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Abstract

We investigate three alternatives for combining a deterministic approximation with a stochastic simulation estimator:
(1) binary choice, (2) linear combination, and (3) Bayesian analysis. Making a binary choice, based on compatibility of the
simulation estimator with the approximation, provides at best a 20% improvement in simulation efficiency. More effective is
taking a linear combination of the approximation and the simulation estimator using weights estimated from the simulation
data, which provides at best a 50% improvement in simulation efficiency. The Bayesian analysis yields a linear combination
with weights that are a function of the simulation data and the prior distribution on the approximation error; the efficiency
depends upon the quality of the prior distribution. © 1997 Published by Elsevier Science B.V.
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1. Introduction

We consider the analysis of stochastic systems, with
the purpose of evaluating a performance measure 0. In
a number of real problems, the practitioner has avail-
able both an approximation of 0 that provides a con-
stant 0 and a stochastic simulation experiment that
provides a point estimator 0. Our problem is to com-
bine 0 and 0 to obtain a single point estimator.
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We make two context assumptions. First, the quality
of 6 is unknown; the analyst, however, respects its
ability to approximate 0. Second, the point estimator
is unbiased and its variance, o’g = var(()), is estimated
by an observable 6(%.

For example, consider expected waiting time at
a particular queueing-network node. The constant g
could be a numerical approximation (e.g., Whitt,
1983) or an expert’s opinion. The point estimator 0
could be the sample average of the customer waiting-
time data from a simulation experiment with standard
error ¢ ;. Our problem is then to combine the approx-
imation or opinion 0 and the simulation result ( using
the estimated standard error 6.

Faced with such a context, the analyst sometimes
chooses between 0 and . The idea is to use 0 if it
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is “verified” by the simulation; that is, if |§ — 0] is
small, choose to report 0, otherwise choose 6. This
binary choice is essentially classical Neyman—
Pearson hypothesis testing, with the null hypothesis
Hy:60=0 and the alternative Hy:0+# 6. We investi-
gate binary choice, including methods for estimating
the procedure parameter that defines small, in Sec-
tion 2.

An alternative to binary choice is to linearly com-
bine 0 and 6. We investigate linear combinations,
including weight estimation by minimizing mean
squared error (mse), in Section 3, and by Bayesian
analysis, in Section 4.

For both binary choice and linear combinations we
discuss performance as measured by mse, the sum of
the squared bias and the variance. The approxima-
tion @ is deterministic, which can be interpreted as zero
variance; its error, 0 — 0, can be interpreted as bias.
The point estimator § is unbiased, but has variance
Var(é), which is inversely proportional to the sample
size n. (These properties of 0 apply widely, especially
for large sample sizes.)

We show that binary choice is at best modestly ef-
fective, that it is dominated (as a practical matter) by
the natural-estimator linear combination, and that the
Bayesian analysis is effective or not depending upon
the quality of the prior information.

2. Binary choice

Assume that only the observed values 5, é, and 6
are available and we wish to report the point estimator
defined by choosing either 0 or 0. The binary-choice
family of estimators is

) { 0 if|6-0| < oy,

0 otherwise.

2.1)

The single parameter f§ is nonnegative, either a pre-
specified constant or a function of the observed values
0,6 and ;. If f=0, then the simulation estimator is
returned always; if ff = oo, then the numerical approx-
imation is returned always. Based on its relationship
to Neyman—Pearson hypothesis testing, a prespeci-
fied value of f§ in the range from one to three seems
reasonable to many people. Under the alternative hy-
pothesis H, : 0 # 0, the probability that the simulation

estimator 0 is chosen is the probability of a type-I1
error for a given value of 0—0. If 0 is the sample aver-
age of independent and normally distributed data, then
a standard derivation for the two-sided hypothesis test
yields

P(O°(B)=0)=1+ Fr(—p)—Fr(B), (2.2)

where T z(é—(;)/o”'(; and Fy is the noncentral-t dis-
tribution function with n— 1 degrees of freedom and
noncentrality parameter /n(6— (5)/6(5‘

Consider mse performance of binary-choice
estimators for independent and normally distributed
data. Fig. 1 shows the mse of 6° () plotted as a
function of the squared approximation error (9 0)2.
Both axes are labeled in units of Va1(0). The two
extreme lines, which do not depend on distributional
assumptions, correspond to deterministically using
the simulation or the approximation. The horizontal
line at a height of 1 corresponds to the simulation
point estimator 6= éb(O), with mse(é,()) :var(é),
since bias is zero. The 45° line, corresponding to
the squared bias of the deterministic approximation
6=6"(c0), is mse(9 0)=(0-0)>.

