both procedures achieve the required probability of correct selection, but our procedure is able to reduce

the sample size 41% by using CVs to capture the strong positive correlation due to CRN.

To illustrate estimating the best we alter the problem by assuming that our inventory is vendor managed,

meaning that the vendor will set the inventory policy. We are interested in knowing how costly this could

be for us. Therefore, we want to estimate the expected value of the worst (maximum inventory cost) policy

and thus apply Procedure 4 to the costs Xij rather than −Xij .

We applied Procedure 4 both with and without CVs. Without CVs the point estimators become sample

means and the procedure is similar to one by Chen and Dudewicz [1976]. We set the desired confidence

interval width to L = 1000 dollars, the initial sample size to n0 = 10 replications, and the coverage probability

to 1−α = 0.95. We split the allowable α = 0.05 error into αa = αb = 0.025 for the upper and lower confidence

limits. When using the single control, we allocate α0 = 0.002 for controlling the control; without a control,

α0 = 0. The critical values are

c =
1
L

(
t1−αa/k+α0,n0−q−1 + t1−αb+α0,n0−q−1

)
,

a =
1
c
t1−αa/k+α0,n0−q−1, and

b =
1
c
t1−αb+α0,n0−q−1,

where q = 0 or 1 is the number of controls used. For example, when using a single control, c = (t0.997,8 +

t0.977,8)/L. We used the approximate sample size in Equation (22).

In 100 trials, the confidence interval formed by Procedure 4 without CVs contained the largest expected

value (147.38) 99 times, while Procedure 4 with CVs covered on 98 trials. Table IV shows the average sample

size per policy over the 100 trials. Both procedures achieve the required coverage probability of 95%, but
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Table IV. Average Sample Size per Policy in 100 Trials of Estimating the Ex-

pected Value of the Most Expensive Policy with CRN

Policy
Procedure 1 2 3 4 5 Total

Procedure 4 without CV 454 556 566 472 266 2314

Procedure 4 with CV 147 400 239 422 204 1411

employing CVs reduces the sample size 39%.

Remark 6.1. Although we have presented procedures for screening, selecting the best and estimating the

best separately, Nelson et al. [2001]—for selecting the best—and Lesnevski et al. [2005]—for estimating the

best—show that even more efficient procedures can be obtained by screening before selecting or estimating.

Screening reduces the number of systems that receive the total sample needed for selecting or estimating the

best, which is often large.

7. CONCLUSIONS

In this paper we have proposed a new class of R&S procedures based on control-variate estimators. R&S

procedures based on sample means are good general-purpose tools, while these new procedures will be

particularly useful in contexts where computationally intensive problems are solved repeatedly so that it

pays to invest some effort in finding good controls. Financial engineering is one such context: see Glasserman

[2004] for a general discussion of CVs in financial engineering applications and Lesnevski et al. [2005] for

a specific application. Fortunately, implementing our CV R&S procedures requires only standard tools

(least-squares regression) and readily available critical values.

APPENDIX

A. SCREENING

A.1 Screening with Individual Controls

We first prove Proposition 1. The proof is similar to Nelson et al. [2001, pp. 961–962], to which we refer the

reader for a somewhat more detailed development. We will need the following three lemmas.

Lemma A.1 [Banerjee 1961]. Let Z be a N(0, 1) random variable that is independent of Y1, Y2, . . . , Yk,

which are independent chi-squared random variables with Yi having degrees of freedom νi. Let γ1, γ2, . . . , γk
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be arbitrary weights such that
∑k

i=1 γi = 1 and all γi ≥ 0. Then

Pr

{
Z2 ≤

k∑
i=1

t2i γi
Yi

νi

}
≥ 1− α,

where ti = t1−α/2,νi
.

Lemma A.2 Slepian’s inequality [Tong 1980]. Let (Z1, Z2, . . . , Zk) have a k-variate normal distri-

bution with zero mean vector, unit variances, and correlation matrix Σ = {ρij}. Let ε1, ε2, . . . , εk be some

constants. If all the ρij ≥ 0, then

Pr

{
k⋂

i=1

(Zi ≤ εi)

}
≥

k∏
i=1

Pr{Zi ≤ εi}.

Lemma A.3 [Tamhane 1977]. Let V1, V2, . . . , Vk be independent random variables, and let gj(v1, v2, . . . , vk),

j = 1, 2, . . . , p, be nonnegative, real-valued functions, each one nondecreasing in each of its arguments. Then

E

 p∏
j=1

gj(V1, V2, . . . , Vk)

 ≥ p∏
j=1

E [gj(V1, V2, . . . , Vk)] .

