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COMMUN. STATIST. -SIMULA., 1 6 ( 2 ) ,  385-426 (1987) 
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IN DYNAMIC SIMULATION EXPERIMENTS 

Barry L. Nelson 

Department of Industrial and Systems Engineering 
The Ohio State University 

Columbus, OH 43210 
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ABSTRACT -- 

A unifying perspective on variance reduction is presented that emphasizes 

broadly defined variance reduction strategies rather than specific variance 

reduction techniques (VRTs). The perspective is based on a new taxonomy of 

VRTs, which is reviewed in detail. The variance reduction problem is 

formulated as a constrained optimization problem, and results that guarantee the 

effectiveness of variance reduction strategies are summarized. 

1. INTRODUCTION 

Stochastic models are often used to describe real or conceptual systems in 

order to derive performance measures of interest. Analytic analysis methods are 

usually preferred, and there are rich classes of models for which analytic results 

are available (e.g. queueing models). However, when models are intractable we 

resort to simpler approximate models, numerical methods, or simulation. Each 

approach has its drawbacks: The validity of an approximation is often 

Copyright O 1987 by Marcel Dekker, Inc. 
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386 NELSON 

established by tests on tractable models, but its performance on intractable 

models is uncertain. Good numerical methods converge to the performance 

measure of interest given infinite precision arithmetic and computing resources. 

However, their accuracy when arithmetic and computing resources are finite 

may be poor. Simulation experimentation is conceptually the simplest approach, 

because a simulation mimics the system of interest by sampling computer 

generated random numbers and exercising the model. Unfortunately, the 

variance of simulation estimators may be unacceptably large in practical 

problems. 

In simulation, as in all sampling experiments, increased sampling usually 

reduces variance, but the cost of obtaining a large enough sample can be 

prohibitive. The availability of faster computers, instead of eliminating the 

problem, has spurred interest in using simulation to solve problems that were 

previously unmanageable. Optimization of stochastic models and incorporating 

stochastic models into real-time control systems via simulation are two current 

examples for which available computing budgets and available computer speed, 

respectively, are frequently inadequate. 

Variance reduction techniques (VRTs) are techniques designed to reduce 

sampling error without a corresponding increase in computer effort. VRTs had 

their origins in survey sampling (Cochran, 1977) and Monte Carlo estimation 

(Hammersley and Handscomb, 1964). Unfortunately, techniques that work well 

for sampling from static populations or for evaluating definite integrals are 

often difficult to adapt to simulation of dynamic stochastic processes. Also, the 

lack of a unifying theory of variance reduction has been a hindrance. The result 

is that VRTs are infrequently used in practice, even though the autbnr's 

experience indicates that large (one to two orders of magnitude) variance 

reductions are possible in practical problems. 

Recently, Nelson and Schmeiser (1986a) proposed a taxonomy of VRTs 

that views VRTs as compositions of transformations from six elemental classes. 

The taxonomy is designed to serve as the basis for a unified theory of variance 

reduction, and ultimately as the basis for automated variance reduction. In the 

present survey paper, it facilitates formulating the variance reduction problem 

as a constrained optimization problem. Given this formulation, solutions to the 
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A PERSPECTIVE ON VARIANCE REDUCTION 387 

problem can be stated in terms of broadly defined variance reduction strategies 

rather than specific VRTs. Also, results that guarantee the effectiveness of 

these strategies, and the knowledge required to employ the results, can be 

conveniently organized. This is a fundamentally different and more unified 

presentation of variance reduction than previous surveys. It is not an 

exhaustive survey of specific VRTs, and we give no guidelines for 

implementation. Excellent surveys of this kind can be found in Kleijnen (1974), 

McGrath and Irving (1973), and a recent and highly recommended treatment in 

Wilson (1984). Textbook presentations of VRTs that have proven useful in 

simulation experiments are given by Bratley, Fox and Schrage (1983) and Law 

and Kelton (1982). See also Nelson (1985a), which contains an algorithm for 

selecting VRTs. 

The paper is organized as follows: Section 2 reviews the Nelson and 

Schmeiser taxonomy of VRTs, and also presents the new formulation of the 

variance reduction problem. Given that background, sections 3 through 8 

examine the classes of elemental transformations individually, giving broadly 

defined variance reduction strategies and summarizing theoretical results for the 

variance reduction problem. In section 9 we summarize and emphasize some of 

the important ideas in the previous sections. Finally, a concluding section raises 

issues relating to the automation of variance reduction and variance reduction in 

animation, both topics that we expect will receive significant future attention. 

2. SIMULATION EXPERIMENTS AND VARIANCE REDUCTION 

The basis for this survey is a taxonomy of variance reduction techniques 

that views VRTs as compositions of transformations from six elemental classes. 

A transformation maps one simulation experiment into another experiment that 

may have reduced variance. The six classes of transformations are based on a 

specific definition of simulation experiments, termed the sample space definition 

(Nelson and Schmeiser, 1986a). In this section we review the sample space 

definition, give an illustration, and then define the six classes of elemental 

transformations. 

2.1 A Taxonomy of Variance Reduction Techniques -- 

In the sample space definition, a simulation experiment has a fixed (Q, 8). 

The sample space of the input, a, is a subset of R- (the infinite dimensional 
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388 NELSON 

Euclidean space) and represents all possible realizations of the input (X); it is 

the range of the uncertain (uncontrollable) elements of the system. The 

parameter of interest, 0, is a vector of unknown real scalar constants. The 

purpose of performing a simulation experiment is to estimate 0. 

The simulation input, X ,  is a matrix of scalar random variables modeled 

by F ,  the known cumulative probability distribution over R; notationally 

x - F ( x ) .  The organization of the input into a matrix is for convenience: by 
convention, a column of x is an infinite sequence of identically distributed 

scalar inputs with the order of the elements in the column the same as the order 

in which realizations of the random variables will be generated in the 

simulation experiment. There is not necessarily a unique organization of x. 

The output, Y ,  is a measurable function of x ;  notationally Y = g(X). The 

output is the matrix of all essential random variables defined by functions of X, 

where essential means that any other random variable in the experiment that is 

a function of x can be calculated from Y provided no element of Y is deleted. 

The essential set restriction is necessary for theoretical reasons (see Nelson and 

Schmeiser, 1986a). Again, the output is organized into a matrix for 

convenience, using the same ordering convention as x.  

The sampling plan R ,  is a measurable function of x that constrains the 

number of elements in Y that will actually be realized; Y is countably infinite 

dimensional, since conceptually we can generate infinitely many inputs and 

corresponding outputs. The sampling plan allocates the available sampling 

effort by specifying the realized lengths of the columns of Y .  Note that R ,  

constrains the outputs rather than the inputs, and implies a stopping rule for the 

simulation experiment. 

The estimator of e is the statistic Z,  which is a measurable function of Y 

that aggregates (a subset of) the output into a vector of point estimators; 

notationally 2 = h(Y). A thorough discussion of the motivation for these 

definitions is given in Nelson and Schmeiser (1986a). 

As an example, consider a simulation experiment performed on a model 

of an inventory system to estimate the expected stock level, one of the 

parameters of interest, e. Suppose that demand for inventory is a random 

variable modeled by a specified probability distribution, implying that demand 
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A PERSPECTIVE ON VARIANCE REDUCTION 389 

is an input sequence in X .  The stock currently on hand is an output sequence 

in Y .  Since inventory position is given by the stock on hand plus the stock on 

order minus the backorders, inventory position is not an essential output, given 

the other three. The sampling plan R, might specify the number of years of 

simulated operation during which we observe the stock level. If these 

observations of stock level are averaged to estimate the expected stock level, 

then that average is the statistic Z. 

In this paper we will concentrate on scalar 0, or on only one element of 

multivariate 0. However, there are important unresolved issues in multivariate 

variance reduction. For scalar 0 we can formulate the variance reduction 

problem considered here as 

minimize MSE(Z.0) = I [h  (g (x ;Re )) - 812dF (x) 
n 

(1) 

subject to: 0, 0 frued (c.0) 

which is minimization of the variance if E[Z] = 0. Of course, the analytic 

solution (unbiased, zero variance) for 9 is the optimal solution to (I), but 8 

must be considered intractable if we are simulating. Thus, we seek instead a 

solution that yields an objective function value smaller than the original 

experiment does. Since constraint (C.0) fixes (a, 0), the decision variables are 

F , g , R* and h , which can be changed by the experimenter. 

Nelson and Schmeiser (1986a) define six mutually exclusive classes of 

transformations that exhaust the "decisions" that might reduce variance. A 

transformation maps a simulation experiment into another nonequivalent 

experiment by redefining F ,  g ,  R, and/or h .  A VRT is formed by composing 

members of these classes of transformations. See Nelson and Schmeiser 

(1986b) for the decomposition of seven well-known VRTs. 