Compare § and 0. The mse of the approximation 0
grows linearly; the mse of the simulation estimator
0is var(@) which decreases with sample size and is not
a function of 0. The mse of @ is smaller than the mse
of §if |0~ 0| <ay; i.e., if the true value and approxima-

tion differ by less than one standard error. Because 6
and 0 are constants, and because o; decreases as the

simulation run length increases, eventually mse(é, 0)
decreases to a value less than mse(0, 0).

The four curves in Fig. 1 correspond to the param-
eter values =1, 1.6, 2, and 3. These curves indicate
the continuum of mse performance as f§ is varied be-
tween the two extremes. Large f§ values perform well
when the approximation 0 is good, but substantially
increase the mse when the approximation 0 is poor. All
curves corresponding to finite values of f§ are asymp-
totic to the simulation line.

Fig. 1 was drawn with simulation as the bench-
mark method, with its mse held constant to one.
Containing the same information, and equally funda-
mental, the analogous Fig. 2 is scaled by mse(() 0)
rather than by mse(0 0). The effect is that the numeri-
cal approximation is shown as the horizontal line and
simulation as the 45° line. Despite being redundant,
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Fig. 1. For various parameter values f3, the binary-choice estimator mse as a function of the approximation mse, both scaled by the

simulation mse.

Fig. 2 provides additional insight by drawing the eye to
situations where the approximation is better than sim-
ulation, that is, to the right side of the figure, as defined
by mse(d, 0)/mse(0,0) < 1. For each value of S, the
mse curve increases with simulation mse. Each curve
approaches (from above) its tangent line, which
passes through the origin and has slope equal to the
mse of the zero-error approximation from Fig. 1. For
example, the curve corresponding to f=1 has an
asymptotic slope of about 0.8.

_ The mse optimal value of 8 as a function of the bias
0—0is

gr_ | if 00| < g,
0  otherwise.

Equivalently, the optimal binary-choice estimator
is the numerical approximation 0 if and only if
mse(0, 0) < mse(6, 0).

Because 0 and o5 are unknown, the optimal value of
f must be estimated. The natural estimator, obtained
by substituting the observed value 0 for 0 and the
sample standard error g, for g, is

g if |0-0| < 6,
0  otherwise.

Substituting ﬁ* into Eq. (2.1) for f and simplify-
ing yields the natural binary-choice estimator 0°(1 ).
Therefore, although the optimal weight is a function
of the approximation bias, and the estimated optimal
weight is a function of the random point estimator
and the random standard-error estimator, simplifica-
tion yields the deterministic curve corresponding to
p=1

The (perhaps surprising) result is that the natural
binary-choice estimator is not much better than
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Fig. 2. For various parameter values f3, the binary-choice estimator mse as a function of the simulation mse, both scaled by the approximation

mse.

simulation alone. In Fig. I, the f=1 curve is min-
imized when the approximation is exact, at which
point the mse is reduced by approximately 20%. The
B =1 curve is maximized when the squared approx-
imation error is about (§ — 0)? =3 var(0), at which
point the mse is increased by about 26%. Therefore,
the natural binary-choice estimator never is much bet-
ter or much worse than always choosing the simulation
estimator 0.

The explanation for the modest improvement is that
when the approximation is good, the binary-choice
rule chooses the simulation estimator only when it is
unusually low or high; thus the rule filters out the good
simulation point estimates. This effect can be seen in
Fig. 3. The probability of choosing the simulation es-
timator, from Eq. (2.2), is shown in Fig. 3(a); the mse
of the simulation estimator, conditional on it being
chosen, is shown in Fig. 3(b)."