For convenience, let

C = {Cij , j = 1, 2, . . . , ni, i = 1, 2, . . . , k}

be the collection of all observed controls, and let

τ̂2 = {τ̂2
1 (n1), τ̂2

2 (n2), . . . , τ̂2
k (nk)}

be the collection of all observed residual-variance estimators. Define

Zi =
µ̂k(nk)− µ̂i(ni)− (µk − µi)√

∆̂2
k(nk)τ2

k + ∆̂2
i (ni)τ2

i

. (24)

Lemma A.4. If Model 1 holds with all residuals {ηij , i = 1, 2, . . . , k, j = 1, 2, . . . , n} independent, then the

conditional covariance of Zi and Z` given C is nonnegative for any systems i 6= `.

Proof: By assumption, for any systems i 6= ` and observations j, j′, the outputs Xij and X`j′ are conditionally

independent given all observed controls C. Equation (2) shows that the CV estimator µ̂i(ni) is a weighted

average of the observations Xi1, Xi2, . . . , Xini
, where the weights are a function of C only. Thus, the CV

estimators µ̂i(ni) and µ̂`(n`) are conditionally independent given C. Similarly, ∆̂2
i (ni) defined in Equation (5)
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is only a function of C. Therefore, conditional on C, the covariance of Zi and Z` has the same sign as the

conditional covariance between µ̂k(nk)− µ̂i(ni) and µ̂k(nk)− µ̂`(n`), which is nonnegative.

We are interested in

Pr{k ∈ I} = E
[
Pr{k ∈ I|τ̂2,C}

]
= E

[
Pr
{
µ̂k(nk)− µ̂i(ni) ≥ −Wki,∀i 6= k|τ̂2,C

}]
= E

Pr

Zi ≥
−(µk − µi)−Wki√
∆̂2

k(nk)τ2
k + ∆̂2

i (ni)τ2
i

,∀i 6= k

∣∣∣∣∣∣ τ̂2,C




≥ E

Pr

Zi ≥
−Wki√

∆̂2
k(nk)τ2

k + ∆̂2
i (ni)τ2

i

,∀i 6= k

∣∣∣∣∣∣ τ̂2,C


 (25)

= E

Pr

Zi ≤
Wki√

∆̂2
k(nk)τ2

k + ∆̂2
i (ni)τ2

i

, i = 1, 2, . . . , k − 1

∣∣∣∣∣∣ τ̂2,C


 (26)

where Inequality (25) follows because µk − µi ≥ 0. By Lemma 2.1, the conditional distribution of Zi given

{τ̂2,C} is standard normal, so Equation (26) follows because of the symmetry of the normal distribution.

Because of Lemma A.4, Lemma A.2 applies to Equation (26), yielding

Pr

Zi ≤
Wki√

∆̂2
k(nk)τ2

k + ∆̂2
i (ni)τ2

i

, i = 1, 2, . . . , k − 1

∣∣∣∣∣∣ τ̂2,C


≥

k−1∏
i=1

Pr

Zi ≤
Wki√

∆̂2
k(nk)τ2

k + ∆̂2
i (ni)τ2

i

∣∣∣∣∣∣ τ̂2,C

 . (27)

Further, since

Wki√
∆̂2

k(nk)τ2
k + ∆̂2

i (ni)τ2
i

=

√√√√ t2k ∆̂2
k(nk)τ̂2

k (nk) + t2i ∆̂2
i (ni)τ̂2

i (ni)

∆̂2
k(nk)τ2

k + ∆̂2
i (ni)τ2

i

is nonnegative, real-valued, and nondecreasing in each of {τ̂2
1 (n1), τ̂2

2 (n2), . . . , τ̂2
k (nk)}, and by Lemma 2.1

{τ̂2
1 (n1), τ̂2

2 (n2), . . . , τ̂2
k (nk)} are conditionally independent given C, Lemma A.3 implies

E

k−1∏
i=1

Pr

Zi ≤
Wki√

∆̂2
k(nk)τ2

k + ∆̂2
i (ni)τ2

i

∣∣∣∣∣∣ τ̂2,C


∣∣∣∣∣∣C
 ≥ k−1∏

i=1

Pr

Zi ≤
Wki√

∆̂2
k(nk)τ2

k + ∆̂2
i (ni)τ2

i

∣∣∣∣∣∣C
 .
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Combining this with Inequalities (26) and (27),

Pr{k ∈ I} ≥ E

k−1∏
i=1

Pr

Zi ≤
Wki√

∆̂2
k(nk)τ2

k + ∆̂2
i (ni)τ2

i

∣∣∣∣∣∣C

 . (28)

We next analyze a typical factor in this product.