We now review the six classes of elemental transfom~ations. A 

transformation is denoted by T ,  and if a transformation is defined as changing 

the definition of F ,  g, R, or h alone, then the remaining components are 

unchanged. Each class of transformations redefines scalar random variables, 

where the " i j"  subscript simply denotes scalar elements of matrices in the usual 

manner. Equality of distributions or functions is always on all but a set of 
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390 NELSON 

probability zero, and when distributions or functions are not equal it is on a set 

of positive probability. In addition, we are indifferent to one-to-one 

transformations of the outputs and equivalent essential sets; e.g. we treat Yij and 

lnYij as equivalent. A prime (') added to any symbol denotes a modified random 

variable, function or distribution, respectively. 

1. Distribution Replacement (DR): T E DR if and only if T :  F ( x )  + F'(x)  such 
that F' + F ,  but 

for all sets A and B with positive probability, and all ij. Transformations in 
DR redefine marginal distributions of elements of the input without altering 
statistical dependencies. 

2. Dependence Induction (DI): T E DI if and only if T :  F ( x )  -+ F' (x )  such that 
F ' +  F ,  but Prl(Xij E A )  = h ( X ,  E A )  for all sets A with positive probability, and 
all ij. Transformations in ~f redefine statistical dependencies among elements 
of the input without altering the marginal distributions. 

3. Equivalent Allocation (EA): T E EA if and only if T :  g ( X )  -+ g ' ( X )  such that 
g:+ g .  Transformations in EA redefine the function from input to output 
without altering the allocation of sampling effort. 

4. Sample Allocation (SA): T E SA if and only if T :  R. -+ R',  such that 
R', + R , .  Transformations in SA redefine the allocation of sampling effort 
without altering the function from input to output. 

5. Equivalent Information (EI): T E EI if and only if T: h  ( Y J  -+ h ' (Y l )  such 
that h' + h ,  but h and h' have identical arguments, Y l  c Y .  Transformations in 
EI redefine the function from output to statistic without altering the argument of 
the function. 

6. Auxiliary Information (AI): T E A1 if and only if T :  h ( Y , )  -+ h(Y; )  such that 
Y 1  and y 2  are different subsets of Y .  Transformations in A1 redefine the 
argument of the statistic without altering the function, h .  

Nelson and Schmeiser (1986a) prove that these classes of transformations 

are mutually exclusive, exhaustive, and nontrivial in the sense that each class 

contains transformations that reduce variance. In the present setting, they 

exhaust the potential solutions to (I), since under our formulation a solution 

corresponds to redefinition (transformation) of F , g  , R. andlor h  . 

There are infinitely many ways to transform a simulation experiment, but 

only a subset of them will reduce variance in any particular experiment. Well- 

known transformations that reduce variance in some experiments may be 
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A PERSPECTIVE ON VARIANCE REDUCTION 391 

ineffective or even increase variance in others. And worse yet, there is no 

theory to guide a search through the feasible transformations, because there is 

no general way to evaluate all potential VRTs except performing the 

experiment and estimating the variance. How, then, are VRTs ever applied? 

In practice, the experimenter depends on prior knowledge to select an 

appropriate VRT. Prior knowledge is any knowledge beyond what is necessary 

to construct the simulation experiment. There are several types of relevant prior 

knowledge: theoretical results (e.g., the Lehmann and Scheffe' theorem; see 

EQUIVALENT INFORMATION below), experimenter knowledge (e.g., the 

sign of the correlation between two output random variables), definition of the 

model itself (e.g., mean of an input), or experimental results (e.g., pilot runs). 

From a practical standpoint, the available prior knowledge is another constraint 

on (I), even though we do not include it explicitly in the problem formulation 

since at present we have no taxonomy of prior knowledge. 

2.2 Design --- and Analysis 

Given (a, e), we define a simulation experiment by specifying F ,  g, R. 

and h ,  which in turn define X, Y and Z.  We will call F ,  g and R, the design of 

the experiment, since they define the outputs that will be generated, and h the 

analysis. Clearly these two aspects of the experiment are intimately related, 

since the desired analysis determines the appropriate design, and the feasible 

designs determine the appropriate analysis. 

In all but trivial cases we cannot solve (1) as stated. In the following 

sections we examine further constrained versions of (I), beginning with the 

design fixed and only the analysis within our control, then progressively 

relaxing the constraints on the design and investigating other options. Seldom 

will an optimal solution to (1) be found even with additional constraints, but 

we will find improved solutions in the sense of reduced MSE. At the beginning 

of sections 3 through 8 we display the constraint that, along with (C.O), is 

enforced for the variance reduction problem (1). 

Throughout the remainder of the paper, M,  and Mi, will denote the j rh 

column (sequence) and the i j th element of a matrix M ,  respectively. Random 

variables are denoted by capital Roman letters, realizations by lower case 
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392 NELSON 

Roman letters, and other constants by lower case Greek letters. Finally, we use 

the term crude experiment to mean the original experiment prior to application 

of elemental transformations. Thus, "crude" is a relative, rather than absolute, 

term that depends on the experimenter. 

Although the natural order in which to present the definition of 

simulation experiments is first the design (inputs, outputs, sampling plan) and 

then the analysis (statistics), to discuss variance reduction it is more natural to 

begin with the analysis. There are two reasons: First, variance reduction in the 

context of the analysis alone is that part of mathematical statistics dealing with 

optimality of estimators, and thus is well established. Secondly, if we know 

what conditions facilitate minimum variance estimation in the analysis, then we 

can use designs that produce those conditions, since simulation experiments 

often permit more flexibility in specifying the design than do classical sampling 

problems. 

3.1 Variance Reduction Strategy 
--.- 

For the moment, we assume that we have a single output sequence 

Y1 = [ Y l l ,  Y2,, . . . , Y,,) with unknown probability distribution, p(.18), which 
depends on e (and possibly other parameters not currently of interest). The (Y,,)  

need not be independent or even identically distributed, although frequently 

they are. With F ,  g, R. and a given output sequence Y l  fixed as additional 

constraints, the solution to (1) is a transformation in EI that yields a statistic 

h'(Y,) with minimum M S E  for estimating e. 

3.2 Results 

To make determination of the best estimator possible, the constraint 

F ,  g , R. and Y , frred, and E[hl(Y)]=e (c.l.1) 

often replaces (C.l); i.e., h' is required to be unbiased. Under this constraint, 
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A PERSPECTIVE ON VARIANCE REDUCTION 393 

there may exist a uniformly minimum variance unbiased estimator (UMVUE) 

for all 0. When UMVUEs exist they are based on a sufficient statistic. For 

generality and for later discussion, we consider estimating any function of 8,  

say q (8 ) ,  where q(.)  may be the identity. The key theorem is: 

Theorem (Lehmann and Scheff6). If h ( Y l )  is a complete, sufficient statistic for 
0, and s ( Y l )  is unbiased for q(8) ,  then h f ( Y 1 )  = E[s (Y l )  l h(Y, )]  is a UMVUE of 
q(8).  If Vare[h'(Yl)] < m for all 0,  then h' is the unique UMVUE for q(0).  (See 
Bickel and Doksum, 1977, page 122, for a proof.) 

With the constraints (C.0) and (C.1.1), h' is the solution to (1). 

Unfortunately, the theorem is frequently of no practical value for finding h'. 

Also, h' and even s  may not exist. For a discussion of minimum MSE 

estimators, see Kendall and Stuart (1979, pages 21-22). 

Nelson and Schmeiser (1983) refer to VRTs increasing and/or making 

better use of the information available to estimate 8.  Although we do not need 

a formal definition of statistical information here, it will be useful to consider 

an example based on the well-known Fisher information measure (Rao, 1973). 

Under certain regularity conditions, the minimum attainable variance for 

estimating q ( 0 )  by any unbiased estimator s ( Y l )  of q (8 )  is given by the Cram&- 

Rao lower bound [dq (u )/du ]2 / l l ( u )  evaluated at u  = 8 ,  where 

I,@) is called the Fisher information measure. The bound shows that the 

minimum variance of any estimator of q (8 )  is completely determined by the 

distribution of Y , ,  p ( .  lo), and the function of 8  we estimate (in the present 

context q(0)  = 8,  so dq(8)ldy = 1). The Fisher measure is typical of many 

concepts of statistical information. Thus, if we have a statistic whose variance 

achieves the lower bound, to achieve further reductions we must transform the 

experiment in a way that increases 11(8), and/or find an alternative 

representation of 0. Since the information depends on the distribution of Y , ,  one 

way to increase the information is to change this distribution. 

For example, consider the variance of the sample mean of a covariance 

stationary sequence Y ,. 
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394  NELSON 

where Cr = Cov[Yil ,  Y, ,] when 1 i - j I = k > 0 and o2 = var[Yi  ,I. When the (Yi ,) are 

independent, (2) reduces to the well-known expression &I. We consider only 

covariance stationary sequences because all results cited in this paper are based 

on (at least) that assumption. From (2) we see that the variance of a sample 

mean depends on the common variance of the scalar random variables, the 

covariance of pairs, and the number of observations. Changing these 

components affects the information about e, and thus the variance of estimators 

of 0. There are variance reduction strategies, discussed in later sections, that 

concentrate on each of these components, and ones that use alternative 

representations of 8. 

