Using Common Random Numbers for
Indifference-zone Selection and Multiple
Comparisons in Simulation

Barry L. Nelson ¢ Frank J. Matejcik
Department of Industrial Engineering and Management Sciences, Northwestern University,
Evanston, Illinois 60208-3119

Industrial Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701-3995

We present a general recipe for constructing experiment design and analysis procedures
that simultaneously provide indifference-zone selection and multiple-comparison infer-
ence for choosing the best among k simulated systems. We then exhibit two such procedures
that exploit the variance-reduction technique of common random numbers to reduce the sample
size required to attain a fixed precision. One procedure is based on the Bonferroni inequality
and is guaranteed to be statistically conservative. The other procedure is exact under a specific
dependence structure, but may be slightly liberal otherwise. Both are easy to apply, requiring
only simple calculations and tabled constants. We illustrate the procedures with a numerical
example.
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1. Introduction

In this paper we consider the problem of comparing a
small number of systems, say 2 to 20, in terms of the
expected value of some given stochastic performance
measure. We assume that the expected performance will
be estimated via a simulation experiment. At an aggre-
gate level we are interested in determining which system
is best, where ““best’” is defined as having the maximum
or minimum expected performance. At a more refined
level we may also be interested in how much better the
best is relative to each alternative, since secondary cri-
teria that are not reflected in the performance measure
(such as ease of installation, cost to maintain, etc.) may
tempt us to choose an inferior system if it is not deficient
by much.

Because we are estimating expected performance we
can neither select the best system nor bound the dif-
ferences between systems with certainty. Instead, we
present procedures that simultaneously control the error
in selecting the best and bounding the differences. These
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procedures unify standard indifference-zone-selection
procedures—that control the error when choosing the
best—and standard multiple-comparison procedures—
that control the error in making simultaneous compar-
isons. The procedures depend upon having normally
distributed data, but they do not require known or equal
variances across systems and they exploit the use of
common random numbers (CRN) to reduce the com-
putational effort. When the simulation outputs are
sample averages, the normality assumption is typically
not a serious restriction.

In an earlier paper (Matejcik and Nelson 1994) we
exhibited one procedure that achieves indifference-zone
selection and multiple-comparison inference simulta-
neously. This combined procedure, denoted Procedure
A, is based on Rinott's (1978) indifference-zone-
selection procedure. Unfortunately, Rinott’s procedure
assumes independent samples across systems, pro-
scribing the use of common random numbers, or at least
preventing us from realizing the full benefit of using
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them. One contribution of the present paper is to es-
tablish a general recipe for constructing combined pro-
cedures. We then apply the recipe to a selection pro-
cedure due to Clark and Yang (1986) that does permit
CRN. The Clark and Yang procedure, denoted Proce-
dure €Y, is based on the Bonferroni inequality and is
therefore statistically conservative, again preventing us
from realizing the full benefits of CRN. Therefore, we
also present a new combined procedure, Procedure
NJM, that may sometimes be slightly liberal. We show
that /M can have much smaller expected sample size
than Rinott’s procedure, Clark and Yang’s procedure,
and another popular procedure due to Dudewicz and
Dalal (1975), which we denote as Procedure DD.

The following motivating example will be used
throughout the paper to illustrate the procedures: Con-
sider an (s, S) inventory system in which some discrete
item is periodically reviewed. If the inventory level is
found to be below s units, then an order is issued to
bring the inventory level up to S units; otherwise no
additional items are ordered. Different (s, S) inventory
policies result in different inventory systems. Koenig
and Law (1985) used this example to illustrate a subset
selection procedure; see their paper for a detailed de-
scription of the model. The only stochastic input process
in the simulation is the demand for inventory in each
period.

Suppose that five (s, S) inventory policies have been
identified for study and we are interested in determining
which policy has the minimum expected cost per period
for 30 periods, where cost is measured in thousands of
dollars. Differences of less than one thousand dollars
are considered practically insignificant, so while we
want to choose the best system we also want to know
which policies are nearly equivalent to the best policy.
This is an ideal setting for a procedure that pro-
vides both indifference-zone selection and multiple-
comparison inference.