As is consistent with intuition and Fig. 3(a), the
probability of choosing the simulation estimator in-
creases with 1/f and (0 — 0)?. The natural estimator,
=1, has the appealing property that the probabil-
ity of choosing the simulation is greater than the
probability of choosing the approximation if and
only if the simulation mse is less than the ap-
proximation mse. In particular, P(éb(l) = é) =0.5 at
(é —0)Y = Var(é)‘

Fig. 3(b) shows the effect of using binary choice on
the simulation mse. When the approximation is rela-
tively accurate, the simulation has a high mse when it
is chosen. Conversely, when the approximation is rel-
atively inaccurate, the simulation has a low mse when
it is chosen. This conditioning effect on the simula-
tion mse explains why the binary-choice estimator is
never much better or worse than simulation alone. In
the limit as the approximation error grows large, all
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Fig. 3. Simulation performance under binary choice. (a) Probability of choosing the simulation estimator and (b) conditional simulation
mse, scaled by the unconditional simulation mse.

of the simulation mse curves converge to the uncon- (that is, infinite degrees of freedom), and Monte
ditional line from below. Carlo results (obtained to negligible sampling error)

In practice, the performance of binary choice is a assume samples of size thirty (that is, 29 degrees of
bit worse than discussed. The derived results assume freedom). Fig. 4, which is similar to Fig. 1, shows

that the sample variance equals the population variance performance for the natural (f=1) binary-choice
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Fig. 4. For various degrees of freedom, the natural binary-choice estimator mse as a function of the approximation mse, both scaled by

the simulation mse.

estimator for various degrees of freedom. The (Monte
Carlo) results show surprising insensitivity to degrees
of freedom when the approximation is good, and
performance approaches that of simulation when the
approximation is asymptotically poor. Practically sig-
nificant performance degradation occurs only when
degrees of freedom are quite small and the approxima-
tion error is moderate. In the worst case, one degree
of freedom yields a 30% mse increase (compared to
the simulation estimator 0) when the approximation
mse is four or five times the simulation mse; the cor-
responding worst case for many degrees of freedom
is about 25%.

One could also look at the sensitivity to nonnormal-
ity of the data. But the effect of data nonnormality is
only through the distribution of the sample variance.
If these effects are of concern, they can be controlled
by grouping the observations into ten or more batches
and averaging within each batch. The batch averages
are asymptotically normal and the effect of fewer
degrees of freedom is minor, as shown in Fig. 4.

3. MSE-optimal linear combination

Again, assume that only the observed values
(5, 0, and G; are available. Now the analyst wishes
to report the point estimator defined by the linear
combination

O0(ct) =00 + (1 — a)0,

which can be viewed as adjusting the approxima-
tion with the simulation, ()(oc) 0 — a(f — 0) or
as adjusting the simulation with the approximation,
9(0()-04—(1 — o) - 0).

Writing mse as the squared bias plus the variance
and as a function of the weight « yields

mse(A(2),0) = (1 — 0)>(0 — 0)> + «*var(f)  (3.1)
or equivalently

mse(é(oc), 0)=(1 — a)*mse(f, §) + o> mse(0, 0).
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The linear-combination mse is less than the simulation
mse whenever

c <mse(§,9) — mse(é,f)) 1) .

mse(ﬁ, o)+ mse(é, 0)’

Minimizing the mse in Eq. (3.1) with respect to o
yields the mse-optimal linear-combination weight

e (0 -0y B mse(0, 0)
B (0 -0y + var(é) B mse(f, 0) + mse(0, 0)

The unusual interpretation of 0 as a biased estimator
of 0, rather than as an unbiased estimator of 0, yields

S bias?(0, 0)
mse(é,@) .
The optimal mse is
(0 — 0)?var(0)
(6 — 0y + var(f)

mse(0(a*), 0) = = o*var(0).

(3.2)

The mse is less than var(é) whenever the simulation
has any sampling error.

Notice that binary choice is the special case of lin-
ear combination in which « is restricted to being zero
or one, which precludes the binary-choice estimator
from obtaining the optimal mse. Therefore, if there
is any approximation error, the optimal linear com-
bination dominates the optimal binary choice; i.e.,
mse(0(a™), 0) <mse(6°(S*), 0).

The optimal weight o™ is unknown, but can be es-
timated. The natural estimator of o™ is

o (06— 0y B mse(0, 0)
(0 — 0y +var(0)  mse(d,0) + me(0,0)

which yields the natural linear-combination point es-
timator

B(ary= 4 OO =0)
(6 — 0)* + var(0)

Fig. 5 compares the mse of six linear-combination
estimators. As in Fig. 1, the axes are in units of var( é),
the 45° line corresponds to the approximation 6, and
the horizontal line corresponds to the simulation esti-
mator 0. The other two straight lines, corresponding
to o= % and o = %, indicate the continuum between

the approximation at o« = 0 and the simulation at x = 1.
The two curves correspond to the optimal (but unim-
plementable) linear combination é(cx*) and the natu-
ral linear combination (9(02* ), with the optimal curve
being the lower. (The four lines are from Eq. (3.1),
the lower curve is from Eq. (3.2), and the upper curve
is based on a Monte Carlo experiment with negligible
sampling error and assuming independent normally
distributed samples of size 30.)

