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Batch size effects on the efficiency of control 
variates in simulation * 
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Abstract: This paper considers the combined use of control variates and batching for estimating the 
steady-state mean of an infinite-horizon process via simulation. Properties of the point and interval 
estimators from such a procedure are derived as functions of the number of batches and the number of 
control variates when the total sample size is fixed. 
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1. Introduction 

Variance reduction techniques (VRTs) are used 
to reduce the population variance of estimators 
derived from simulation experiments on models of 
stochastic processes. Recent surveys of variance 
reduction include those of Nelson (1987), Nelson 
and Schmeiser (1986), and Wilson (1984). Most 
VRTs are designed for finite-horizon (sometimes 
called 'transient' or 'terminating') processes for 
which the natural experiment design is to sample 
independent and identically distributed (i.i.d.) 
realizations of the process. They can be directly 
adapted to infinite-horizon (sometimes called 
'steady-state') processes by sampling i.i.d. (and 
usually long) realizations of the process. However, 
this approach may be impractical because of the 
need to model or delete an initial-transient period 
from each realization. 
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In simulation output analysis, the initial-tran- 
sient problem has led to the development of meth- 
ods for point and interval estimation based on a 
single realization; these include nonoverlapping 
batch means (Schmeiser, 1982), overlapping batch 
means (Meketon and Schmeiser, 1984), regenera- 
tion (Crane and Lemoine, 1977), autoregressive 
representation (Schriber and Andrews, 1984), 
spectral analysis (Heidelberger and Welch, 1981), 
and standardized time series (Schruben, 1983). 
Similarly, it is desirable to apply VRTs in single- 
realization designs. This paper develops one ap- 
proach. 

The nonoverlapping batch means method 
( 'batch means' from here one) and the regenera- 
tion method (at least attempt to) find i.i.d, batch 
means and segments of simulation output, respec- 
tively, within the output from a single realization. 
Thus, they are good candidate methods to com- 
bine with VRTs designed for i.i.d, realizations. If 
an automated procedure is desired, thenthe  regen- 
eration method is less attractive because of the 
need to identify regeneration points. The batch 
means method, while only approximating inde- 
pendence, is a procedure that can be almost en- 
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tirely automated (see, for example, Fishman, 1978; 
Law and Carson, 1979; Mechanic and McKay, 
1966; Schriber and Andrews, 1979). 

In this paper we consider the combined use of 
the batch means method of output analysis and 
the control variates VRT. Previously, Iglehart and 
Lewis (1979), Lavenberg and Welch (1981), and 
Wilson and Pritsker (1984a, b) combined the re- 
generation method and control variates. Sharon 
and Nelson (1988) give some empirical results for 
using a single control variate with batch means. 

2. R e v i e w  of  batch  m e a n s  and contro l  variates  

To review the batch means method and control 
variates VRT, let the output of the simulation 
experiment be represented by a sequence of iden- 
tically distributed, but possibly dependent, ran- 
dom (column) v e c t o r s  Z i = [Yi, Xl i ,  X2i . . . . .  Xqi] ' ,  
i = 1, 2 . . . .  , n. Assuming that the sequence is iden- 
tically distributed implies that initial-transient ef- 
fects have somehow been mitigated. Let E[Zg] = 
[0 ,  ~1 '  ~2  . . . . .  ~q]' and Cov[Zi] = Z, where 

(1) 

so that oy 2 is the scalar Var[Y~], ~ is the q × q 
matrix of Cov[Xj~, X,,,i], j ,  m = 1, 2 . . . . .  q, and 
ovx is the q ×  1 vector of Cov[~,  Xji], j =  
1, 2 . . . . .  q. Thus, the square of the multiple corre- 
lation coefficient between ~ and [ Xu, X2i . . . . .  Xqi ] 
is 

t --1 

- 2 (2 )  
~F 

For our purposes, 0 is the unknown parameter 
of interest and Xa~, X2, . . . . .  Xq~ are the q control 
variates. To be useful as a control variate, in the 
sense that we use the term, ~ must be correlated 
with Yi and /~j = E[Xj~] must be known. For  con- 
venience, define the column vector 

[ X i - -  ]~] = [ X l i -  ~ l ,  X 2 i -  ~2 . . . . .  X q i -  ~q]" , 

which has expectation [0, 0 . . . . .  0]' and covariance 
matrix Z~. Our convention is to use single sub- 
scripts to denote column vectors and double sub- 
scripts to denote scalar elements, with the excep- 
tion of Yt which is a scalar random variable. 