The paper is organized as follows: We first provide
background necessary to understand the inference that
the new procedures provide and give our main result
for forming combined procedures. Section 3 contains
the procedures themselves along with a numerical ex-
ample. The properties of Procedure N/ are explored
in §4. We close with some conclusions in §5. A prelim-
inary report of this work appeared in Matejcik and Nel-
son (1993).

1936

2. Background

Let Y;; represent the output from the jth replication (or
batch mean in a steady-state simulation) of system i,
fori=1,2,...,k sothatY; = (Yy, Yy, ..., Y is
the k X 1 vector of outputs across all systems on rep-
lication j. We assume throughout that Y;, Y,, - - - are
iid., and that Y; ~ N(u, 2), the multivariate normal
distribution with unknown mean vector g = (u1, o,

., ux)" and unknown variance-covariance matrix

011 012 " Oy

021 022 " O
E =

Okr Ox2 """ Ok

We are interested in comparing the k systems in terms
of their expected performance, y; . In the inventory ex-
ample there are k = 5 policies, Y;; is the average cost for
30 periods observed on the jth replication of the ith
inventory policy, and y; is the expected cost per period
of the ith inventory policy.

If we simulate the systems independently—meaning
we use different random numbers to drive the simu-
lation of each system—then

011 0 0

0 (%) 0
T =

0 0 O

However, since using common random numbers across
systems often reduces the variance of comparisons, we
are also interested in the case when CRN forces the
covariances a;; > 0, for i # j. In the inventory example
we can use CRN to force each inventory policy to be
subjected to the same sequence of demands, providing
a statistically fair comparison of policy performance.

Output-analysis methods that exploit CRN and fur-
nish appropriate statistical inference have long been of
interest to the simulation community. Yang and Nelson
(1991) provide additional references and some solutions
for multiple comparisons in conjunction with CRN. This
paper provides methods for simultaneously selecting
the best system and providing confidence intervals for
certain differences under CRN. Moreover, all of our
methods allow for unequal and unknown variances
across the systems.
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The following sections review the confidence-interval
procedure, multiple comparisons with the best, and the
decision-theory procedure, indifference-zone selection.
We then show that both types of inference can be at-
tained simultaneously from a single experiment.

2.1. Multiple Comparisons with the Best
Suppose that larger y; is better. Multiple Comparisons
with the Best (MCB) provides simultaneous confidence
intervals for the parameters u; — max;,; u; fori =1, 2,
..., k. These confidence intervals bound the difference
between the performance of each system and the best
of the others with a prespecified confidence level. For
minimization problems, such as the inventory example,
we consider y; — min;4; y;, fori =1,2, ..., k.

Most MCB procedures assume the variances across
systems are equal. See Hochberg and Tamhane (1987)
for a general discussion of MCB procedures.

2.2, Indifference-zone Selection

Let p1y < poy < * + + < ug) be the (unknown) ordered
means. Two-stage, indifference-zone-selection proce-
dures yield estimators g,,i=1,2,...,k, that guarantee

Pr{,ﬁ,(k)>ﬁ<,~), Vl%k} =1—-a

whenever pu) — pg) = 6, Vi # k, where g, is the esti-
mator associated with the (unknown) system having
the ith smallest expectation. The user-specified value 6
is called the indifference zone. The implication is that if
we use the procedure and then select the system with
the largest performance estimate z; as the best system
we will be correct with probability greater than or equal
to 1 — a when the best is at least § better than the
others. In the inventory example we could set § = one
thousand dollars since we are indifferent to policies with
expected costs that differ by less than one thousand
dollars.

Indifference-zone-selection procedures typically do
not exploit CRN, and do not provide inference about
systems other than the best. They do, however, allow
for unequal variances across systems. Goldsman (1983)
and Bechhofer et al. (1995) provide expositions of
indifference-zone selection and related topics.

2.3. Simultaneous Ranking, Selection and
Multiple Comparisons

In this section we establish that MCB intervals and

indifference-zone selection can be derived simulta-

MANAGEMENT SCIENCE/Vol. 41, No. 12, December 1995

neously from the same experiment. We begin with a
lemma that establishes sufficient conditions under which
MCB intervals can be formed.

Lemma 1. If
Priig = o = (ke = ve) > ~w,ViFk} =21~ o
then with probability greater than or equal to 1 — «

pi — max g € [—(f; — max fg; — w)~,
i j#i

(A — max g; + w)*]
j#F
fori=1,2,..., k, where — x~ = min{0, x} and x*
=max{0, x}.