The (unimplementable) optimal linear combination
é(a* ) provides a lower mse bound for all linear combi-
nations that use an estimated value of o. The o curve
is the locus of solutions to the problem of minimizing
mse for a given approximation squared error ((5 —0).
This optimal curve is tangential to the constant- lines,
asymptotically approaching the horizontal simulation
line mse(f,0) as the approximation error increases.
The smaller the value of «, the closer to the origin is
its tangent point; the tangent point is at the origin for
a perfect approximation and moves toward infinity as
the approximation error increases.

Other than the optimal o* curve, no choice of «
dominates the others. Small values of o are good when
the approximation error is small.

Now consider the performance of the natural lin-
ear combination, é(o?*). In the best case, 0 =0 and
the natural linear-combination estimator reduces mse
to about one half that of 0. If 0 is within about 1.5
standard errors of 0, then the natural linear combina-
tion performs better than 0. (Notice that 1.5 standard
errors corresponds to 2.25 Var(é).) If the approxima-
tion error is greater than 1.5 standard errors, then the
mse is larger than that of 0, with the maximal 25%
increase occurring when 0 is about three standard er-
rors from 0. (Three standard errors lies off the plot to
the right at (0 — 0)?> =9var(0).) Beyond about five
standard errors, mse(é(o?*, 0) =~ mse((j, 0), because the
linear combination is giving little weight to 0.

As with Figs. 1 and 2 for the binary-choice es-
timator, the performance of the linear-combination
estimator can be viewed in a second, equally useful,
way. Fig. 6 contains the same information as Fig. S,
with mse shown as a function of the simulation mse,
both scaled by the approximation mse. As in Fig. 5,
every value of o corresponds to a straight line tangent
to the optimal curve, but now the slope is «? rather
than (1 —o)?. Simulation alone (o = 1) is the 45° line;
approximation alone (x=0) is the horizontal line.
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Fig. 5. For various parameter values o, the linear-combination estimator mse as a function of the approximation mse, both scaled by the

simulation mse.

The simple average (o= %) and the theoretical opti-
mal (o=0a™) curves appear unchanged. The natural
estimator (o =¢&*) is visually quite different from its
curve in Fig. 5. Corresponding to its intercept being
one-half in Fig. 5, its slope is asymptotically one-
half; that is, when the approximation is much better
than the simulation, the natural linear-combination
estimator has half the mse of the simulation
estimator.

From either Fig. 5 or Fig. 6, performance compar-
isons can be made. The natural estimator is better
than both the simulation and the approximation alone
whenever (approximately ) 0.47 < mse(('), 0)/mse(0, )
< 1.4. The intuitively appealing simple average
(2= %) is better than the simulation, the approxima-
tion, and the natural estimator whenever (approxi-
mately) % < mse(0, 0)/mse(0, 0) < 3, but (unlike the
natural estimator) performance is arbitrarily bad in
the limit as either the simulation or the approxima-

tion becomes good, in which case simulation alone or
approximation alone is optimal.

4. The Bayesian analysis

Now assume that in addition to the observed val-
ues 5, 0, and g;, the analyst has available o; ,, the
standard deviation of the Bayesian prior distribution
of the approximation error § — 6. More specifically,
the approximation error (prior to seeing the simula-
tion estimator (5) is now modeled as a normal random
variable with mean zero and variance 0(25_ 5"

Such prior information about the quality of the
approximation is often unavailable, but analyst
experience or approximation bounds sometimes sug-
gest a reasonable value of ¢;;_,. The random approx-
imation error is equivalent to expressing uncertainty

about 0: having 0 in hand, the analyst views the
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Fig. 6. For various parameter values «, the linear-combination estimator mse as a function of the simulation mse, both scaled by the

approximation mse.

unknown 6 as a random variable with mean 6 and
standard deviation oy = g;_,,.