The idea behind batch means is to transform 

the n dependent vectors Za, Z2 , . . . ,  Z n into fewer 
(almost) independent and (almost) multivariate 
normally distributed batch vectors 

jb 

L(k) =b-' E z, 
i = ( j - 1 ) b + l  

for j = l ,  2 , . . . , k ;  b = n / k  is called the batch 
size, k the number of batches, and vector addition 
is component-by-component.  We use the conven- 
tion that any random variable with a bar and 
argument k is a batch mean of b = n / k  observa- 
tions; for example, ~ ( k )  is the j t h  batch mean of 
( ~  } with batch size b = n /k .  The batch means 
are expressed as functions of k rather than b 
because the number of batches will be the primary 
factor of interest later. Throughout this paper, the 
total sample size n is fixed, although our results 
are useful when n is determined sequentially as 
discussed in the last section. 

Given k batch means, the control-variate 
estimator of 0 is 

/~(k, q) = Y - f i ( k ,  q)'[2-~], (3) 

where 

k 

j = l  i~1  

k 

=k-' E [L(k)-.] 
j = l  

?/ 

=n-' E [x , - . ] ,  
i=1 

and 

- I ^  
f i ( k ,  q ) =  2~(k, q) avx(k, q). (4) 

The quantities on the right-hand side of (4) are the 
sample versions of Zx(k ,  q ) = C o v [ ~ ( k ) ]  and 
%x(k, q ) =  Cov[~(k) ,  ~.(k)] ;  specifically, 

2 x ( k ,  q) 
k 

= ( k - 1 ) - '  ~ [ ~ . ( k )  - X] [X j (k )  - X ] '  
j = l  

and 

avx (k ,q )  
k 

= ( k - l )  -~ ]~ [ X ~ ( k ) - X ] [ g . ( k ) - Y ] .  
j ~ l  
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Lavenberg and Welch (1981) considered the 
special case when k = n (no batching), and the 
{ Z i } are independent (q + 1)-variate normal vec- 
tors. They showed that E[O(n, q)] = 0 and 

Var[ t~(n, q)] = (1 - R2yx)(n - 2) 

~ ( n - q -  2) (Oy2/n). 

This compares to Var[Y] = oy2/n, showing that a 
variance reduction (relative to Y) can be achieved 
if 1 - Ry2x < (n - q - 2 ) / (n  - 2), and emphasizing 
the need to keep the sample size, n, large with 
respect to the number of control variates, q. In 
addition, they showed that 

VarifY(n, q)] /Var[0*(n ,  q)] 

= ( n -  2 ) / ( n -  q -  2), 

where O*(n, q) is the same as (3) except that 
/J(n, q) is replaced by fl*(n, q)=2~lt~v x. This 
ratio quantifies the penalty for having to estimate 
the optimal control-variate multiplier fl * (n, q). 

Schmeiser (1982) considered the effects of 
batching when q = 0 (no control variates). He 
derived properties of the confidence interval for 0 
formed from different numbers of batch means 
when the total sample size n is fixed and the batch 
means are actually i.i.d, normal; performance 
measures included the expectation, standard devi- 
ation, and coefficient of variation of the half 
width of the confidence interval, and the probabil- 
ity that the interval covers points other than 0. 
Schmeiser found that these performance measures 
do not improve significantly for k > 30 batches, 
no matter how large n is. Of course, the batch 
means are not i.i.d, normal in general. However, 
results from batching i.i.d, normal data are rele- 
vant for batching dependent, nonnormal data in 
the following sense: output analysis based on batch 
means assumes that at some number of batches 
(equivalently batch size) the dependence and non- 
normality of the batch means can be ignored, 
and that this remains true for smaller numbers 
of batches (equivalently larger batch sizes). That 
is, for small enough k the results for i.i.d, normal 
batch means hold, at least approximately. 
Schmeiser showed that there is little benefit from 
using a large number of batches even if the batch 
means remain i.i.d, normal for larger k. This is 
encouraging because at larger numbers of batches 
(equivalently smaller batch size) the dependence 

and nonnormality of the batch means may be 
significant. Thus, there is potential harm from 
using a large number of batches when the data is 
dependent, but little harm from using a small 
number of batches when the data is independent. 