PrROOF. The proof of this lemma can be extracted
from various papers by Hsu, including Hsu (1984); it
is also the same as the proof of balanced MCB in Hoch-
berg and Tamhane (1987, p. 151). O

The quantity w is the whisker length of the MCB in-
tervals, and it is analogous to the half width of sym-
metric confidence intervals. In standard MCB proce-
dures w is a random variable, but our Theorem 1 will
establish that the estimators formed by an indifference-
zone-selection procedure with indifference zone 6 satisfy
the condition in Lemma 1 with w = §. Therefore, both
types of inference can be derived simultaneously from
the same experiment, and the whisker length of the
MCB intervals can be specified in advance.

In order to state the theorem precisely, let my, m,

., 7 represent the k systems with expected perfor-
mance parameters u;, pa, ..., g, and let & be the
indifference-zone-selection procedure that guarantees
Prifg > iy, Vi# k} =1 — a, whenever pgy — pg
=0, Vi # k. Let {1, &, ..., {i represent k systems
whose simulation outputs are identical in distribution

to my, m, ..., m except that their expected perfor-
mance parameters are 6,, 6, .. ., 6, with
0oy = ey, Oy = mey — 0, 1# k.

Finally, let 01, 0,, ..., B, be the estimators obtained by
applying Procedure & to {3, {5, ..., &.

THEOREM 1. If

s By
Ba-1y T (ko) = Re=1) = 0) | 2| Oty (1)
Ay + (ke = may — 0) By
1937
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then the statement

whenever pgy ~ ugy = 6, Vi # k, implies that

Prifg = ko) = (me =) > =6, Vitk} =21 -«

for any values of the true means.

REMARK. Condition (1) insures that when indiffer-
ence-zone-selection procedure § is applied to two col-
lections of k systems for which the probability distri-
butions of their outputs differ only in their location pa-
rameters, then the point estimators for each collection
of systems also differ only in their location parameters.
For example, condition (1) will be satisfied when g;
= E[Y;] and the procedure & implies estimators of the
form

N
Bi= 2 aYy
j=1
where 2; 4; = 1 and N is independent of u.

PROOF. The result follows by noticing that condition
(1) implies that

biy>0,Vitk} =21~ a

Pri{fig) — hu =

where the last inequality follows from the properties
of §. O

The primary consequence of Theorem 1 is that we
can use the outcome of many two-stage, indifference-
zone-selection procedures to form MCB intervals with
whisker length w equal to the indifference zone §, and
simultaneously guarantee both the correct selection and
the coverage of the MCB differences with overall con-
fidence level 1 — «. Condition (1) will be satisfied, for
instance, when the point estimators of the selection
procedure are sample means or the generalized sample
means of Dudewicz and Dalal (1975).

To illustrate how easy it is to apply Theorem 1 we
show how it can be used to extend Rinott’s (1978)
indifference-zone-selection procedure, a well known
procedure that requires independently simulated sys-
tems (this combined procedure was first introduced in
Matejcik and Nelson 1995). In the procedure we use
the convention thata *’- " subscript indicates averaging
with respect to that subscript. For example, Y;. is the
sample average of Y;1, Yis, ..., Yiy,.

1938

Procedure 7
1. Specify w, @ and 7no. Let h solve Rinott’s integral
for ny, k and « (see the tables in Wilcox 1984).
2. Take ii.d. sample Y;y, Yi5, ..., Yy, from each of
the k systems simulated independently.
3. Compute the marginal sample variances
52 28 (Y! Y,.)?

- fori=1,2,... k.

4. Compute the final sample sizes

N; = max{ng, [(hS; /w)*1} fori=1,2,..., k.

5. Take N; — n, additional i.i.d. observations from
system i, independently of the first-stage sample and
the other systems.

6. Compute the overall sample means

' =_ZYI]

l/l

fori=1,2,...,k.

7. Select the system with the largest Y,. as best.
8. Simultaneously form the MCB confidence intervals

~ max Y

ui — max u; € [—(Y,.
j#i j#i

—w)”,
(Y. —rrlyfiij. +w)"] fori=1,2,...,k.