Although the asymptotic (large sample) properties of estimators have 

been widely studied, we do not discuss them here. Variance reduction is most 

relevant when obtaining even a small sample is costly. The reader is referred to 

Bickel and Doksum (1977), KendaIl and Stuart (1979), Rao (1973) and 

references therein. However, if unbiasedness is not required, and if we cannot 

derive the variance or MSE directly, then the variance of the asymptotic 

distribution of candidate estimators can be used as a basis for comparison, and 

an asymptotically minimum variance estimator is usually preferred. 

3.3 Examples 

Consider the following example: Let ( Y , , ,  Y211 - N ( 0 ,  0, 02, 02, p), a 

bivariate normal distribution with common marginal mean and variance, and 

correlation coefficient p. Then the Cram&-Rao lower bound on the variance of 

any estimator of e based on ( Y , , ,  Y,,) is (1 + p)a212. Note that the bound is 

lowered by decreasing d and p, which may be possible in simulation 

experiments. If p = 0 then I ,@) = 6' + o-', demonstrating that independent 

sources of information increase the total information additively. To affect the 

numerator of the lower bound we have to express 0 as a function of another 

parameter (see AUXILIARY INFORMATION below). 

When the output is a sequence of independently and identically 

distributed (i.i.d.) random variables, the sample mean is frequently the UMVUE 

of its expectation. When the outputs are not independent, knowledge of the 

joint distribution can lead to more efficient (smaller variance) estimators. Halfin 

(1982) derived optimal linear unbiased estimators for the mean of a stationary 
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A PERSPECTIVE ON VARIANCE REDUCTION 395 

stochastic process whose covariance function is a finite sum of decaying 

exponentials. For example, the covariance function of the queue length process 

of an M M s I c  queue has this form. Of course, the covariance function of a 

simulation output sequence is seldom known, but Halfin noted (reassuringly) 

that the variance of the optimal estimator and the sample mean are the same 

asymptotically. His results illustrate the value of knowledge of the covariance 

structure of the outputs, and even knowledge less complete than Halfin assumes 

is often useful. 

Bickel and Doksum (1977), Kendall and Stuart (1979), and Rao (1973) 

contain examples of UMVUEs and minimum MSE statistics for various 

estimation problems, a topic too large for consideration here. Many variance 

reduction strategies available for simulation experiments depend on augmenting 

Y 1  with additional outputs (auxiliary information), or redefining F ,  g and R , ,  

and then searching for a solution to (1). These strategies are addressed in 

sections 4 through 8. 

4. AUXILIARY INFORMATION (AI) -- - -- - -- -. .- . -- - -- - 

Auxiliary information (other simulation outputs not originally included in 

the analysis) has the potential to increase the available information about 0, 

making possible estimators with smaller variance than the crude estimator. 

Rarely can we simply augment or replace the output sequence Y,  in the same 
function h and achieve a variance reduction, but it is possible. For instance, if 

we estimate 8 by the sample mean of an i.i.d. sequence of random variables, Y ,  

with Var[Yil] = o12, and there is another i.i.d. output sequence Y, with 

Var[Y,d = (r22 < o12, then replacing Y ,  with the sequence Y ,  (of at least the same 

length) reduces variance. It is much more common to augment Y,  with 

additional outputs Y,, and to employ a different statistic h' to make use of the 

auxiliary information; i.e., using transformations from A1 and equivalent 

information together. Thus, we relax constraint (C.2), replace it with (C.2.1) 

below, and investigate compositions of A1 and EI. 

F ,  g and R* frred ((2.2.1) 
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396 NELSON 

After augmenting the original sequence with additional outputs, we again 

face the problem of selecting the best estimator. However, three broad (but not 

exhaustive) strategies are frequently employed to make use of auxiliary 

information. We will examine them individually because they indicate what 

kinds of auxiliary information and prior knowledge are useful for solving (1) by 

transformations in A1 and El. The three strategies are control, conditional 

expectation, and indirect strategies. 

4.1 Control Strategies 

Control estimators are statistics that attempt to correct the value of a 

crude estimator of e using the discrepancy between the value of a second 

estimator and its known expectation. We characterize one class of control 

estimators as follows: 

Suppose we have estimators h ( Y 1 ) ,  s (Y2) ,  and h'(h,  s )  with the following 

properties: 

(CV.1) E [ h ]  = 0, E[s] = a and a is known 

(CV.4) h '(h , a) = h 

(CV.5) I h'(h , q) - h I is nondecreasing in 111 - a l 

Property (CV.1) establishes that h and s are unbiased estimators of their 

respective estimands 13 and a; h  is the crude estimator, e is the parameter of 

interest and a is assumed known. Property (CV.2) establishes that h' is a 

useful estimator of 8 (we leave the = vague, but usually interpret it to mean that 

h' is at least a consistent estimator of 8). We make use of (CV.3) below. 

Property (CV.4) implies that no correction occurs if s  is equal to its 

expectation, and (CV.5) establishes that the correction is greater as the 

discrepancy between s  and a increases. We call estimators with properties 

(CV.1) through (CV.5) control variate 'estimators (CV), and we will call s  the 
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A PERSPECTIVE ON VARIANCE REDUCTION 397 

control variate. When h and s are functions of outputs from the same simulated 

system the VRT is called internal CV, and when s is a function of outputs 

from a similar simulated system the technique is called external CV. 

The most widely used form of control variate estimator is the univariate 

linear or regression CV, h f ( h ,  s )  = h - h(s - a), although there are other 

potentially useful forms (Nelson, 1987). One attractive feature of the linear CV 

is that it readily generalizes to a regression on multiple control variates s,(Y,+,), 

k = 1 , 2  ,..., q ,  

and also generalizes to estimation of multivariate 0. 

4.1.1 Results for Control Strategies 
. - 

Using the first three terms in a Taylor series expansion, and invoking 

(CV.3), Nelson (1987) showed that to the order of the approximation the 

variance of h' - the general CV characterized by (CV.l) through (CV.5) - 

will be less than the variance of h if 

where the partial derivatives are evaluated at (0 ,  a). Thus, for the CV to be 

effective the covariance between h and s must be large enough to counteract 

the variance introduced by incorporating s into the estimator h'. Auxiliary 

outputs that are not correlated with h are useless in this strategy. However, in 

simulation experiments we frequently have the capability to induce correlation 

when it is not inherent (see DEPENDENCE INDUCTION below). 

For any constant h the univariate linear CV is unbiased. The optimal 

choice of h that minimizes the variance of h' is X* = Cov[h ,  s]/Var[s]; a similar 

result holds for the multivariate linear control. Unfortunately, estimating h* 

from Y ,  and y2 often causes h' to be biased. 

Consider the special case when h and s k ,  k = 1,2, ...,q, are sample means of 

i.i.d. vectors Y, = (Y,,, Y,,, . . . , Y,,,,,), i = 1, 2 ,..., 1 .  Further, suppose that each 
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398 NELSON 

vector has a q+l-variate normal distribution with mean p = (0, a,, . . . , a,) and 

variance-covariance matrix c, where 0 and C are unknown but the (a,)  are 

known. This assumption might be satisfied if Y, results from averaging outputs 

in a single simulation run (independent replication). Under these assumptions 

the linear control is the conditional expectation (regression) of Y; ,  on Yi\ Yi,, 

and the problem of estimating 0 and ( A k )  can be viewed from the perspective of 

classical regression theory (Lavenberg and Welch, 1981). The key results are: 

1. The CV estimator of 0 is unbiased. 

2. A valid confidence interval for 0 can be constructed. 

3. The ratio of the variance of the control variate estimator h' to the variance of 
h is (1 -RW2)(r  - 2)1(r - q - 2) ,  where R , ~  is the square of the multiple 
correlation coefficient of Y i ,  and Yi\ Y,  ,. 

The last result shows that the decision to use more control variates 

involves a trade-off: Although 1 - R , ~  is nonincreasing as control variates are 

added, the loss ratio (I - 2)1(r - q - 2) is monotone increasing in q .  Also, the 

variance reduction when the optimal (h,) are known, which is 1 - Rm2, cannot 

be achieved if we have to estimate the (A,) .  Corresponding results for 

estimation of multivariate 0 have been developed by Rubinstein and Markus 

(1985), Venkatraman (1983), and Venkatraman and Wilson (1986). Nozari, 

Arnold and Pegden (1984a) and Porta Nova and Wilson (1986) give similar 

results when the elements of 0 are the parameters of a general linear model. 

