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Modelling and simulating non-stationary arrival
processes to facilitate analysis
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This paper introduces a method to model and simulate non-stationary, non-renewal arrival processes that depends
only on the analyst setting intuitive and easily controllable parameters. Thus, it is suitable for assessing the impact of
non-stationary, non-exponential, and non-independent arrivals on simulated performance when they are suspected.
A specific implementation of the method is also described and provided for download.
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1. Introduction

Arrival processes are one of the basic drivers of many

stochastic simulation models, including, but not limited

to, queueing and supply chain simulations. The stationary

Poisson arrival process—implying interarrival times that

are independent and identically distributed (iid) and

exponentially distributed—is well known, and often justi-

fied because it represents ‘arrivals from a large customer

population making independent decisions about when to

arrive’. However, interarrival times are frequently more

variable (eg, telecommunications) or more regular (eg,

manufacturing orders) than Poisson. To handle this,

general stationary renewal arrival processes—with general

iid interarrival times—are a feature of every commercial

simulation product.

Arrival processes with a time-varying arrival rate repre-

senting, for instance, peak and off-peak load are also

prevalent in practice. As a result, some of the same software

products include the capability to generate arrivals from a

non-stationary Poisson process (NSPP). The problem of

fitting renewal processes or NSPPs to data has been well

studied and there are practically useful tools available (eg,

Leemis, 2006; Law, 2007 and references therein).

Of course, stationary renewal processes and NSPPs do

not address all of the possible departures from ‘Poisson-

ness’, which lead Gerhardt and Nelson (2009) to consider

non-stationary, non-Poisson (NSNP) arrival processes;

NSNP processes are generalizations of stationary renewal

processes that allow a time-varying arrival rate. Their

work provides methods for fitting and simulating NSNP

processes.

The purpose of this paper is two-fold: From a basic

theory perspective, we extend one of Gerhardt and Nelson’s

results to facilitate generation of non-stationary, non-

renewal (NSNR) arrivals, which, in a sense, addresses the

final remaining departure from Poisson arrival character-

istics (dependent interarrival times) and includes NSPP and

NSNP processes as special cases. However, rather than

focusing on fitting NSNR processes to data, as Gerhardt

and Nelson (2009) do, we provide a specific method designed

to allow a user to easily and intuitively define NSNR

processes without data. This facilitates assessing the impact

of non-stationary, non-exponential, and dependent arrival

processes on simulation results when no or only partial

information on the arrival processes is available.

We believe that this situation is very common in practice:

The modeller is aware that the arrivals are not well

represented as Poisson, but has neither sufficient data nor

enough information to fully specify the alternative. There-

fore, the goal for the modeller—if it is easy enough to do—is

to see how much these non-Poisson features matter.

A central premise of this work is that modellers will analyse

what they can readily model. Thus, it is more important to

be able to incorporate non-Poisson features than it is to

represent them perfectly.

We also argue that it is important to model deviations

from stationary, Poisson arrivals. It is well known in

queueing models of service systems that replacing a time-

varying arrival rate by, say, a constant arrival rate set to the

maximum or average value can lead to systems being badly

under-staffed or over-staffed (eg, Whitt, 2007). Additionally,

a number of highly accurate approximations for stationary

non-Markovian queues show that congestion measures

are increasing functions of arrival process variability (eg,

Whitt, 1981). Less well studied is the impact of dependent

interarrival times, although some queueing approximations
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attempt to represent the impact of dependence through

an increase in variability. We will show by example that

variability and dependence have distinct effects and both

need to be modelled to accurately estimate queueing system

performance.

The paper is organized as follows: In the following

section we present our method for representing and

simulating NSNR arrival processes and prove its basic

properties. We then describe a specific implementation

of this method and introduce a tool (which is available

for download) for generating NSNR arrivals. We use

a queueing example to illustrate the dangers of blindly

using Poisson arrivals when they are not appropriate.

Conclusions are offered at the end.

2. Theory

Our goal is to define and simulate a sequence of interarrival

times {Wn, nX1} such that the arrival counting process

I(t)¼max{nX0: Vnpt} (where Vn¼
P

i¼ 1
n Wi) is non-sta-

tionary and non-renewal in easily controllable and under-

standable ways. In particular, the situation we address is

when there is a desired time-varying arrival rate and a

possibility of dependence between arrivals. We will define,

by construction, a stochastic process that exactly matches

the desired arrival rate, and gives the user some control of

the marginal interarrival-time variance and autocorrelation.

We do not assume, or even expect, that the desired arrival

process is an instance of our constructed family; rather we

seek to match or approximate some important character-

istics of their process.