Steps 1-7 are simply Rinott’s procedure. Theorem 1
allows us to add the MCB confidence intervals in Step
8 and simultaneously guarantee the probability of cor-
rect selection and the coverage probability. _

As a more concrete illustration we simulated the k
= 5 inventory systems (described in §1) independently
with first-stage number of replications ny = 10, indif-
ference zone w = 1 (thousand dollars), and confidence
level 1 — a = 0.95. From the tables in Wilcox (1984)
we obtain h = 3.692. The procedure selected inventory
policy 2 as the best (that is, policy 2 had the smallest
estimated cost per period), and provided the MCB in-
tervals in Table 1. Recall that these are confidence in-
tervals for y; — min,; u;, where g, is the unknown ex-
pected cost per period of inventory policy i.

The point estimate for u, — min; ,, i is —1.4, indi-
cating that policy 2 appears to be 1.4 thousand dollars
less expensive than the best of the other policies. The
intervals tell us that, with confidence level 0.95, policy
2 is no worse than any of the others (the upper endpoint
of the confidence interval is 0), and it may be as much
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Table 1 MCB Results for Procedure % Applied
to the Inventory Example
Policy Sample Size Lower - _ Upper
i N; MCB Limit Yi. — ming Y. MCB Limit
1 220 0 1.4 2.4
2 211 —2.4 -14 0
3 270 0 174 18.1
4 241 0 17.6 18.6
5 130 0 343 35.3

as 2.4 thousand dollars less expensive (the lower end-
point is —2.4). Notice that the whisker length is w
= —1.4 — (—2.4) = 1, precisely as specified.

The intervals also indicate that the other four policies
are inferior to policy 2 (the lower endpoints of their
intervals are all 0), and may be as much as 2.4, 18.1,
18.6 and 35.3 thousand dollars more expensive for pol-
icies 1, 3, 4 and 5, respectively. These constrained in-
tervals—which either contain 0 or have 0 as one end-
point—are a characteristic of MCB. Technically, the
most MCB can declare is that a system is no worse than
the best, it cannot declare that the system is better.

Also presented in Table 1 are the total sample sizes
(number of replications) for each policy, N;. They range
from 130 replications for policy 5 to 270 for policy 3,
for a total of 1072 replications. The different sizes are
a function of the variances of the systems; the larger
the variance the greater the number of replications.
Procedures that exploit CRN should reduce the number
of replications required to attain the same confidence
level and whisker length.

Another popular indifference-zone-selection proce-
dure that also assumes independence across systems is
due to Dudewicz and Dalal (1975). Their procedure
generally requires fewer replications than Rinott’s pro-
cedure, but is more complicated to implement because
it employs specially-weighted sample means. We ex-
tended their procedure in the same manner as Procedure
R to create Procedure DD. For completeness, and to
provide a fair comparison with the new procedures pre-
sented later, we also applied DD to the inventory prob-
lem and obtained the results in Table 2. The constant
in Procedure DD, denoted f, corresponding to h in Pro-
cedure 72 is f = 3.531. Notice that the total number of
replications is 981, fewer than the 1072 required by
Procedure R.

MANAGEMENT SCIENCE/Vol. 41, No. 12, December 1995

3. CRN Procedures

We now present two combined indifference-zone-
selection and MCB procedures that exploit CRN, and
illustrate them using the inventory example described
in 81. As is traditional, the procedures are stated in a
maximization context, but the inventory example used
to illustrate the procedures is a minimization problem.
The first procedure is a direct application of Theorem
1 to an existing indifference-zone-selection procedure.
The second procedure is new and, we think, better than
the first; its properties will be explored more fully in §4.

3.1. Clark and Yang's Procedure

We first extend Clark and Yang's (1986) indifference-
zone-selection procedure. This procedure exploits the
Bonferroni inequality to account for the dependence in-
duced by CRN. Thus, it is a conservative procedure that
typically prescribes more replications than actually nec-
essary to make a correct selection under CRN.
In the procedure, t = t;_(o/(k-1)}no—1 i the (1 — [a/
(k — 1)])-quantile of the t distribution with n, — 1
degrees of freedom.