4.1.2 Examples - of Control Strategies 

There is a tremendous literature on control variate estimators. For a 

summary of work through 1974 see Kleijnen (1974). An interesting application 

in computer performance modeling appears in Lavenberg, Moeller and Welch 

(1982). The work of Wilson and Pritsker (1984ab) is particularly relevant in 

light of the results cited above: In the simulation of a network of q queues, 

Wilson and Pritsker used standardized sums of independent and identically 

distributed service time random variables at each queue as internal CVs. The 

standardization was done in such a way that the asymptotic distribution of the q 

control variates is q-variate normal with zero mean vector and variance- 

covariance matrix the q x q identity matrix. Thus, asymptotically, the 
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A PERSPECTIVE ON VARIANCE REDUCTION 399 

assumptions stated above are satisfied for these CVs. Wilson and Pritsker 

(1984b) summarizes a thorough experimental evaluation for four versions of a 

classical machine-repair system. They reported variance reductions in the range 

of 20% to 90% for estimators of machine utilization, repairman utilization, and 

expected repair time. 

4.2 Poststratifying, A Different Control Strategy 
-. - - - - - -- -- - - - -- - - -- - 

An example of another control, but not control variate, VRT is 

poststratifying the sample (PSTRAT). PSTRAT is often viewed as a special 

case of stratified sampling since both VRTs have the same asymptotic variance, 

but our taxonomy shows how they are different. Like CV, PSTRAT uses 

auxiliary information to correct a crude estimator. Unlike CV, PSTRAT 

corrects for disproportionate sampling rather than for location. Stratified 

sampling, a sample allocation strategy, is discussed in the next section. 

One source of variance in estimating 8 is that the empirical distribution of 

the (Y , , )  will almost surely not match the theoretical distribution. Of course the 

distribution of (Yi , )  is unknown in general, so there is no way to measure how 

significant the deviation is. However, consider the following well-known 

relationship (Bickel and Doksum, 1977): 

where P is the distribution of y , ,  some auxiliary output sequence. If P is 

known, then one strategy is to correct for disproportionate sampling from P ,  

indirectly correcting for disproportionate sampling of (Y;,]. 

For example, suppose we can pair outputs (Y,,, Y,,) so that different pairs 

are independent, and we can divide the range of Y,, into n nonoverlapping 

intervals (strata), L,, j = I&., n .  Then a special case of (3) is 

Let I, be the number of (I; , )  falling in stratum j (Z, = I ) ,  and let 

pi = pr(Yi2 E L,) which is assumed known and constant over all i .  Then if YiI1 is 

the i" observation of Y 1  when Yi2 E L, , the PSTRAT estimator is 
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400 NELSON 

Conditional on I, > 0, the PSTRAT estimator is unbiased for 9 if Y i l  is. 

Whereas a sample mean gives each observation weight 111, the PSTRAT 

estimator gives weight pill,. PSTRAT checks the empirical distribution of { Y i d  

over the strata and corrects for discrepancies. If the observations distribute 

themselves proportionately (I, = pjl) then ~ , I I ,  = 111. If a stratum is over or 

underrepresented probabilistically, then pj/1, is less or greater than 111, 

respectively. The general relationship (3) is used to break up the range of Y, ,  

and thus exploit the (hopefully strong) relationship between Yil  and Yiz .  The 

conditional expression (3) is exploited in several other variance reduction 

strategies. 

4.2.1 Results for Po2tgatification 

To terms of 0(1-~) the variance of the PSTRAT estimator is (Cochran, 

1977) 

The first term is the same as the variance of proportional stratified sampling 

(see below), so results that give the optimal strata boundaries Lj for stratified 

sampling can be used to determine nearly optimal boundaries for PSTRAT. 

Once we decide to use PSTRAT to solve the variance reduction problem (I), 

the only decisions that can be made to enhance its effectiveness are the 

selection of the stratification variable and the selection of the strata boundaries. 

Kleijnen (1974) derives confidence interval procedures for the PSTRAT 

estimator, and discusses procedures for dealing with empty (I, = 0) strata. 

4.2.2 Examples of Poststratification - - - - - -. - - .. - - - . . - . . -- - 

Despite its simplicity, few examples of PSTRAT have appeared in the 

simulation literature. See Wilson and Pritsker (1984ab), who used their 

standardized control variates as poststratification variables as well. 

4.3 Conditional . - - . - .- - Expectation - Strategy 
- - - - - - - - 

Conditional expectation estimators are based on the following well-known 

result 
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A PERSPECTIVE ON VARIANCE REDUCTION 401 

which, based on (3), suggests that if we can find an output sequence (Y,,) for 

which the conditional expectation E[Y,, IY,, = y ,d  can be calculated for all y,,, 

then we might want to replace ( y , , )  by ( E I Y i l l Y j ~ ]  in h ;  this is the conditional 

expectation (CE) estimator h'. 

Dramatic variance reductions from CE have been reported in Monte 

Carlo estimation of location and dispersion; Simon (1976) gives a survey. 

However, these applications are characterized by the existence of an 

independent sequence (YI2) on which to condition. In simulation experiments 

the (Yjz) are usually dependent outputs from a stochastic process, implying that 

(4) alone is not enough to ensure a variance reduction. 

4.3.1 Results for Conditional Expectation Strategies - - . - . - - -- - - - - -. - - - - - - . - - -. 

If h is a sample mean the CE estimator h' that averages (E[Y,, IY,,]) is 

unbiased for (3 if Y,, is unbiased. If both {Y,,) and (E[Y,, IY,,]) are sequences of 

i.i.d. random variables of the same length, then the CE estimator will have no 

larger variance than the sample mean of {Y,,) (since from (4) each summand 

has no larger variance). 

Unfortunately, when the sequences are not independent there are no 

readily verifiable conditions that guarantee the CE estimator will have smaller 

variance. Suppose we have covariance stationary sequences (Yi l )  i=l, 2, ..., 1, and 

(EIYil  I Y,2]) j=1, 2, ..., 12. Then we know that Var(EIYil l Y,d)  5 Var[Yi,l for any 

combination of i and j .  The expression (2) for the variance of a sample mean 

suggests that it would be useful to have a condition that ensures 

~ k C ~ ~ { E I Y i l  I Y,d, EIYil  l Y,+k,z]) < Z,Cov[Y,,, Y,,,,,] as well. However, CE is often 

used when I, w I,, so that one may expect a variance reduction based only on 

the relative number of observations. 

4.3.2 -. -. Examples - - - - - of Conditional Expectation Strategies - - -- - - - - - .. -- -- -. - -- 

In simulation experiments on models of dynamic systems there have been 

successful applications of CE that computed expectations of rare events 

conditional on the system state (Y,, in our development) at particular points in 

time. Carter and Ignall (1975) estimated the expected response time of fire 

fighting equipment to serious fires by conditioning on the disposition of 
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4 0 2  NELSON 

equipment at randomly selected times. Lavenberg and Welch (1979) estimated 

the expected delay for jobs at various devices in a multiprogrammed computer 

system in a similar manner. That these applications yielded variance reductions 

depended more on the increased sample size they produced, and on the 

intuition of the researchers, than on (4). 

On the other hand, Ross and Schechner (1985) were able to prove that 

their CE strategy is effective in certain cases. Looking at both discrete and 

continuous time Markov chains, they estimated parameters related to the time 

until the process enters a fixed subset of states, y ~ .  At each transition of the 

process, they computed the conditional probability that the next transition 

would take the process into y ~ ,  and based their estimators on these "observed 

hazards." An interesting side note is that the new estimator of convolutions of 

random variables reported by Ross and Schechner (1985, p. 233) is suggested 

by an earlier conditioning argument used in the simulation of stochastic 

networks (Burt and Garman, 1971). In Burt and Garman's work the time to 

traverse a path through the network is a convolution. Stochastic network 

simulation is an application in which CE strategies have been extremely 

effective (see for instance Sigal, Pritsker and Solberg, 1980, Fishman 1985ab). 

4.4 - - . Indirect . . . - . Stratqjes 

Suppose that we can write e = q ( y )  and there is an output sequence 

Y 2  = ( Y I 2 ,  . . . , Y12) such that Y 2  - p(Y21y); the parameter y could be multivariate, 
but we assume it is a scalar here. Then it may better to estimate y directly by a 

statistic, say t ( ~ 3 ,  and estimate 13 indirectly by h ( Y d  = q [t ( Y d ] .  We call such 

strategies indirect estimators (INDIR). 

4.4.1 Results - for Indirect .. . . . - . Strategies 

From the Cramer-Rao lower bound (section 3.2), it appears that INDIR 

will be effective if the information about y is greater than the information about 

8, and/or [dq(u)ldu12 evaluated at u = y is less than one. Unfortunately it is 

difficult to say anything more definitive. INDIR strategies are problem, specific 

because of the need to express e as q ( y ) ,  so it is difficult to predict whether they 

will be effective in new situations. Also, there is no general way to select the 
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A PERSPECTIVE ON VARIANCE REDUCTION 403 

optimal q(y)  from among several alternative representations of 8. Finally, 

INDIR estimators may be biased unless q(y)  is linear in y. However, if effective 

functional relationships can be found for very broad classes of models (all 

queueing networks, for example), then INDIR could be a powerful strategy. 