We begin with a set of stationary non-negative interarrival

times {Xn, nX1}, and let Sn denote the time of the nth

arrival; that is, S0¼ 0 and Sn¼
P

i¼ 1
n Xi, for n¼ 1, 2, y. Let

N(t) denote the number of arrivals that have occurred on or

before time t; that is, N(t)¼max{nX0: Snpt}, for tX0. We

assume that N(t) is initialized in equilibrium, so that, in

particular, E{N(t)}¼ rt, for all tX0, for some fixed arrival

rate r40, and X2, X3,y are identically distributed (while X1

has the associated equilibrium distribution).

The index of dispersion for counts (eg, Sriram and Whitt,

1986) for this process is

IDC ¼ lim
t!1

VarfNðtÞg
EfNðtÞg ð1Þ

which we assume exists (more discussion of this assumption

follows). For a Poisson process IDC¼ 1; for an equilibrium

renewal process IDC¼ cv2, the squared coefficient of

variation of X2. Notice that (1) implies that for large t,

Var{N(t)}EIDC �E{N(t)}. From here on we will assume

r¼ 1.

The IDC is not an intuitively understandable measure of

variability and dependence. However, for many stationary

arrival processes it is equal to the index of dispersion for

intervals (IDI, Gusella, 1991)

IDC ¼ IDI � lim
n!1

VarfSng
nE2fX2g

¼ cv2 1 þ 2
X1
j¼1

rj

 !

where rj is the lag-j autocorrelation of the stationary

interarrival times X2, X3, y. Therefore, IDC captures both

the variability (via cv2) and dependence (via 1þ 2
P

j¼ 1
N rj) in

a stationary arrival process.

For IDI¼ IDC, it is clear that the autocorrelation

structure of the interarrival times must be summable, ruling

out certain types of long-range dependence (eg, see Leland

et al, 1994 and references therein). More precisely,

Theorem 7.3.1 of Whitt (2002) implies that the IDI and

IDC will exist and be equal if the arrival times Sn of the

stationary arrival-counting process N(t) satisfy a Central

Limit Theorem of the form

1ffiffiffi
n
p ðSn � nmÞ �!D Nð0; t2Þ:

Now suppose that r(t), tX0, is the desired, integrable non-

negative arrival rate for I(t), and let RðtÞ ¼
R t
0
rðsÞds.

Therefore, the ‘arrival rate’ r(t) is the instantaneous rate of

change of the number of arrivals of non-stationary arrival

process I(t) at time t. For sARþ , define R�1(s)�inf{t:
R(t)Xs}. Then we have the following algorithm for

generating NSNR processes.

Algorithm 1

The Inversion Method for NSNR Processes

1. Set V0¼ 0, index counter n¼ 1. Generate S1. Set

V1¼R�1(S1).

2. Return interarrival time Wn¼Vn�Vn�1.

3. Set n¼ nþ 1. Generate Xn. Set Sn¼Sn�1þXn and Vn¼
R�1(Sn).

4. Go to Step 2.

This algorithm generalizes Algorithm 2.1 of Gerhardt and

Nelson (2009) to stationary non-renewal base processes.

Figure 1 illustrates the inversion method when r (t)¼ 2t

customers/time, so that R(t)¼ t2; in words, the arrival rate is

linearly increasing over time. The circles on the vertical axis

are arrival times in the rate-1 base process N(t), while the

arrows on the horizontal axis are the arrival times in the

non-stationary arrival process I(t).

We have the following properties of I(t):

Theorem 1

E{I(t)}¼R(t), for all tX0, and Var{I(t)}EIDC �R(t), for

large t.
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Proof

Since N(t) is an equilibrium arrival process with r¼ 1, we

have E{N(t)}¼ t, for all tX0, while Var{N(t)}EIDC � t, for
large t. Thus,

EfIðtÞg ¼ EfE½IðtÞjNðRðtÞÞ�g
¼ EfNðRðtÞÞg
¼ RðtÞ

for all tX0, while

VarfIðtÞg ¼ EfVar½IðtÞjNðRðtÞÞ�g
þ VarfE½IðtÞjNðRðtÞÞ�g

¼ 0 þ VarfNðRðtÞÞg
� IDC � RðtÞ

for large t. &

Thus, I(t) has the desired arrival rate, while preserving the

IDC of the stationary base arrival process N(t) from which

it was derived. When N(t) is a rate-1 Poisson process, this is

the well-known inversion method for generating an NSPP

(see, for instance, Çinlar, 1975). Gerhardt and Nelson (2009)

extended this method (along with the so-called ‘thinning’

method) to non-stationary, non-Poisson processes (but still a

renewal base process).