Procedure €Y

1. Specify w, e and ng. Let t = t1_4/ (k1)) no-1-

2. Takeii.d. sample Y;1, Y5, ..., Yj,, from each of
the k systems using CRN across systems.

3. Compute the sample variances of the differences

1 o - -
S = > (Ya— Yy — (Y. — ¥,.))? foralli #j.
1=1

no— 1.2
4. Compute the final sample size

N = max { g, Tmax(tS;/w)*1}.
jF

Table 2 MCB Results for Procedure 2 % Applied
to the Inventory Example
Policy Sample Size Lower - _ Upper
i N; MCB Limit Vi — ming, Y. MCB Limit
1 202 0 1.5 2.5
2 193 -25 -15 0
3 247 0 17.2 18.2
4 220 0 17.9 18.9
5 119 0 347 35.7
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5. Take N — ny additional i.i.d. observations from
each system, using CRN across systems.
6. Compute the overall sample means

;1

<

ie N Y,] fori=1,2,...,k.

M=

-
I
o

7. Select the system with the largest Y;. as best.
8. Simultaneously form the MCB confidence intervals

i — max u; € [—(fi. — max 17, -—w)”,
j#i j#i

(Y;. — 1ax 7] +w)*] fori=1,2,...,k.
]j7t

We performed the same experiment for the inventory
example, but this time using CRN across systems. The
value of t = #;_(505/4)0 = 2.685. Procedure C¥Y also
selected inventory policy 2 as the best, but it did so with
many fewer total replications (875 for €Y versus 981
for DD versus 1072 for R). The MCB results are dis-

played in Table 3.
To illustrate the impact of CRN, we estimated the

correlation matrix of (Yy;, Yo, ..., Yy;)' to be
1 044 086 0.27 0.68
044 1 041 092 041
086 041 1 0.23 0.63
0.27 092 023 1 035
0.68 041 063 035 1

Therefore, CRN is effective, inducing positive correla-
tions across systems ranging from 0.23 to 0.92. Proce-
dure @Y exploits this dependence and is clearly superior
to # and DD in this example. Unfortunately, proce-
dures based on the Bonferroni inequality become more
conservative as the number of systems, k, increases. At
some point this conservatism overwhelms the benefit

Table 3 MCB Results for Procedure €% Applied
to the Inventory Example

Policy Sample Size Lower _ _ Upper

i N; MCB Limit Yi. = ming, Y. MCB Limit

1 175 0 14 2.4

2 175 —2.4 -14 0

3 175 0 17.9 18.9

4 175 0 18.1 19.1

5 175 0 344 35.4
1940

from CRN; avoiding this problem is the motivation for
the procedure presented in the next section.

3.2. Nelson and Matejcik’s Procedure

We now present a new procedure that was motivated
by Nelson’s (1993) robust MCB procedure. This pro-
cedure assumes that Z has a particular structure known
as sphericity, specifically

2y + T2 Y1+ Y+,
S = (2321 2%‘*‘7’2 v+,
¥+ v, + 2y, + T’

where 72> Vk 2, y? — 2L, ¥ to guarantee that = is
positive definite. Sphericity implies that

Var[Y,-j - Y”] = 2T2

forall i # . In other words, the variances of all pairwise
differences across systems are equal, even though the
marginal variances and covariance may be unequal.
Sphericity generalizes compound symmetry, which is

1 p - p
=02 P 1
o p o 1

Compound symmetry has been assumed by many re-
searchers to account for the effect of CRN (e.g., Schru-
ben and Margolin (1978), Nozari, Arnold and Pegden
(1987), and Tew and Wilson (1994)).

The procedure below is valid when Z satisfies spher-
icity, as we prove in the next section. We also show that
the procedure is robust to departures from sphericity
provided that the covariances are nonnegative (o;; = 0
is the assumed effect of CRN). This property is consis-
tent with the performance of the robust MCB procedure
in Nelson (1993).

In the procedure, § = T,ﬁl]c(’,)(~1)(,,o_1),1/2 is the (1 — «)-
quantile of the maximum of a multivariate + random
variable of dimension k — 1 with (k — 1)(n, — 1) degrees
of freedom and common correlation }; see, for instance,
Table 4 in Hochberg and Tamhane (1987).

Procedure N M

1. Specify w, a and n,. Let g = T,Q;/”(’,)(,,)(,,o,l),l/z‘

2. Takeiid. sample Y;q, Y;,, ..., Yi, from each of
the k systems using CRN across systems.
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3. Compute the sample variance of the difference
under the condition of sphericity

2T 2 (Y- Y =Y+ YL
(k= 1)1 — 1)

32

4. Compute the final sample size
N = max {1, [(gS/w)*1 }.

5. Take N — ngy additional i.i.d. observations from
each system, using CRN across systems.
6. Compute the overall sample means

=1,2,...,k.