4.4.2 Examples of Indirect Strategies 
- -- - - -- - - - - - . -. 

Because simulation experiments are performed on models of real or 

conceptual systems, functional relationships among parameters of interest are 

sometimes known from physical properties of the system. Law (1975) and 

Carson and Law (1977, 1980) exploited functional relationships among the 

following steady-state parameters of GI/G/s queues: expected customer sojourn 

time in the system, expected number of customers in the queue, expected 

number of customers in the system, and the expected amount of work in the 

system. They considered indirect estimators of these quantities as functions of a 

direct estimator of y, the expected customer delay in the queue, and showed 

analytically that the asymptotic variance of the INDIRs is smaller than the 

corresponding variance of the direct estimator. Their results were derived using 

regenerative analysis (Bratley, Fox and Schrage, 1983), and suggest that, in 

queueing simulation, statistics based on time spent in the system may have 

smaller variance than statistics based on the number in the system. However, 

when Cooper (1981, pages 293-295) compared two estimators of server 

utilization in an M/G/1/1 queue, one based on number of customers lost and the 

other based on total busy time, he found that the variance depends on the ratio 

of the arrival rate to the service rate, and that neither estimator is uniformly 

superior over all values of this ratio. Thus, the results for GI/G/s queues do not 

generalize to all types of queues. 

Similarly, Minh and Sorli (1983) expressed the expected customer delay 

in queue (y) for the GI/G/l queue as a function of the expected duration of 

server idle periods (q), and suggested estimating q directly and y indirectly. 

Again using regenerative analysis, they proved that for the M/G/l queue the 

asymptotic variance of the INDIR is smaller than the corresponding variance of 

the direct estimator of y, and that the variance decreases further as the traffic 

intensity approaches one (the performance of estimators in queueing simulation 

often deteriorates in heavy traffic). This suggests combining the Minh and Sorli 

INDIR for y with the Carson and Law INDIRs for the other quantities. 
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NELSON 

5. SAMPLE ALLOCATION (SA) - 

F and g fvred (c.3) 

VRTs whose composition includes transformations in SA depend on a 

simple principle: For any reasonable estimator, the variance of the estimator 

(and the bias if it is consistent) decreases as the number of observations on 

which is it based increases. Mathematically, if 2, is a statistic based on a 

sequence Y ,  of length I ,  then Var[ZIz,.] < var[z,] if I' > I .  If 2, is a sample mean 

and Y ,  consists of i.i.d. random variables with common variance 02, then we 

have the well-known result Var[Z,] = 02/1. More generally (2) gives the variance 

as a function of I .  The most basic variance reduction strategy is to increase the 

length of the output sequence, but this involves additional computer effort and 

the rate of reduction is slow (O(I-I)) .  However, when the parameter of interest 

is a function of several parameters, distributing a fixed amount of sampling 

effort intelligently among several output sequences can lead to substantial 

variance reduction. 

5.1 Variance Reduction Strategy 

Consider a statistic h that is a function of n output sequences, 

Y,, j = 1.2, ..., n .  Let the length of the jrh sequence be I,. Then the variance of 

= h ( Y , ,  . . . , Y,,) is a function of the [I,). As a particular example, suppose 

that the Y, are individually composed of i.i.d. random variables with variances 

oj2, the sequences are mutually independent, and h is a linear combination of 

the sample means I,-'ZY~,, j = 1,2 ,..., n .  Then 

where the [c,) are constants depending on the linear combination. When the 

elements of each sequence Y, are not independent the same result applies with 

o j2 /~ ,  replaced by (2).  If the sequences themselves are dependent, the expression 

is more complicated. 

As a general strategy, we want to allocate sampling effort to sequences 

that contribute the most to the variance of the estimator. Which sequences 

contribute the most depends not only on the distribution of the outputs, but also 
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A PERSPECTIVE ON VARIANCE REDUCTION 405 

on the estimator used. In (5 ) ,  (ol)  and {c,) quantify the respective 

contributions. 

One sample allocation strategy is to again use (3') to express 0 as a 

function of conditional expectations. However, instead of the (1,) being random 

outputs as in PSTRAT, they will be fixed as part of the sampling plan, R.. The 

problem then becomes estimating E[Y,, I Yi2 E Ll] for j = 1, 2, ..., n individually, 

and allocating the I available observations of (Y,,, Y,,) in a way that minimizes 

the variance of the combined estimator of 0. This VRT is called stratified 

sampling (STRAT). 

A strategy related to STRAT is splitting (SPLT), which is particularly 

useful when Y,, and Y , ,  are realized in sequence; i.e. a realization of Y,, is 

generated, then a realization of Yi, follows, for i = 1, 2, .... SPLT allocates 

sampling effort to estimate E[Y,, IY,, E L,,] for some particular (or in general 

several) j*. However, rather than directly allocating I,, observations to the 

sequence (Y,,), that portion of the total sample I remains unspecified. Instead, 

each time the event [Y,, E Llr] occurs naturally, m observations of ( Y , , )  - 

conditional on the current Yi2 - are generated. Thus, SPLT is a more dynamic 

version of STRAT. This complicated sampling plan is represented in i?, by 
only allowing realizations of Y,, to occur in multiples of m when [Y,, E L~.]. 

SPLT has been called a special case of importance sampling, but we define 

importance sampling in a way that separates the two (see DISTRIBUTION 

REPLACEMENT below). 

Given the strata, (Lj], the optimal allocation for STRAT is (Cochran, 

1977) 

where o12 = Var[Yil IY,, E L, ] .  Notice that the optimal allocation depends on the 

variance within the stratum (oj2) and the likelihood of an observation coming 

from the stratum ( P j )  Of course, (sj2 is seldom known, so proportional 

allocation (I, =p,I), which only takes into account the likelihood, is often used. 

D
ow

nl
oa

de
d 

by
 [

N
or

th
w

es
te

rn
 U

ni
ve

rs
ity

] 
at

 1
9:

09
 1

1 
A

ug
us

t 2
01

7 



406 NELSON 

The variance under proportional allocation is the same as the first term in the 

variance of PSTRAT, and is smaller than the variance of a sample mean based 

on simple random sampling (Rubinstein, 1981). Kahn (1956) showed that the 

optimal choice of rn for SPLT also depends on the variance within stratum 

Lj. . 

The preceding results assumed the strata (L, J were given. However, 

intelligent selection of the strata is part of the solution to the variance reduction 

problem (1) via STRAT. In other words, we must also determine the way the 

sequences in y will be partitioned. The optimal strata boundaries under optimal 

and proportional allocation schemes are known when the stratification variable 

is Yi, itself (Dalenius, 1950, Sethi, 1963). When a secondary stratification 

variable Y,, is used - usually the only feasible option in simulation 

experiments - it is necessary to assume a functional relationship between yil 

and Yi2 to derive optimal boundaries (Dalenius and Gurney, 1951). The optimal 

boundaries depend not only on the variance within the strata, but also the 

variation between them. 

5.3 Examples 
.- - - -- - - 

The survey sampling literature abounds with examples of STRAT, often 

combined with other sampling techniques. A good general reference is Cochran 

(1977). Unfortunately, as Kleijnen (1974) points out, even when a stratification 

variable can be identified it is difficult to control the sample allocation in 

dynamic stochastic simulation. Good candidates for stratification variables in 

dynamic simulation are initial conditions that are selected randomly at the 

beginning of independent simulation replications. Bratley, Fox and Schrage 

(1983) give an example in the simulation of a bank where the expected number 

of customers served each day (total arrivals minus those that balk) is of 

interest. The number of tellers at work each day is a random variable. By 

conditioning on the number tellers at work, they allocate (rather than sample) 

the days when 1, 2 or 3 tellers are available in a way that reduces variance. 

Kioussis and Miller (1983) use SPLT to estimate the probability of 

system failure, a rare event, in a fault tolerant computer system. They condition 

on the number of active faults (Yi2 in our development) to replicate situations 

when system failure is likely. See also Hopmans and Kleijnen (1979). 

D
ow

nl
oa

de
d 

by
 [

N
or

th
w

es
te

rn
 U

ni
ve

rs
ity

] 
at

 1
9:

09
 1

1 
A

ug
us

t 2
01

7 



A PERSPECTIVE ON VARIANCE REDUCTION 

6. EQUIVALENT ALLOCATION (EA) - -  - - - - - - A -  - - - - .- 

F , Rt b e d  (c.4) 

The function g defines how inputs sampled from a static probability 

distribution F are transformed into outputs that describe a dynamic stochastic 

process. The logic of the system of interest is embodied in g .  VRTs are 

infrequently composed of transformations in EA because changing g can mean 

simulating a fundamentally different stochastic process. However, if g itself can 

be modeled, then the effect of such a radical change might be known in 

advance. Transformations in EA, by redefining g, can also provide additional 

outputs necessary for strategies employing auxiliary information; we discuss 

this idea later. 