In summary, the inversion method attains the desired

arrival rate while transferring the IDC of the base process to

the NSNR arrival process. In the next section we describe

a particular implementation of this result that facilitates

analysis.

3. Modelling arrival processes for analysis

The inversion method provides a basis for constructing

NSNR arrival processes with control over the arrival rate

r(t), marginal variability of the interarrival times cv2, and

dependence among the interarrival times 1þ 2
P

j¼ 1
N rj. In

this section we describe a specific implementation that is

highly suitable for analysis.

4. Arrival rate

The desired arrival rate r(t) should be specified in an intuitive

manner that also facilitates inversion of R(t). A piecewise-

constant arrival rate fills this need, since R(t) is then

piecewise-linear and therefore easily inverted. It is also

natural for the modeller to think in terms of the hourly,

daily, weekly, etc arrival rate, and if data on arrivals are

available, a piecewise-constant rate function is easily

estimated (eg, Law, 2007). Figure 2 shows the point-and-

click graphical interface used in the commercial simulation

software Arena to specify a piecewise-constant arrival rate

function hour-by-hour.

5. Base process

For the base arrival process N(t), we suggest the Markov-

MECO process of Johnson (1998). The Markov-MECO is

a particular case of a Markovian arrival process (MAP);

MAPs represent interarrival times as the time to absorp-

tion of a continuous-time Markov chain (CTMC) where the

initial state of the next interarrival time depends upon which

absorbing state the previous interarrival time entered.

The Markov-MECO is based on the MECO (Mixture of

Erlangs of Common Order) renewal process that can capture

any feasible first three moments (equivalently mean,

variance, and skewness) of the interrenewal time (Johnson

and Taaffe, 1989). The Markov-MECO extends the MECO

to non-renewal arrivals by providing a way to control the

dependence between interarrival times (described more fully

below).
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Figure 1 Illustration of the inversion method when r(t)¼ 2t.

Figure 2 Graphical interface for specifying a piecewise
constant arrival rate in Arena (Rockwell Software, Inc.).
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Figure 3 shows one representation of how a Markov-

MECO works. The current interarrival time has either an

Erlang (k, l1) distribution or an Erlang(k, l2) distribution
(the ‘common order’ is k); which Erlang distribution provides

the next interarrival time is governed by a discrete-time

Markov chain with transition probabilities pij.

As discussed in Gerhardt and Nelson (2009), a key benefit

of using a MAP base process is that it is easy to initialize in

equilibrium, requiring only that the distribution of the

current state of the CTMC in equilibrium be computed;

given the current state, the remaining time in that state is

always exponentially distributed.

Since the arrival rate for the base Markov-MECO must

be 1, this leaves three additional parameters for the user:

cv(where cv¼Ocv2), the third moment or skewness of the

interarrival-time distribution, and some measure of depen-

dence between interarrival times. Skewness is not a

parameter that is easily selected by intuition, so we do not

ask the user to provide it and instead use an implied third

moment obtained in the following way: We select a

Markovian distribution that is fully specified by knowing

only its mean and cv, choose its parameters to match our

desired mean of 1 and cv, and then use its third moment

as the third moment for our Markov-MECO. Specifically,

we do the following:

1. If cvo1, then we use a MECon distribution (Mixture

of Erlangs of consecutive order, see for instance Tijms,

1994) and extract its implied third moment.

2. If cvX1, then we use a balanced hyperexponential

distribution (see for instance Sauer and Chandy, 1975)

and extract its implied third moment.

For a Markov-MECO, the dependence can be specified

either as r1 or as 1þ 2
P

j¼ 1
N rj; these two are equivalent as

the Markov-MECO has geometrically decreasing autocor-

relations (ie, rj¼r1n
j, where n is a function of the Markov-

MECO parameters). In our implementation, the user

specifies r1.
Figure 4 shows the interface to our tool for allowing users

to easily specify and modify an NSNR arrival process. The

user is asked for a piecewise-constant arrival-rate function,

a simulation end time, a number of replications, and a desired

cv2 and r1. The software—which is written in VBA for

Excel—then produces a spreadsheet of arrival or interarrival

times, with one replication per column, that could be read

into a simulation program. Notice that specifying a constant

arrival rate with cv2¼ 1 and r1¼ 0 gives a Poisson arrival

p
11

Erlang(k,λ1) Erlang(k,λ
2
)

1 – p
11

1 – p
22

p22

Figure 3 The Markov chain that describes Markov-MECO
interarrival times.