In this paper we consider the effect on variance 
reduction and confidence interval performance of 
simultaneously applying control variates and 
batching. The results of Lavenberg and Welch 
(1981), and Schmeiser (1982) are special cases of 
these results when the number of batches is fixed 
at n and when q = 0, respectively. We have two 
effects and their interaction to consider: (1) the 
effect of using additional control variates (increas- 
ing q) relative to the number of batches k, and (2) 
the effect of using fewer, larger batches (decreas- 
ing k) than necessary to achieve approximate 
( q +  1)-variate normality and independence for 
q >~ 0 control variates. 

The results in this paper are derived by treating 
the output process {Z i} as i.i.d. ( q +  1)-variate 
normal vectors; specifically, we make the follow- 
ing three assumptions. 

(i) Initial transient effects have been removed, 
i.e., the output process Z i is covariance 
stationary. 

(ii) For an output sequence of length n, the 
dependence and nonnormality of the batch 
means is negligible for all values of k. 

(iii) The problem of b = n / k  not being integer 
is insignificant. 

Assumption (ii) is made for convenience of 
exposition. In Appendix A we show that the re- 
sults below hold under a weaker assumption that 
for some number of batches (equivalently batch 
size) the batch means process is essentially an i.i.d. 
normal process. This is the standard assumption 
of batch means analysis. Thus, our results apply to 
the steady-state simulation problem that moti- 
vated the research. 

We have been implicitly assuming that the 
simulation output process can be represented by 
Zi, i = 1, 2 . . . . .  n, as defined above. In some simu- 
lation experiments it may not be the case that 
each output Y, is naturally associated with exactly 
q control variates, or that the output process has a 
discrete-time index. Prebatching, possibly by time 
rather than count, is one approach that yields an 
output process of the form considered here. For 
example, if we have a continuous-time process 
Z(t) ,  0 ~< t ~< T, then 
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- -  jb 
Zj(k)  = b-a f~j_l)bZ(t ) dt, 

where b = T/k, and ~- is fixed rather than n. We 
make this explicit by adding the following as- 
sumption. 

(iv) The simulation output process can be rep- 
resented by the (q + 1)-variate random vectors Zi, 
i = 1 , 2  . . . . .  n. 

For the control variates with which we are most 
familiar--i.i.d, sequences of input random varia- 
bles--batching by time is effective. Regardless, to 
apply control variates and batching together we 
must first obtain a process of the form assumed in 
(iv). 

For example, Ahonuevo and Nelson (1988) 
simulated a machine-repair system consisting of 
seven machines that are subject to failure. When a 
machine fails, it receives either a major or minor 
repair and an inspection before returning to 
service. The parameter of interest, 0, was the 
long-run expected number of functioning ma- 
chines. Thus, the output Y(t), the number of 
functioning machines at time t, is a continuous- 
time index variable. The control variates were X~i, 
the i th machine lifetime, Xzi, the time to com- 
plete the i th major repair, X3i, the time to com- 
plete the ith minor repair, and X4~, the time to 
inspect the ith repaired machine; they are all 
discrete-time index variables. The system was 
simulated for ~" = 7400 time units, discarding re- 
suits from the first 1000 time units, and batching 
was done by time. Thus, a batch mean is the 
sample mean of all values realized during a time 
interval, for example, k = 50 batches of size b = 
128 time units. 

In the next section, results analogous to those 
of Lavenberg and Welch (1981) for the variance of 
the control-variate estimator are presented. In Sec- 
tions 4 and 5 we quantify the effect of changing k 
and q on confidence interval half width and 
coverage probability, analogous to Schmeiser 
(1982). Section 6 discusses the implications of 
these results. 

3. Variance 

Let Z(k ,  q ) =  Cov[Zj(k)],  the covariance ma- 
trix of a batch-mean vector. Under assumptions 
(i)-(iv), Z(k, q ) /k  = Z(1, q), where X(1, q) is the 
covariance matrix of Z = [ Y ,  X ' ] ' .  Thus, the 
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square of the multiple correlation coefficient be- 
tween ~ ( k )  and Xj(k), which we denote by 
R~.x[X(k, q)], is not a function of k (we will 
retain the argument k, however, as a reminder 
that we are batching). 