First, notice that Wki√
∆̂2

k(nk)τ2
k + ∆̂2

i (ni)τ2
i

2

(29)

=
t2k ∆̂2

k(nk)τ̂2
k (nk) + t2i ∆̂2

i (ni)τ̂2
i (ni)

∆̂2
k(nk)τ2

k + ∆̂2
i (ni)τ2

i

= t2k

(
∆̂2

k(nk)τ2
k

∆̂2
k(nk)τ2

k + ∆̂2
i (ni)τ2

i

)
τ̂2
k (nk)
τ2
k

+ t2i

(
∆̂2

i (ni)τ2
i

∆̂2
k(nk)τ2

k + ∆̂2
i (ni)τ2

i

)
τ̂2
i (ni)
τ2
i

.

By Lemma 2.1, conditional on C, τ̂2
k (nk)/τ2

k and τ̂2
i (ni)/τ2

i are distributed as χ2
nk−qk−1/(nk − qk − 1) and

χ2
ni−qi−1/(ni − qi − 1) respectively, independent of each other, and independent of Zi, which is standard

normal. Thus, Equation (29) is a weighted average suitable for the application of Lemma A.1. Making use

of the symmetry of the normal distribution, we obtain

Pr

Zi ≤
Wki√

∆̂2
k(nk)τ2

k + ∆̂2
i (ni)τ2

i

∣∣∣∣∣∣C


=
1
2

+
1
2

Pr

Z2
i ≤

 Wki√
∆̂2

k(nk)τ2
k + ∆̂2

i (ni)τ2
i

2
∣∣∣∣∣∣∣C


≥ 1
2

+
1
2

(
1− 2

(
1− (1− α)

1
k−1

))
(30)

= (1− α)
1

k−1

where Inequality (30) follows from Lemma A.1. This holds for all C, so from Inequality (28) we get Pr{k ∈

I} ≥ 1− α.

A.2 Screening with Paired Controls

Proving Proposition 2 is more straightforward:

Pr{k ∈ I} = Pr{ µ̂ki(n) ≥ −t ∆̂ki(n)τ̂ki(n),∀i 6= k}
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≥ 1−
k−1∑
i=1

Pr
{

µ̂ki(n) < −t ∆̂ki(n)τ̂ki(n)
}

(31)

= 1− (k − 1)(α/(k − 1)) = 1− α. (32)

The Bonferroni inequality justifies Inequality (31), while Equation (32) is true because Lemma 2.1 implies

that, conditional on C,

µ̂ki(n)− µki√
∆̂2

ki(n)τ̂2
ki(n)

has a Student t-distribution with n− q− 1 degrees of freedom; because this is so whatever the level of C, it

also has this unconditional distribution.

B. SELECTING THE BEST WITH CONTROLS

To establish Proposition 3, we will prove that Pr{B = k} ≥ 1 − α if µk − µk−1 ≥ δ. The fact that

the confidence intervals (12) cover with probability at least 1 − α, regardless of the configuration of the

true means, then follows from Theorem 1 of Nelson and Matejcik [1995], while Inequality (13) is true as a

consequence of Corollary 1 of Nelson and Goldsman [2001].

We will need the following lemma, which is a direct consequence of Corollary 5.2.1 of Anderson [1984]:

Lemma B.1. If the distribution of Cij is q-variate normal, then(
n− q

q

)(
n∆̂2

i (n)− 1
)

has an F distribution with (q, n− q) degrees of freedom.

Although we have assumed that the distribution of Cij is q-variate normal, see Remark B.2.

To simplify the notation we let h = hk,1−α1,n0−q−1 and define Zi as in Equation (24). The probability of

correct selection is

Pr{µ̂k(Nk) > µ̂i(Ni),∀i 6= k}

≥ Pr
{

µ̂k(Nk) > µ̂i(Ni),∀i 6= k; ∆̂2
i (Ni) ≤

δ2

h2 τ̂2
i (n0)

,∀i
}

= Pr

Zi >
−(µk − µi)√

∆̂2
k(Nk)τ2

k + ∆̂2
i (Ni)τ2

i

,∀i 6= k; ∆̂2
i (Ni) ≤

δ2

h2 τ̂2
i (n0)

,∀i


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≥ Pr

Zi >
−δ√

δ2

h2 τ̂2
k
(n0)