Figure 4 Markov-MECO-based tool for generating NSNR arrival processes.
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process, and the same specifications with a time-varying

arrival rate provide an NSPP. The spreadsheet is available

for download at users.iems.northwestern.edu/Bnelsonb/

NSNR.xls.

6. Illustration

It is intuitively clear that if the load on a service system

varies significantly over time then ignoring the time-

dependent arrival rate may mask a significant aspect of

system performance. This is why the NSPP is so widely

applied. However, it is less well known that deviations from

‘Poissonness’ also matter.

Many queueing approximations account for the impact

of correlation among interarrival times by adjusting the

variance of a renewal arrival process rather than actually

incorporating dependence (eg, Whitt, 1981). However,

dependence can have an effect that is distinct from

variability, as we illustrate in this section. Therefore, it is

important to be able to control both variability and

dependence in arrival processes.

Consider an arrival process with the piecewise-constant

arrival rate given in Table 1. If the arrival process is an

NSPP, then this fully characterizes it. Suppose that arrivals

join a single-server, first-come-first-served queue with expo-

nentially distributed service times (with mean 1/6), and we

are interested in the mean and standard deviation of the

number of customers in the queue over time.

If the arrival process is not Poisson, then our method

allows control of Var{I(t)}/E{I(t)} through the IDI; notice

that if variability and dependence were interchangeable

when it comes to queueing performance, then only the IDI

would matter and not cv2 and 1þ 2
P

j¼ 1
N rj individually.

To illustrate that this is not the case, we feed the queue

with two arrival processes that have the same IDI¼ 524

but are obtained via different combinations of cv2 and

1þ 2
P

j¼ 1
N rj. In the first queue, the base process is a MECO

renewal process with cv2¼ 524 and r1¼ 0, yielding what

Gerhardt and Nelson (2009) call an NSNP arrival process.

In the second queue, the base process is a Markov-MECO

with cv2¼ 2 and r1¼ 0.9 (also yielding IDI¼ 524), giving

NSNR arrivals.

Plots of the time-dependent mean and standard deviation

of the queue size are provided in Figures 5 and 6. For

comparison purposes, results with NSPP arrivals having the

same arrival rate are included as well. For each queue the

plot was produced by simulating the queue and averaging

across 1000 replications; the standard errors in both plots

are roughly 3% of the estimated values.

The effect of variability in the arrival process is apparent,

as both moments in the non-Poisson queues significantly

dwarf the corresponding moments in the NSPP queue.

However, the effect of dependence is also quite noticeable,

as the mean and standard deviation of queue size in the

NSNP queue are typically twice as large as that of the

NSNR queue. This indicates that the highly positively

correlated interarrival times in the NSNR queue lead to

lower variability in the queue size than in the corresponding

Table 1 A piecewise-constant arrival rate function

Interval start time Rate (arrivals/time)

0 6
5 1.85
10 0.8
15 2.25
20 5.65
25 2.55
30 7.15
35 7.35
40 3.05
45 3.2
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Figure 5 Time-dependent mean queue size of a ? /M/1
queue, with arrivals from an NSPP process, an NSNP process
with cv2¼ 524 and r1¼ 0, and an NSNR process with cv2¼ 2
and r1¼ 0.9.
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Figure 6 Time-dependent standard deviation of queue size of
a ? /M/1 queue, with arrivals from an NSPP process, an
NSNP process with cv2¼ 524 and r1¼ 0, and an NSNR process
with cv2¼ 2 and r1¼ 0.9.

BL Nelson and I Gerhardt—Simulating non-stationary processes 7



AUTHOR C
OPY

NSNP queue, even though both queues have arrival pro-

cesses with the same arrival rate and IDI.

7. Conclusions

We have presented a basic relationship between a stationary,

rate-1 base arrival process and its transformation via the

inverse integrated rate function R(t): the arrival rate r(t)¼
dR(t)/dt is attained, and certain properties of the marginal

variance and dependence structure of the base process are

preserved by the transformation. Using this result we

constructed a tool for defining and generating non-stationary,

non-renewal arrival processes for simulation that only

requires the user to provide a desired piecewise-constant

arrival rate, cv2, and lag-1 autocorrelation of the base process.

With this tool the modeller can easily evaluate the impact of

departures from Poissonness on the conclusions of a simu-

lation study. An example illustrated the importance of cap-

turing both variability and dependence in an arrival process.

The problem of estimating base-process parameters

from data—which was solved for renewal base processes

by Gerhardt and Nelson (2009)—is still open when the

interarrival times exhibit dependence.

Acknowledgements—This work was supported by National Science
Foundation Grant DMII-0521857.

References
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