Under assumptions (i)-(iv) we have the follow- 
ing results; Result 1 is immediate from Lavenberg 
and Welch (1981, equation (34)), and Results 2 
and 3 follow from the above discussion. When we 
say that q is 'fixed', we mean that not only the 
number of control variates, but also the particular 
random variables chosen as control variates, are 
fixed. Notice that, unlike the case that Schmeiser 
examined where batching does not affect the point 
estimator, batching does affect the variance of the 
control-variate point estimator. 

Result 1. For fixed q and q < k, 

Var [0 (k ,  q)] /  Var[Y] 

= ( 1 -  R2x[Z(k, q ) l ) ( k -  2 ) / ( k - q -  2). 

Result 2. For fixed q and q < k I < k 2, 

Var[O(k, ,  q)] /Var[0(k2 ,  q)] 

(k,  - 2) (k  2 -  q -  2) 
= > 1 .  

(k  2 - 2)(/t% - q - 2) 

Clearly, increasing k decreases variance relative 
to Var[Y]. Result 2 quantifies the loss in variance 
reduction from using fewer, larger batches for 
fixed q. The loss is very little when 0 ~< q ~< 5 and 
30 ~< k 1 ~< 60, no matter how large k 2 is. 

Investigation of the variance of 0(k, q) when q 
is varied is more difficult, since R2yx[Z(k, q)] 
changes not only as q changes but also with the 
particular control variates selected. Consider two 
different sets of control variates containing qa and 
qz control variates (ql may equal q2). We denote 
the associated covariance matrices as Z(k ,  q~) and 
Z(k ,  q2), and the control-variate estimators as 
/~(k, ql) and O(k, q2) ,  respectively. Then we have 
the following result. 

Result 3. Var[0(k, q2)l < Var[&k,  ql)l if and only 
if 

1 - R Z ~ [ ~ ( k ,  q2)] k - q 2 - 2  
< 

a -  R~[:C(k, ql)l k - q l - 2 "  
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2 Since 1 - Ryx[,~(k, q)] is the fraction of varia- 
tion in Y not explained (controlled) by the control 
variates, 

(1 - R2yx[Y,(k, q 2 ) ] ) / ( 1 -  R2x[Y.(k, ql ) ] )  

is the ratio of the unexplained variation in Y using 
the second set of control variates to the un- 
explained variation using the first set of control 
variates. As a special case of Result 3, consider 
adding control variates to a fixed set of ql control 
variates (thus, q2 > ql). In this case, Ry2A2J(k, q)] 
is nondecreasing in q, so Result 3 gives a bound 
on the increase in 2 Ry~[~(k, q)] necessary to in- 
sure that adding control variates leads to a vari- 
ance reduction. To be even more specific, consider 
adding a single control variate to a fixed set of q~ 
control variates (thus, q2 = ql + 1). Table 1 gives 
values of (k  - q2 - 2 ) / ( k  - ql - 2) for various 
values of k and q2. For k >~ 30, the ratio is stable 
in the range of I to 5 control variates, and is close 
to 1, meaning that the addition of another control 
variate is not likely to degrade (increase) the vari- 
ance of 0(k, q), while it may reduce the variance. 

The inequality in Result 3 holds if and only if 

2 R2~[y"(k'qz)]-Ryx[ y'(k'ql)] q2-ql 
> 

2 1-Ryx[Z(k,  ql)] k - q 1 - 2  

suit 3 because 1 - R2yx[~,(k, q)] is the central term 
in the variance of O(k, q). However, all results in 
this section and the next could be expressed in 
terms of the alternate ratio. 

In the next two sections we examine the effect 
on confidence interval performance of varying 
both k and q. 

4. Properties of  the half width 

When assumptions (i)-(iv) hold, it follows from 
Lavenberg and Welch (1981, Appendix A) that a 
(1 - a)100% confidence interval for 0 is 0(k, q) + 
H(a/2, k, q), where 

H(a/2, k, q) 

=t(a/2, k-q-1)(~ar[O(k,q)])  1/2, (5) 

~a r [O(k ,  q)] = 8Z(k, q)S, 
k 

~2(k,  q) = ( k -  q -  1) -1 ~ ( ~ ( k ) -  O(k, q) 
j = l  

-l~(k. q) ' [~(k)- Ix])  z, 

S= k -~ + ( k -  1)-l[ 2-t~]'2x( k, q ) - I [ 2 - . ] ,  

In the special case that we are adding control 
variates and q2 = ql + 1, the term on the left-hand 
side is the increment of explained variation from 
the (ql + 1)st control variate as a fraction of the 
remaining unexplained variation with ql control 
variates. This ratio may seem more natural in 
some contexts. We have choosen the ratio in Re- 