6.1 Variance. Reduction Strategies 

A fundamental property of statistical information is that information 

about an unknown parameter, 8, contained in a random variable, x, may be 

decreased, but not increased, by a function of the random variable, I' = g(x), 

provided the function does not depend on 8. Of course, the information in I' 

may be more useful in the sense that we know how to estimate 8 from Y but 

not from X. With F fixed, solving the variance reduction problem (1) is 

facilitated by a function g' that preserves all of the information about 8 in X 

and still permits estimation of 8 from y. The function g is usually implicit 

(represented by computer code), complicating the search for g'. 

Since g represents the logic of the system of interest, one approach is to 

model g itself as a stochastic process. A stochastic process with sufficient 

generality to model a wide range of simulation experiments, yet having enough 

structure to permit generic results to be derived and applied, is needed. One 

promising candidate is the generalized semi-Markov process (GSMP). A 

complete treatment of GSMPs is beyond the scope of this paper (see for 

instance Glynn, 1983 and Whitt, 1980, and references therein), but we briefly 

discuss their structure. 

A GSMP models the dynamic changes in a discrete-event simulation by 

transitions from one of a countable set of states to another. A state transition is 
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408 NELSON 

caused by one of a countable set of events. An event is triggered by the 

expiration of its clock, and there is one clock associated with each pending 

event. Critical specifications for a GSMP are the state transition probabilities 

and the probability distributions of the new clock settings after the occurrence 

of an event. Clearly this characterization describes many discrete-event 

simulations, but it also has sufficient structure to permit useful results to be 

derived. The reader is encouraged to see Whitt (1980) for conditions ensuring 

the existence of invariant (steady-state) probability distributions for GSMPs. 

Several researchers are using the GSMP framework to study simulation output 

analysis, and significant results for variance reduction should be forthcoming. 

One EA strategy suggested by the GSMP framework is to simulate an 

embedded stochastic process made obvious by the GSMP representation, rather 

than the original process. 

6.2 Examples 

We consider a simple example of EA alone, which is estimating the 

integral 

where 0 5 g(x) 5 1 in the region of integration. In "hit-or-miss" Monte Carlo, we 

sample inputs (x,,, x2,, . . . , x,,) - i.i.d. U(0,l) for j = 1, 2, where U(0,l) denotes 

the uniform distribution on the interval @,I), then estimate 9 by 

where 1, is an indicator such that l,(Xi,, Xid = 1 if Xi, 2 g(X,,), and 0 otherwise. 

The summation counts the number of "hits", where a hit occurs if a point 

generated from a uniform distribution on the unit square is under the curve 

g(x). The ratio of hits to trials estimates the fraction of the unit square under 

g ( x ) ,  its area in this example, and Var[z] = 0(1-9)il. An example of EA is 

replacing the output function 1, with g(Xil), which always reduces Var[Z]. While 

the new output function is derived from knowledge of the conditional 

expectation, the transformation is EA since additional information is created 

that could not have been obtained from the original outputs. 
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A PERSPECTIVE ON VARIANCE REDUCTION 409 

For an example of simulating an embedded process, see Fox and Glynn 

(1986). We encounter the situation when EA is employed to provide auxiliary 

information in section 8 below. 

7. DEPE-ND-EECE INDUCTION (DI) ----- -- - - . - - - 

marginals of F &xed (c.3 

We have seen that functional and statistical relationships between outputs 

and parameters of interest can be exploited to reduce variance. For example, 

linear correlation of sufficient magnitude facilitates control strategies. Also, 

expressions such as (2) show that dependence between outputs is a component 

of the statistic's variance. Transformations in DI, by redefining the dependence 

between inputs, can change both the marginal distributions and dependence 

structure of the outputs. However, variance reduction strategies employing DI 

usually induce dependence between outputs without changing the marginal 

distributions of the outputs, either. DI is a well-known variance reduction 

strategy for Monte Carlo estimation, and is the most widely used strategy in 

simulation. Research has concentrated on three areas: 1) strategies for inducing 

the desired dependence among inputs, 2) strategies for preserving the 

dependence in the outputs, and 3) strategies for design and analysis under 

induced dependence. In this section we concentrate on strategies where DI 

reduces variance directly, but DI can facilitate any strategy that exploits 

dependence. 

Because much of the work on dependence induction is intimately tied to 

the methods used to generate realizations of x, we introduce some additional 

notation to represent that aspect. From a practical perspective, variate 

generation can almost always be described as follows: Let 

U,  = ( U l , ,  U 2 , ,  . . . , Urn,) be a vector of random variables, independent and with 

identical marginal distributions that are U ( 0 , l ) .  Realizations of 

XI = ( X , , ,  X,,,  . . , X,,,) are generated from realizations of U, via a function e l ;  

that is x, = e,(U,) .  The function el need not map a single U,, into a single x, ,  . 
To generate a realization of a scalar x,, with cdf F,,, the most commonly used 

function is the inverse cdf e,(U,,) = F,,-'(u,,), where F , , - I  is the inverse function 

of F,,.  The inverse cdf has the attractive property of being monotone in U,, ,  

which is useful for inducing dependence (see below). 
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410 NELSON 

The sample space definition does not encompass variate generation; it 

stresses the resulting distribution F and not the methods used to generate 

realizations of x or methods used to induce dependence. Thus, it is insensitive 

to whether the (Ui , )  are random or pseudorandom (deterministically generated, 

but appearing random). However, a useful extension of the sample space 

definition is to view Q as being induced by the functions e j  from a more basic 

sample space, (&I)-, the infinite dimensional unit hypercube that is the sample 

space of the U(0,l) variates. However, because variance reduction concerns the 

population variance of z, and the variance is determined by F rather than the 

particular variate generation algorithm, the sample space definition does not 

specify a variate generation scheme. 

While the class DI is defined in terms of F ,  as a practical matter 

dependence is often induced by making the (U, , )  functionally dependent. This 

is accomplished by sampling one m-dimensional U ,  randomly and letting 

Ui = d i ( U j ) ,  i # j ,  for some function d , .  The function di is chosen to have the 

property that the marginal distribution of Ui is still m-dimensional uniform. 

There is some disagreement regarding appropriate analysis when the basic 

sample space is (0,1)-, but the uniform variates are actually pseudorandom. In 

this case, a single "seed" 5, and generator completely determine the j fh  

sequence U j .  To facilitate dependence induction, simulation experiments may 

employ multiple random number sequences, requiring the selection of multiple 

starting seeds. The seeds [ t , ] ,  and thus the sequences (u,), are under the 

complete control of the experimenter. To legitimately treat the the simulation 

output as a random sample, Mihram (1974) suggested that some or all of the 

seeds must be selected randomly from the set of possible seeds. However, this 

view is not universally held, and the debate will not be settled here. We raise 

the issue to point out that the sample space definition is not affected by it, but 

that it may be fundamental to the statistical analysis. For further discussion, see 

Kleijnen (1985), Mihram (1974), Schruben and Margolin (1978), and Wilson 

(1984). 

7.1 Variance . Reduction . Strategies 

We begin by considering a simplified version of the variance reduction 

problem (I), which is to minimize ~ a r [ z ]  when 
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A PERSPECTIVE ON VARIANCE REDUCTION 411 

where x, = (x , ,  , x,,, . . . ,xnj ), X ,  = e , ( U , ) ,  and Y,, = gj  (x , )  is a scalar valued 

output. Assume initially that the ( U , )  are independent vectors of finite length m ,  

implying that the vectors ( x , )  (and corresponding {Y,,)) are also independent, 

although not necessarily identically distributed. The problem then becomes 

selecting a joint distribution for { X I ,  . . . , x , )  such that the scalar marginal 

distributions are preserved and the variance of is minimized. In other words, 

we search for the optimal DI transformation. In the special case where the { Y , , )  

form a covariance stationary sequence, the variance of z is given by (2). We 

induce dependence among the inputs in hopes of realizing a favorable 

covariance structure in the outputs. Of course, we would like to specify the 

joint distribution of the outputs directly, since we cannot guarantee that 

dependence induced between inputs (e.g. negatively correlated) will be reflected 

in the outputs unless we know quite a bit about g (e.g. monotone). 

Unfortunately, we do not know the distribution of Y ,  and g is usually implicit 

in the simulation code. 