7. Select the system with the largest Y,. as best.
8. Simultaneously form the MCB confidence intervals

i — max u; € [—(l?,». — max 17, —w)”,
j#i j#i

(}Z. - #&a‘x?j. +w)*] fori=1,2,..., k.
i kall

We performed the same experiment for the inventory
example using CRN across systems. The value of g
= Tf;%?,i) ,2 = 2.238. Procedure N M also selected inven-
tory policy 2 as the best, but it did so with significantly
fewer total replications (330 for Nl versus 875 for CY
versus 981 for DD versus 1072 for ). The MCB results
are displayed in Table 4, and are nearly identical to the

results obtained by the other procedures.

4. Properties of Procedure N M

In this section we study the properties of Procedure
NM. We begin by proving that N M is valid when =
satisfies sphericity. Then we investigate the robustness
of Procedure N/ to departures from sphericity. Finally,

Table 4 MCB Results for Procedure .4.# Applied
to the Inventory Example
Policy Sample Size Lower _ _ Upper
i N; MCB Limit Vi — ming, Y. MCB Limit
1 66 0 15 2.5
2 66 -2.5 -15 0
3 66 0 18.2 19.2
4 66 0 18.2 19.2
5 66 0 347 35.7
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we show that we can expect a smaller total sample size
using Procedure N M relative to Procedures R, DD
and CY.

4.1. Validity Under Sphericity

We will exploit the following lemmas. The proof of
Lemma 2 can be found in Hochberg and Tamhane
(1987, pp. 210-211), while the proof of Lemma 3 is a
straightforward exercise in mathematical statistics.

Lemma 2. If Y,, Yo, ..., Y, are distributed i.i.d.
N(u, 2), and Z has the property of sphericity, then
_ 2 Zf——'l Z;‘le (Y,] - Y,‘. - Y_] + Y_ .)2
B (k=1)(n—1)

2

is distributed as 27*X {—1y(n-1/ ((k = 1)(n — 1)) and is
independent of Y1., Y,., ..., Y,., where X} denotes a
chi-squared random variable with df degrees of freedom.

LemMmAa 3. If Y4, Y,, ..., Y, arei.i.d. with marginal
variance-covariance matrix X, and = has the property of
sphericity, then Var[Y;. — Y;.]1= 2r%/n forall i # j, and
Corr[Y;. =Y., Y. = Y,.] =z foralli#j#]1.

We now establish the key result.

THEOREM 2. If Yq, Y,, - - - are distributed i.i.d.
N(u, Z), and Z has the property of sphericity, then after
applying Procedure N M

Pr{CS}=Pr{Yy <Yy, Vitk}=1-a
whenever pgy — piy = w, Vi # k.

PrOOF. When Z has the property of sphericity, the
probability of correct selection (CS) is minimized over
the space of all {puw) — pg = w, Vi # k} at the least
favorable configuration (LFC): pgy = pg—1) + w and -1,
= U2y = **+ = ug1y. Therefore we assume that the
LFC holds, and we write

Pr{CS} =Pr{Y < Y, Vi # k}

_ Pr[f“’ - (Y — )

Vari/N

For convenience, let

w
< , Vi# ki,
V2r2 /N ]

7 = Yi) = (Yo, — ) .
@ V272 /N
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Then since N = (¢S /w)* we have

Pr{CS} = Pr{Zm R “:/N Vi # k}
T
> Pr{Zm < —fz_s Vi # k}
T

- 8515 H
= E|Primax Z;, < = .
|: [ i#k ® ‘/5_7' V—T
Notice that, conditional on S /(\61), N is a constant;
and by Lemma 2, Z(1), Z(2y, . . . , Zy-1) are independent
of S/( V2 7). We can therefore apply Lemma 3 to obtain

1 1
Zay A R
Zoy | N Q, 2 1 2
Z(k—l) 0 % %

conditional on S /( VET). That is, the conditional distri-
bution of Z, Zsy, ..., Zg-1y is multivariate normal
with zero mean vector, unit variance, and common co-
variance % Therefore,