Table 1 
For fixed sample size n and ql control variates, the ratio 
(k - q2 - 2 ) / (  k - ql - 2 )  for adding a control variate 

k qz = ql + 1 

1 2 3 4 5 

8 0.83 0.80 0.75 0.67 0.50 
10 0.88 0.86 0.83 0.80 0.75 
20 0.94 0.94 0.94 0.93 0.93 
30 0.96 0.96 0.96 0.96 0.96 
41 0.97 0.97 0.97 0.97 0.97 
51 0.98 0.98 0.98 0.98 0.98 
61 0.98 0.98 0.98 0.98 0.98 

121 0.99 0.99 0.99 0.99 0.99 
oo 1.00 1.00 1.00 1.00 1.00 

and t(a/2, d) is the 1 -  ( a / 2 )  quantile of the t 
distribution with d degrees of freedom. 

The random variable H( - )  is called the half 
width of the confidence interval. We are interested 
in properties of H(a/2, k, q) as k, q, and a vary, 
and specifically in E[H(a/2, k, q)], (Var[H(a/2, 
k, q)])1/2, and CV[H(a/2, k, q)] (the coefficient 
of variation). When the arguments of H ( . )  are 
obvious, these performance measures are abbrevi- 
ated as E[H], VV/~-~,  and CV[H], respec- 
tively. 

Since the confidence interval formed under as- 
sumptions (i)-(iv) achieves the nominal probabil- 
ity of coverage 1 - a, the smaller the values of all 
three performance measures the better. The coeffi- 
cient of variation is a particularly useful measure 
since it scales V ~ - ~ H ]  by E[H], does not de- 
pend on a, and is dimensionless. Of course, CV[H] 
should not be considered without reference to 
E[H]. However, for the confidence interval con- 
sidered here, both measures increase and decrease 
together, so the coefficient of variation provides 
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an  a p p r o p r i a t e  measure  of  conf idence  interval  sta-  
bi l i ty .  The  results  be low are based  on express ions  

der ived  in A p p e n d i x  B. 

4.1. Fixed q 

Fi rs t  cons ider  the case when the con t ro l  var ia tes  
are  f ixed b u t  the n u m b e r  of ba tches  varies,  re- 
m e m b e r i n g  that  n is also fixed. The  results  can  be  
summar i zed  as follows. 

(1) As  k increases,  all three pe r fo rmance  meas-  
ures decrease  bu t  at  a decreas ing  rate;  in o ther  
words ,  the gain  f rom more  ba tches  decrease  as the 
n u m b e r  of  ba tches  increases.  

(2) F o r  large q, s ignif icant  decreases  in the 
p e r f o r m a n c e  measures  occur  at larger  values of  k; 
in o ther  words,  as q increases  having  k large is 

more  valuable .  
(3) F o r  small  a,  the rate  of  decrease  of  the 

pe r fo rmance  measures  wi th  increas ing  k is slower;  
in o ther  words ,  the benef i t  f rom k large is grea ter  

for small  a. 
These  s u m m a r y  conclus ions  are  s imilar  to those  

of  Schmeiser  (1982) for q = 0, which is a special  
case. However ,  while Schmeiser  found  l i t t le  ad-  
d i t iona l  benef i t  f rom k > 30 batches ,  this u p p e r  
l imi t  increases  as more  cont ro l  var ia tes  are used. 
F o r  example ,  Tab le  2 shows the effect of  increas-  
ing k for a = 0.05 and  q = 0, 1, 5. The  number s  
of  ba tches  d i sp layed  were selected to m a t c h  
Schmeiser ' s  (1982). The  uni ts  on E[H] and  

are  {1 - R2yx[Y,(k, q)])Oy2/n }1/2. Thus,  

the  units  differ  f rom co lunm to co lumn in the  
tab le  (since q is different) ,  bu t  not  wi th in  a col- 
umn.  Since the uni ts  differ,  it  is i m p o r t a n t  to 

real ize tha t  the pe r fo rmance  of  H ( . )  m a y  be  sig- 
n i f icant ly  i m p r o v e d  by  using more  or  d i f ferent  
con t ro l  var ia tes  p rov ided  R2yx[X(k, q)] signifi-  
can t ly  increases,  bu t  compar i son  be tween  the col- 
umns  does not  show this. However ,  we can com- 
pa re  the relat ive changes  as k varies. 