τ2
k + δ2

h2 τ̂2
i
(n0)

τ2
i

,∀i 6= k; ∆̂2
i (Ni) ≤

δ2

h2 τ̂2
i (n0)

,∀i

 (33)

= Pr

Zi >
−h√

τ2
k

τ̂2
k
(n0)

+ τ2
i

τ̂2
i
(n0)

,∀i 6= k; ∆̂2
i (Ni) ≤

δ2

h2 τ̂2
i (n0)

,∀i


≥ 1− p1 − p0 (34)

where

p1 = 1− Pr

Zi >
−h√

τ2
k

τ̂2
k
(n0)

+ τ2
i

τ̂2
i
(n0)

,∀i 6= k

 and

p0 = 1− Pr
{

∆̂2
i (Ni) ≤

δ2

h2 τ̂2
i (n0)

,∀i
}

.

Inequality (33) holds because µk − µi ≥ δ and because of the bound on the value of ∆̂2
i (Ni), while Inequal-

ity (34) is an application of the Bonferroni inequality.

First consider p0. The probability

Pr
{

∆̂2
i (Ni) ≤

δ2

h2 τ̂2
i (n0)

}
= E

[
Pr
{

∆̂2
i (Ni) ≤

δ2

h2 τ̂2
i (n0)

∣∣∣∣ τ̂2
i (n0)

}]

= E
[
Pr
{(

Ni − q

q

)(
Ni∆̂2

i (Ni)− 1
)
≤
(

Ni − q

q

)(
Niδ

2

h2 τ̂2
i (n0)

− 1
)∣∣∣∣ τ̂2

i (n0)
}]

.

Conditional on τ̂2
i (n0), Ni is constant. By Lemma 2.1, τ̂2

i (n0) and {Ci1,Ci2, . . .} are independent, so the

conditional distribution of {Ci1,Ci2, . . .} given τ̂2
i (n0) is the same as its unconditional distribution, namely q-

variate normal. Therefore Lemma B.1 implies that the conditional distribution of ((Ni−q)/q)(Ni∆̂2
i (Ni)−1)

given τ̂2
i (n0) is F with (q, Ni − q) degrees of freedom. Consequently,

Pr
{(

Ni − q

q

)(
Ni∆̂2

i (Ni)− 1
)
≤
(

Ni − q

q

)(
Niδ

2

h2 τ̂2
i (n0)

− 1
)∣∣∣∣ τ̂2

i (n0)
}
≥ γ,

as defined in Procedure 3. If systems are simulated independently, γ = (1 − α0)1/k, and apply Slepian’s

inequality (Lemma A.2). If systems are simulated with CRN, γ = 1−α0/k, and apply Bonferroni’s inequality.

In either case, the result is p0 ≤ α0.



24 · B. Nelson and J. Staum

Now consider p1. Given C and τ̂2, the conditional distribution of Zi is standard normal, by Lemma 2.1.

By Lemma A.4, the conditional covariance of Zi and Z` is nonnegative. Therefore,

E

Pr

Zi ≥
−h√

τ2
k

τ̂2
k
(n0)

+ τ2
i

τ̂2
i
(n0)

,∀i 6= k

∣∣∣∣∣∣∣∣C, τ̂2


 ≥ E

k−1∏
i=1

Pr

Zi ≥
−h√

τ2
k

τ̂2
k
(n0)

+ τ2
i

τ̂2
i
(n0)

∣∣∣∣∣∣∣∣C, τ̂2




by Slepian’s inequality (Lemma A.2). Conditional on C, the expectation over τ̂2 is Rinott’s [1978] integral,

which is at least 1 − α1 because of the procedure’s choice of Ni. This is true for all C, so it is true

unconditionally as well.

Thus, the probability of correct selection Pr{µ̂k(Nk) > µ̂i(Ni),∀i 6= k} ≥ 1−p0−p1 ≥ 1−α0−α1 = 1−α.

Remark B.2. Even if the distribution of Cij is not multivariate normal, Theorem 5.2.3 of Anderson [1984]

can be used to show that for large n,

(n− 1)
(
n∆̂2

i (n)− 1
)

has approximately the chi-squared distribution with q degrees of freedom. Take Ni to be the smallest integer

greater than n0 such that

(Ni − 1)
(

Niδ
2

h2τ̂2
i (n0)

− 1
)
≥ χ2

γ,q.