Pr{CS} = E[Pr[max Zy < f.; \/2 ”
x+g5/(\/§T)
- k-1 d
E f ® i ¥(x)

x—l~gy

ff“’“——r

2

dB(x)dT(y) = 1 - &

where @ is the univariate standard-normal cumulative
distribution function (cdf) and T is the cdf of
S/( V27). The first equality follows from Equation
(1.1a) in Hochberg and Tamhane (1987, p. 374), while
the last equality follows from the definition of the critical
value g and Equation (1.2a) in Hochberg and Tamhane
(1987, p. 375). O

REMARK. When k = 2, any covariance matrix satisfies
sphericity, so Procedure N M is always valid when there
are only two systems (and the data Y; are normally
distributed).

4.2. Robustness
The assumption of sphericity will not be exactly or even
approximately satisfied in many situations. For instance,

1942

we estimated £ for the inventory example from 5000
replications, then calculated Grieve and Ag's (1984) e
measure; e takes values between 0 and 1, with 1 indi-
cating perfect conformance to sphericity. The value of
e was 0.53, which indicates a significant departure from
sphericity in this example. -

To evaluate the robustness of Procedure N/ to de-
partures from sphericity we performed an empirical
study. Since it is not possible to control the extent to
which system-simulation examples depart from spher-
icity, we focused instead on the space of normally-
distributed output vectors with nonnegative correlations
(the assumed effect of CRN). We estimated the prob-
ability of correct selection over this space, but did not
estimate MCB coverage separately since it is implied by
the correct-selection guarantee.

We considered only the LFC because the minimum
probability of correct selection occurs at the LFC. With-
out loss of generality we set u; = g = ++» = 1 = 0
and w, = w = §, implying that system k is the best. We
fixed w = 3, 1 and 2 in units of the standard error of
the first-stage sample means; specifically,

R
2V, " Vg Vi

When w = 3 there will be a large second-stage sample;
w = 1 implies that there will usually be a modest second-
stage sample; while w = 2 implies that second-stage
sampling is rarely required.

The experiments were conducted as follows:

1. Fix the number of systems, k, number of first-stage
replications from each system, 1,, and confidence level
1 — a. We considered k = 3, 5 and 10 systems, 1, = 10
and 30 replications, and 1 — « = 0.95.

2. Generate a random k-dimensional correlation ma-
trix & using the method of Marsaglia and Olkin (1984).
This method transforms a randomly generated point on
the k-dimensional unit sphere into a correlation matrix.
We modified the method to generate a point on the unit
sphere with all nonnegative coordinates, which leads
to a correlation matrix with all nonnegative elements.

3. Generate 1, i.i.d. random vectors Y; ~ N(0, Z),
forj=1,2,..., 1.

4. Compute the total sample size N = max {n,[(g5/
w)A}.

5. Generate N — 1, i.i.d. random vectors ¥; ~ N (0,
£), forj=mng+1,nm+2,...,N.

w =
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6. Score a correct selection if {fk 4+ w > ?i., Vi
#k}.

7. Repeat steps 3-6 a total of 2,000 times to obtain
an estimate of Pr{CS} for the correlation matrix &
(2,000 replications gives two significant digits of pre-
cision).

8. Repeat steps 2-7 a total of 5,000 times to estimate
the distribution of Pr{ CS } over the space of correlation
matrices, & .

The experiments bypass two problems that affect all
parametric multiple-comparison procedures—nonnor-
mal data and heteroscedastic data—and instead focus
on the effect of positive correlation. The results are
therefore optimistic in the same way that any parametric
multiple-comparison procedure is optimistic with regard
to these assumptions. The results are pessimistic in the
sense that we seldom encounter the LFC in practice,
and that the probability of MCB coverage is typically
larger than the probability of correct selection (Nelson
1993).

Since the results were nearly identical for all cases of
k and ny, we only present the single case with k = 5
and n, = 30. Over the 5000 generated correlation ma-
trices and the three values of w, the minimum and
maximum estimated values of Pr{CS} were 0.88 and
1.00, respectively; the average was about 0.94. Histo-
grams for each value of w are given in Figure 1. Notice
that a Pr{CS} less than 0.9 was rare.