7.2 Results -- -. - -- 

The results we cite are sometimes called "antithetic variates theorem" 

results, although we have couched our problem in terms that also include 

"common random numbers" results. Given the sample space definition of 

simulation experiments, the distinction is irrelevant. The definition of the 

experiment includes all parameters to be estimated, whether they are absolute 

system parameters of interest, the relative difference between the parameters of 

two or more systems, or the parameters of a statistical model (a case not 

covered by (6)). For example, if g j  = g  for all j and the x, are identically 

distributed, then (6) estimates an absolute parameter. On the other hand, if gzi- ,  

is the output of one system, and g2 ,  is the negative of the output of a second 

system, then (6) estimates a difference. From a practical perspective it is often 

useful to think of antithetic variate strategies as generating compensating 

(negative) dependence for estimating an absolute measure, and common random 

number strategies as guaranteeing homogeneous experimental conditions 

(positive dependence) for estimating relative performance measures. But again, 
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41 2 NELSON 

in our definition there is only one experiment, no matter how many conceptual 

systems are involved. See Nelson and Schmeiser (1986b) for more traditional 

definitions of antithetic variates and common random numbers. 

The results cited below guarantee, in various situations, that the optimal 

solution to (1) when Z is given by (6) can be achieved by inducing functional 

dependence among the (U,) in a way that leaves their marginal distributions, 

and the marginal distributions of the (X,), unchanged. These are remarkable 

results, because they show that optimal dependence induction can be 

accomplished at the variate generation level. Unfortunately, some of the results 

guarantee only the existence of an optimal set of functions (di), and are no 

direct help in finding them. Figure 1 organizes some references to important 

theoretical results, categorizing them in terms of the number of outputs, I, the 

dimension of uj, m ,  and the dimension of xi, n ,  in the experiment. 

Hammersley and Mauldon (1956), Handscomb (1958), and Wilson (1979, 

1983) provide existence theorems, &st for bounded, and later for unbounded g,. 

Whitt (1976) also gives an existence theorem, but for a more general problem 

which includes (6) as a special case. Fishman and Huang (1983) and Roach 

and Wright (1977) find optimal functions ( d i )  among certain restricted classes 

of functions. Snijders (1984) derives the optimal functions when the (X,] are 

identically distributed, binary random variables. Rubinstein, Samorodnitsky and 

Shaked (1985) show that a particular simple function d, is optimal given that X, 

is generated via the inverse cdf and g j  has certain monotonicity properties. 

McKay, Beckman and Conover (1979) investigate an effective class of 

induction schemes for multidimensional problems that they call Latin hypercube 

sampling; also see Stein (1985) for extensions of McKay et al. Finally, 

Granovsky (1983) provides an existence theorem that extends Whitt (1976). 

The results of Fishman and Huang (1983) and Roach and Wright (1977) 

are special cases of what are known in sampling theory as systematic sampling 

(SYS) plans (Madow and Madow, 1944). The distinction between SYS and 

strategies based on sample allocation (SA) has been unclear in the past, but in 

light of our taxonomy the distinction is obvious. Antithetic variates, common 

random numbers, Latin hypercube sampling, and SYS induce dependence 

(functionally) among randomly sampled inputs, and realize variance reductions 
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1 2 2  m = l  n = l  

Handscomb (1958) 
Whitt (1976) 

Wilson (1979) 
Fishman and Huang (1983) 

\ 
1 = 2  m 2 l  n = l  

Snijders (1984) Roach and Wright (1977) 

I 2 2  m 2 l  n = 1  I = 2  m 2 1  n = m  

Wilson (1983) Rubinstein, Samorodnitsky 
and Shaked (1985) 

/ 1 2 2  m  2 1  / n  = m  

McKay, Beckman and Conover (1979) 
Granovsky (1983) 

FIG. 1. Cases of the DI Problem (6). 

because of favorable dependence among the outputs. STRAT and other SA 
strategies realize variance reductions by deterministically allocating sampling 

effort in the outputs where it does the most good. Although we have never seen 

an application, there is no inherent reason why DI and SA strategies cannot be 

used together. 

The most common way to apply DI transformations is to hold the 

marginal distributions of the inputs fixed and induce dependence via the variate 
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414 NELSON 

generation algorithm. The references in Figure 1 illustrate this approach for 

estimators like (6). Monotonicity is the key property for proving the 

effectiveness of DI strategies. Using the inverse cdf guarantees a monotone 

mapping of ui, into xi , .  If the [g,) are concordant, meaning that with respect to 

each component of X, they are monotone in the same direction, then it is often 

possible to prove that a DI strategy reduces variance (see Rubinstein et al. and 

McKay et al., for example). 

Assuming that some known dependence can be induced, by whatever 

means, how can it best be used? The correlation induction strategies of 

Schruben (1979) and Schruben and Margolin (1978) are one answer. They 

present experimental designs for estimating the parameters 8 = (el, . . . , 8,) of a 

general linear model 

where wii is the setting of the ifh experimental factor at the j f h  design point, and 

ei is a random error term. Assuming that a particular covariance matrix for the 

responses (outputs) { Y i )  can be induced, these designs reduce the determinant 

of the covariance matrix for ordinary and generalized least squares estimators 

of 9 as compared to independent sampling and other dependence induction 

strategies. This is a distinctly different approach, because it specifies an optimal 

experimental design under induced dependence, rather than specifying how the 

dependence is induced. However, Schruben and Margolin's assumptions that 

lead to the known correlation structure are somewhat controversial, See 

Kleijnen (1985), Nozari, Arnold and Pegden (1984b) and Tew and Wilson 

(1985) for up-to-date treatments. 

7.3 Examples ~ 

Techniques for generating bivariate inputs with extremal distributions 

(maximum or minimum possible covariance with given marginal distributions) 

are based on the inverse cdf (see Whitt, 1976). DI is more difficult when the 

variate generation algorithm does not monotonically transform a fixed length 

vector U j  into X,. Variate generation methods for dependence induction are 

outside the scope of this paper, however, Bratley, Fox and Schrage (1983) is a 
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A PERSPECTIVE ON VARIANCE REDUCTION 415 

good general reference, and Cheng (1985), Fishman and Moore (1984), and 

Schmeiser and Kachitvichyanukul (1986) give some variate generation 

algorithms that facilitate dependence induction. 

Cooley and Houck (1982) used the Schruben and Margolin designs in 

response surface methodology (RSM) for optimization problems when the 

objective function is evaluated via simulation. RSM requires fitting low order 

polynomial models to the system response under different configurations (the 

decision variables) of the simulated system. Dependence induction reduces the 

variance of estimators of the coefficients of these models. Cooley and Houck 

extended the Schruben and Margolin methodology to second order models, and 

demonstrated the technique by finding the optimal reorder point and reorder 

quantity to minimize annual cost for an inventory system. Although they were 

successful, follow-up articles by Safizadeh and Thornton (1982), Cooley and 

Houck (1983), and Safizadeh (1983) further debate the use of these 

experimental designs. 

8. DISTJtIBUTION REPLACEMENT (DR) -- -- -- - -. - -- - -- 

conditionals of F preserved (c.6) 

In Monte Carlo evaluation of integrals, it is sometimes theoretically 

possible to design a zero variance experiment using importance sampling (IS). 

The decomposition of IS includes a transformation from DR. The idea, as it is 

conventionally portrayed, is to bias sampling toward outputs that contribute the 

most to the variance of the statistic, and then correct for this bias after 

sampling. Unlike VRTs based on sample allocation that deterministically 

allocate sampling effort to the outputs, IS does not require the facility to 

control R..  However, like transformations in equivalent allocation, it is often 

difficult to predict the effect of DR transformations in a dynamic simulation. 

Changing the marginal distributions of F ( X )  changes the marginal distributions 

of the outputs, and possibly their expectation, which is central if the statistic is 

a sample mean. The bias correction that is easily computed in Monte Carlo 

problems is more difficult to derive when the outputs are dependent. Computing 

and using the bias correction requires other transformations, usually from 

equivalent allocation, equivalent information and auxiliary information. The 

spectacular potential of DR strategies in Monte Carlo estimation has not been 

realized to date in dynamic simulation. 
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Loosely speaking, the variance of a random variable is determined by the 

possible deviations from its mean and the probability it assumes those values. 

DR strategies preserve the range of the outputs but alter the probabilities. 

Ideally, we would like to work with the marginal distributions of the outputs 

directly, but these distributions are unknown. Thus, as in dependence induction 

strategies, DR strategies work indirectly through the inputs. Usually DR 

strategies replace the marginal distributions of independent inputs in dynamic 

simulation. Independence facilitates computing the bias correction as a running 

product as the inputs are generated (see below). This is particularly important 

in simulation because the number of inputs that will be realized may not be 

known a priori. 

Let z be a statistic, and let x, = (x,,, . . . , x,,) be a sequence of 

independent, but not necessarily identically distributed, inputs (here we break 

with our usual convention of organizing identically distributed sequences in 

columns of x) .  Let the density or mass function of xi, be denoted by 

f , ( x , , ) ,  i = 1, 2, ..., n ,  which we assume exists. Now consider a different sequence 

of marginal distributions I f ' i ]  with the same support the original sequence has. 