Therefore, the procedure will be approximately valid when Ni is large, without the requirement that the

distribution of the controls be multivariate normal. Notice that Ni will be large when the variance of the

CV estimator is large, or when the difference worth detecting δ is small, the two most difficult situations in

which to select the best. To obtain a convenient sample size formula, we solve the equation

Ni

(
Niδ

2

h2τ̂2
i (n0)

− 1
)

= χ2
γ,q.

Its positive solution is

Ni =
(

h2τ̂2
i (n0)
2δ2

)(
1 +

√
1 +

4δ2

h2τ̂2
i (n0)

χ2
γ,q

)
. (35)

Applying the inequality
√

1 + x ≤ 1 + x/2 yields Equation (14) as an upper bound for Equation (35).

Giving a rule of thumb for how large the sample size Ni must be for an approximation such as Equation (14)

or (35) to be adequate when the distribution of Cij is not multivariate normal is not straightforward. Not only
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does the adequacy of the approximation depend on the actual distribution of Cij , but it also depends on the

number of controls q and the tail probability γ at which we hope that the quantile of (n− 1)
(
n∆̂2

i (n)− 1
)

is close to a chi-squared quantile. However, we can address the issue of when Equation (14) is a good

approximation for Equation (11) by comparing Equations (14) and (35) to Equation (11) while varying q,

γ, and h2τ̂2
i (n0)/δ2. In all cases, we found that Equation (11), which is exactly correct if Cij is multivariate

normal, is no less than Equation (35) and no more than Equation (14). We recommend using Equation (14)

as a conservative approach. For each system in the example reported in Section 6, Equation (14) was either

exactly equal to Equation (11) or larger by one. Equation (14) can be substantially larger in other cases,

leading to a loss of efficiency, just as Equation (35) can be substantially less, leading to a violation of p0 ≤ α0.

After numerical experimentation guided by the fact that when Ni is specified by Equation (14),(
Ni − q

q

)(
Niδ

2

h2τ̂2
i (n0)

− 1
)

=
χ2

γ,q

q

(
1 +

(χ2
γ,q − q)δ2

h2τ̂2
i (n0)

)
,

we found that Equation (14) was no more than 1% larger than Equation (11) when h2τ̂2
i (n0)/δ2 is at least

ten times larger than χ2
γ,q − q.

C. ESTIMATING THE BEST WITH CONTROLS

To prove Proposition 4 we will use the tools developed in Appendix B. As in that section, we present a proof

based on the assumption that the distribution of Cij is q-variate normal, bearing in mind that Remark B.2

demonstrates approximate validity if the sample size is large, even if Cij is not normal.

First notice that Inequalities (15)–(16) are all marginal requirements, involving only one system at a time,

as is the sufficient condition (17). Thus, all we need to do is to show that under our procedure, Inequality (17)

holds for each system i when Ga(x) = Gb(x) = Ftn0−q−1(x)− α0. We will need the following lemma, which

is a consequence of Theorem 1 of [Nelson 1990]:

Lemma C.1. If Model 1 holds then

µ̂i(Ni)− µi√
∆̂2

i (Ni)τ̂2
i (n0)

has a t distribution with n0 − q − 1 degrees of freedom.

Showing that Pr{µ̂i −µi > x} ≤ 1− (Ftn0−q−1(cx)−α0) follows steps similar to the proof in Appendix B,
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which we give in abbreviated form here:

Pr{µ̂i(Ni)− µi ≤ x} ≥ Pr
{

µ̂i(Ni)− µi ≤ x; ∆̂2
i (Ni) ≤

1
c2τ̂2

i (n0)

}

= Pr

 µ̂i(Ni)− µi√
∆̂2

i (Ni)τ̂2
i (n0)

≤ x√
∆̂2

i (Ni)τ̂2
i (n0)

; ∆̂2
i (Ni) ≤

1
c2τ̂2

i (n0)



≥ Pr


µ̂i(Ni)− µi√
∆̂2

i (Ni)τ̂2
i (n0)

≤ x√
τ̂2

i
(n0)

c2τ̂2
i
(n0)

; ∆̂2
i (Ni) ≤

1
c2τ̂2

i (n0)


= Pr

 µ̂i(Ni)− µi√
∆̂2

i (Ni)τ̂2
i (n0)

≤ cx; ∆̂2
i (Ni) ≤

1
c2τ̂2

i (n0)


≥ Ftn0−q−1(cx)− α0,

where the final step comes from an application of the Bonferroni inequality and Lemmas B.1 and C.1. The

other half of Inequality (17) follows from this result and the symmetry of the distribution of µ̂i − µi.
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