If the simulation estimator is normally distributed,
the standard Bayesian analysis (e.g., Berger, 1985,
p. 128) yields a normal posterior distribution whose
mean (and therefore a reasonable point estimator) is
the linear-combination 0(s') = o/0 + (1 — o/ )0 with
simulation weight
o — U(ZL()

-3 2"
TG0 + %

The natural estimator of o’ is
2
o TGy

2 A2 0
TG0 i

The mse of this Bayesian linear combination, ()(&’),
is identical to the mse of the constant-o linear combi-

nations shown in Fig. 5. Because the units are var((}),
the transformation from prior variance to Fig. 5 is
a=05_ /(o3 +1)and the transformation from o in
2 1

Gy = /(1 — o). For example, the o =

line in Fig. 5 is also the a;_,/0; = 1 line; that is, the
analyst has specified a prior standard deviation that
is one-third of the simulation’s standard error g. As
the prior standard deviation decreases, the Bayesian
linear-combination line moves closer to the 45° ap-
proximation line.

Fig.5is ¢

5. Summary and discussion

All three alternatives — binary choice, linear com-
bination, and Bayesian analysis — for combining
approximation and simulation estimators shift mse.
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The simulation mse is reduced when the approxima-
tion is good, and increased when the approximation
is poor. Equivalently, the approximation mse is re-
duced when the simulation has small standard error,
and increased when the simulation has large standard
error.

Neither of the first two alternatives, which have no
specification of approximator quality, guarantees an
improved estimator. In the best case — when the ap-
proximation has no error — mse is decreased by the
natural binary-choice estimator by only about 20% and
by the natural linear-combination estimator by about
50%. In the worst case — when the approximation has
an error of several simulation standard errors — the mse
is increased by about 25%. When the approximation
error is asymptotically infinite, both natural methods
ignore the approximation and therefore have the sim-
ulation mse.

The third alternative, which requires specification
of a Bayesian prior on the approximation error, can
reduce mse to zero in the best case — when the approx-
imation error is zero and the prior variance is zero —
but can increase mse by arbitrarily large factors when
the prior variance is misleading. This alternative, un-
like the first two, fails to converge to the simulation
mse as the approximation error increases.

The binary-choice alternative has little to recom-
mend it. Despite its intuitive appeal and its wide
informal use, the natural binary-choice mse is only
slightly better than the simulation mse, and then
only when the squared approximation error is quite
small: less than about one-half of the simulation
variance.

The linear-combination alternative is more appeal-
ing than binary choice, which is a special linear com-
bination. The simulation mse is reduced whenever
the squared approximation error is less than twice
the simulation variance; the approximation mse is re-
duced whenever the squared approximation error is
greater than about one-half of the simulation vari-
ance. The natural linear-combination estimator some-
times (squared approximator error ranging from one-
half to two simulation variances) dees better than the
optimal binary-choice estimator. Despite a slightly

larger mse when the approximation error is large, as a
practical matter the natural linear-combination domi-
nates the natural binary-choice estimator.

Whether the potential mse reduction is worthwhile
depends on the application. The maximal 50% mse re-
duction corresponds to a 50% reduction in computer
run time. Whatever the reduction, it is easy to ob-
tain and essentially free, costing only the approxima-
tion computation. For queueing systems, approxima-
tions are often most accurate in heavy traffic, which is
where simulation is least efficient. Thus the require-
ment of the approximation being within two standard
errors is frequently met. Therefore, the best mse reduc-
tion s likely to occur in applications where it is most
needed.

The linear-combination approximation-assisted
point estimator of Section 3 is a special case of
using a biased external control variate (Schmeiser
and Taaffe, 1994). In the notation and terminol-
ogy of that paper, the control-variate estimator is
(5"((1) = é—(l — oc)(@” — 5"), with 0 and 6¢ being pos-
itively correlated simulation point estimators of the
principal model and an approximation model, respec-
tively, and 0¢ being a numerical approximation to
0t = E((j“ ), the true performance of the approximation
model. If we assume that the approximation model
is identical to the principal model, and therefore that
0" =10, then the approximation-model simulation is
unnecessary by setting 04 =6 and the approximation-
model numerical approximation becomes 0¢=0. The
control-variate estimator then simplifies to the linear-
combination approximation-assisted point estimator
0¢(er) = o6l + (1 — o) 0.
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