Then if Z is an unbiased estimator of 9, so is the new estimator 

where X ,  - nf ';; this property holds even if Z is not a function of X,. Here a 

new output sequence, ( Y i 3 ) .  is formed (EA transformation), and a new statistic 

(EI transformation) results from combining this output with Z (A1 

transformation). The variance reduction strategy is to select new distributions 

I f ' ; )  that reduce the variance of Z' as compared to Z. When the elements of X ,  

are not independent then the IS estimator is 

where f  is the joint distribution of the sequence XI, making the selection of the 

new distribution even more difficult. 
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A PERSPECTIVE ON VARIANCE REDUCTION 417 

Expressions (7) and (7') are more general formulations of the IS-type 

estimator than is found in the literature. Standard presentations assume Z is a 

sample mean of i.i.d. outputs {rill, and the bias correction {Y,,) is applied to 

each Yil  individually; e.g. Z" = n-'~Y~,y,,. In this case Z" is easier to work with 

than z', but both are composed of the same classes of transformations (Nelson 

and Schmeiser, 1986b). 

A DR strategy more suited to simulation than IS is Russian roulette (RR). 

Like SPLT, RR is useful when outputs yi, and yi1 are realized in sequence for 

i = 1, 2, .... RR alters the probability that Yil will be realized (which may have 

been 1 originally) whenever the event [Yi, E L,#] occurs; L~ is some stratum in 

the range of yi, as defined in section 5. RR is often combined with SPLT, but 

they work differently. SPLT allocates sampling effort to interesting regions of 

Y ,  (an SA strategy), while RR biases sampling away from uninteresting regions 

by altering the probability of selection (a DR strategy). 

8.2 Results - - - - 

An old, but as yet unsurpassed, presentation of standard IS results is 

Kahn (1956). While the existence of optimal DR strategies that reduce variance 

to zero is theoretically interesting, it is not practically useful in Monte Carlo, 

much less in simulation. However, these results indicate that the new input 

distribution nfi' should be roughly proportional to I E[Z l xl] l nf, ( x i ) .  Of 

course, E[Z In,] is unknown in general. However, if we restrict attention to a 

particular parametric family of distributions, say f '; (xi ;a), then it may be 

possible to estimate the optimal parameter a for that family in a particular 

problem. Marshall (1956) presents a two-stage sampling procedure for 

estimating the optimal a; see also Kleijnen (1974). 

8.3 - Examples - 

Importance sampling applications abound in the Monte Carlo literature, 

particularly in particle transport problems; see for instance Carter and Cashwell 

(1975) and Hammersley and Handscomb (1964). Jeruchim (1984) describes an 

example in dynamic simulation. He considered simulating a "two-hop" satellite 

communication system consisting of a transmitter, a transponder, and a receiver 
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418 NELSON 

in that order. In terms of the sample space definition, inputs are the signal 

sequence (binary), and transmitter and transponder noise (individually 

independent, and identically normally distributed). The output is the signal 

produced by the receiver. The parameter of interest is the probability of an 

error, for example the probability that a "1" is received when a "a" is sent. 

Since the output from each device depends on all signals currently in its 

memory, the outputs are correlated. 

Jeruchim replaced the marginal distributions of the noise components 

with normal distributions having the same means but altered variances, and 

computed the bias correction as a product as each noise component was 

generated. The independence of the inputs made IS feasible. 

Kioussis and Miller (1983) applied RR combined with SPLT in the fault 

tolerant computer simulation mentioned earlier. 

9. RECAPITULATION . . - - - 

In the preceding sections we saw that improved, and sometimes optimal, 

solutions to further constrained versions of the variance reduction problem (1) 

have been developed. A solution to (1) is a VRT composed of transformations 

from the six elemental classes. Unfortunately, the number of potential variance 

reducing transformations is infinite, so an exhaustive search is not possible. In 

practice, feasible transformations are identified from the available prior 

knowledge, which varies from experimenter to experimenter. Prior knowledge 

establishes conditions needed to invoke results ensuring a variance reduction 

strategy will work. We have summarized these results, but it is prior knowledge 

that determines when they are applicable. 

Based on the preceding development, the kinds of prior knowledge that 

are useful include: 

1. Covariance structure of the outputs. In particular, if the outputs are not all 
independent, knowledge about the covariance structure can facilitate more 
efficient estimators through direct use of the structure or control strategies. 

2. Distribution of an input or output. Knowing something (moment, range, 
distribution) of a random variable that will nevertheless be sampled facilitates 
control strategies (correction based on the knowledge), sample allocation 
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A PERSPECTIVE ON VARIANCE REDUCTION 419 

strategies (allocation based on relative likelihood or variance), or distribution 
replacement strategies. 

3. Functional relationshius. When uarameters of interest are functionally related, 
indirect strategies are faiilitated. Any knowledge about conditional relationships 
between random variables can be exploited, through conditional expectations 
strategies that use the relationship dirkctly, or sam$e allocation strategies that 
improve the estimation of a conditional expectation. 

4. Properties of g. If g can be modeled, then it may be possible to replace it 
with g' that may not necessarily mimic the system of interest, but does 
facilitate efficient estimation. Information about how g maps inputs into outputs 
(e.g. monotonely) facilitates dependence induction and distribution replacement 
strategies. 

5. Variate generation via the inverse cdf. As a practical matter, the inverse cdf 
approach is needed for dependence induction strategies. 

Some classes of transformations are particularly useful for "setting-up" 

others. The dependence induction class facilitates other strategies that exploit 

dependence, such as control strategies and the experimental designs of 

Schruben and Margolin. The option to induce correlation where it is not 

inherently present is usually not available in classical sampling experiments, but 

is always possible (if not useful) in simulation experiments. Equivalent 

allocation transformations are most frequently used to generate auxiliary outputs 

that facilitate other strategies. The bias correction for IS is an example. We 

conjecture that distribution replacement transformations could facilitate sample 

allocation strategies, since optimal STRAT schemes are available for 

stratification variables with certain distributions (Dalenius and Gurney, 1951). 

However, we know of no such application. 

This list does not exhaust the kinds of useful prior knowledge by any 

means. An algorithm that attempts to deduce the available prior knowledge an 

experimenter has, organize it, and use it to select candidate VRTs is given in 

Nelson (1985a). Ultimately a taxonomy of prior knowledge, similar to the 

taxonomy of variance reduction presented here, is needed to facilitate the 

identification and application of prior knowledge in simulation experiments. 

The preceding development points out many open areas of immediate 

research interest. We review just three: 

1. Conditions that ensure a variance reduction when employing conditional 
expectations (CE) with correlated outputs. 

D
ow

nl
oa

de
d 

by
 [

N
or

th
w

es
te

rn
 U

ni
ve

rs
ity

] 
at

 1
9:

09
 1

1 
A

ug
us

t 2
01

7 



420 NELSON 

2. Models of the simulation itself as a stochastic process. 

3. A comprehensive framework for producing and validating the conditions 
necessary to employ the Schruben and Margolin designs. 

10. THE FUTURE 

Instead of surveying VRTs, we have tried to present broadly defined 

variance reduction strategies using particular VRTs as illustrations. One 

difficulty in surveying VRTs is that there is no standard definition of any VRT. 

A benefit of our taxonomy is that a variance reduction strategy can be 

unambiguously defined in terms of the classes of transformations it employs. 

Such a structured framework is necessary if variance reduction is ever to be 

automated, and automation is the only hope for widespread application. By 

automation we mean that a variance reduction generator, incorporated into a 

standard simulation programming package, will work interactively with the 

experimenter to develop and implement an effective VRT in general simulation 

experiments. An automated VRT generator might work in the following way 

(Nelson, 1985b): 

Step 1. Translate the simulation experiment, expressed in a general purpose 
simulation language, into a standard form such as the sample space definition. 

Step 2. Interactively determine the available prior knowledge, based on a 
taxonomy of prior knowledge, by querying the model, by querying the 
experimenter, or by performing experiments. 

Step 3. Match the prior knowledge with classes of transformations that employ 
it, thereby generating candidate variance reduction strategies. 

Step 4. Evaluate candidate strategies by invoking known results or performing 
experiments. 

Step 5. Implement the resulting VRT. 

Step 6. Repeat steps 2 - 5 if necessary as the experiment progresses. 

Research in this area is currently underway. 

Historically, VRTs have been applied to estimators of unknown system 

performance parameters. The increasing use of animation - driving a graphical 

representation of the system of interest in real time - should spur further 

interest in variance reduction. Animation necessarily implies that only a brief 
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A PERSPECTIVE ON VARIANCE REDUCTION 421 

realization of system behavior can be observed. To make reliable decisions, 

representative samples, or samples that exhibit the most critical behavior or 

range of behavior, are essential. Some existing VRTs may be adaptable, but 

new ideas will undoubtedly be required. Incorporating animation into 

simulation design and analysis promises to be an exciting new research area. 
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