Our experience with other system-simulation exam-
ples—including several simple queueing models—in-
dicates that coverage as low as 0.88 when the nominal
level is 0.95 is rather pathological, provided the normal-
theory assumptions are not significantly violated. And
we know that typically we do not have the LFC and
that the coverage of the associated MCB intervals will
be higher than the probability of correct selection.
Therefore, Figure 1 encourages us to believe that the
procedure is robust enough to be used in practice. Since
the performance of the procedure was not affected by
the number of systems, k, one could inflate the nominal
coverage probability somewhat (say 0.97 when we want
0.95) and still do better than Procedure @Y, where the
necessary inflation is an increasing function of k.

4.3. Sample-Size Comparisons
In this section we compare Procedure N/ to Procedures

R, DD and CY in terms of total sample size. To do so
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we will need the following lemma, which is a portion
of Theorem 6.1 in Nelson (1993). In the lemma, S is
the variance estimator used in Procedure N /M.

LEMMA 4. Lets = k™' 2%, oy, the average marginal
variance of the observations across systems, and let g
= (k(k — 1))7! 24 0y, the average marginal covariance
across systems. Then for any Z,

E[S?] = 25(1 — o /s).

Assuming that the indifference zone w is small
enough that second-stage sampling is effectively certain,
and using Lemma 4, it is easy to derive the expected
total sample sizes for each procedure; they are displayed
in Table 5.

Rinott (1978) showed that f < h for fixed k and ng,
with strict inequality when k > 2. This establishes that
Procedure DD has a smaller expected sample size than
Procedure 7. Direct comparisons against the other pro-
cedures are not possible unless we assume that the first-
stage sample size is large enough to be effectively in-
finite. Then it follows directly from the definitions of
the critical values that \[ZTgOO = f,, < h,,, where the sub-
script “‘o0” indicates an infinite first-stage sample. So
for large first-stage samples N M has a smaller expected
total sample size than DD and R provided

ks(l - Q) < ks.

s

If CRN induces positive covariances, as it is designed
to do, then € > 0 and the inequality holds. Therefore,

Tahle 5 Expected Total Sample
Sizes When Second-
Stage Sampling is
Effectively Certain
Procedure Total Sample Size
hz
9 —_—
R e ks
f2
ﬁ/ﬁc,, -
[7474 pY: ks
tE
€W 7 kE[max;; Sy]
. g? 0
Nl - 1——
: 2ks( ; )

1944

we can conclude that Procedure N will require a
smaller total sample size whenever CRN is effective.
Finally we compare N /M to @Y. When the first-stage
sample size is effectively infinite, the total sample size
for €Y is
2

o0
— k max(a; + o;; — 20y).
w2 i#j 1 !

To make the comparison to N /M, notice that

o\ _ _ 1
25‘(1 - ‘g‘) = 2($ - Q) = m E (O'ii + O']'l' - 20’,']')
the average of the o;; + 0j; — 20;; terms. Since the average
cannot be greater than the maximum term, it follows
that
2ks(1 - 2) < k max(oy; + 05 — 20y).
s

i

We can also show that g, < f,,, in general. For instance,
when k = 3 we have g, = 1.916 and t,, = 1.960; when
k = 5 we have g,, = 2.160 and t,, = 2.241; and when
k = 10 we have g, = 2.417 and t,, = 2.539. Therefore,

we can conclude that Procedure N M will require a
smaller total sample size than Procedure €Y, also.

5. Summary and Conclusions

In this paper we presented two procedures that simul-
taneously control the error in selecting the best of k
systems and comparing the best system to each of the
other competitors. These procedures are based on a new
theorem that allows MCB confidence intervals to be ap-
pended to indifference-zone-selection procedures,
thereby unifying an inference approach and a decision-
theory approach. This inference facilitates making se-
lections based on secondary criteria that are not reflected
in the primary performance parameter.

The procedures allow CRN to be used to reduce the
sample size required to attain a fixed precision. This is
in contrast to most applications of variance reduction
that increase the precision of an estimator for a fixed
sample size.

Each of the procedures employs a two-stage-sampling
approach, which is more natural in simulation than in
most other sampling experiments. However, Procedures
CY and N M are a bit more difficult to apply than Pro-
cedures R and DD (which do not exploit CRN) because
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the first-stage data from all k systems must be available
before the second-stage sample size can be computed.*

* This material is based upon work supported by the National Science
Foundation Grant No. DDM-8922721.
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