F o r  example ,  at  a = 0.05 the decreases  in E [ H ] ,  

~ ,  and  C V [ H ]  when  going f rom k = 30 to 
k = 61 are 2, 32, and  30%, respect ively,  when 
q - - 0 ;  they are 3, 33, and  31% when q = 1; bu t  
they are 7, 42, and  37% when q = 5 ( these per-  
centage changes are  based  on three dec imal  places,  
while the tables  on ly  show two dec imal  places).  In  
l ight  of Lavenberg  and Welch  (1981), it is not  
surpr is ing  that  larger  k is des i rable  when q is 
large;  the tables  quan t i fy  this for  the pe r fo rmance  
of  H(a/2,  k, q). 

W e  c a n n o t  d i rec t ly  c o m p a r e  E[H] and  

~ ]  for di f ferent  values of  q, bu t  can  di-  
rect ly  compare  C V [ H ]  since it is d imensionless .  In  
F igure  1, C V [ H ]  is p lo t t ed  as a funct ion  of  the 
n u m b e r  of  batches ,  k. Each  curve represents  a 
di f ferent  n u m b e r  of cont ro l  variates,  q. One  way 
to in te rpre t  the curves is to f ind  the equivalent  
n u m b e r  of ba tches  requi red  to achieve the same 
coeff ic ient  of  va r ia t ion  for di f ferent  numbers  of  
con t ro l  variates.  F o r  example ,  when k = 8 and  
q = 0, C V [ H ]  = 0.272. To  achieve the same coeffi-  
c ient  of var ia t ion  with q = 1 or  5 cont ro l  var ia tes  
requires  k = 10 or  16 batches ,  respect ively.  Thus,  
the  add i t i on  of 5 cont ro l  var ia tes  requires  twice as 
m a n y  batches.  However ,  to achieve a C V [ H ]  of  
0.09, which occurs  when k = 61 and  q = 0, re- 
quires  only k = 63 or  70 ba tches  when q = 1 or  5, 
respect ively,  a much  smal ler  pe rcen tage  increase.  

Table 2 
For fixed sample size n and q control variates, the effect of number of batches, k, on H(et/2, k, q) when a = 0.05 

k q=O q=l q = 5  

t(a/2, EtH] ~ ]  CV[H] t(a/2,  E[H] ~ CV[H] t(a/2, E[H] ~ CV[H l 
k - q - l )  k - q - l )  k - q - l )  

8 2.365 2.28 0.62 0.27 2.447 2.55 0.82 0.32 4.303 7.77 7.12 0.92 
10 2.262 2.20 0.53 0.24 2.306 2.38 0.64 0.27 2.776 4.05 2.04 0.50 
20 2.093 2.07 0.34 0.16 2.101 2.13 0.37 0.17 2.145 2.47 0.54 0.22 
30 2.045 2.03 0.27 0.13 2.048 2.07 0.28 0.14 2.064 2.25 0.36 0.16 
41 2.021 2.01 0.23 0.11 2.023 2.04 0.23 0.12 2.030 2.16 0.28 0.13 
51 2.009 2.00 0.20 0.10 2.010 2.02 0.21 0.10 2.014 2.11 0.23 0.11 
61 2.000 1.99 0.18 0.09 2.001 2.01 0.19 0.09 2.004 2.08 0.21 0.10 

121 1.980 1.98 0.13 0.06 1.980 1.98 0.13 0.07 1.981 2.02 0.14 0.07 
oo 1.960 1.96 0 0 1.960 1.96 0 0 1.960 1.96 0 0 
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Figure 1. Comparison, by number of control vafiates q, of 
CV[H(a/2, k,q)] 
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4.2. Fixed k 

Consider adding control variates when the 
number of batches (equivalently the batch size) is 
fixed. Discussing the effect of varying q for fixed 
k is more difficult, since R2x[~(k, q)] changes as 
q changes; in fact, it is nondecreasing when we 
add control variates to a fixed set. Thus, we can- 
not directly compare the properties of the half 
width as q changes. However, we can make com- 
parisons by considering 

( 1 -  RZyx[Y.(k, q + 1 ) ] ) / ( 1 -  R2x[X(k, q)]) ,  

the ratio of the unexplained variation in Y after 
adding the (q + 1)st control variate to the un- 
explained variation before adding it. This ratio, 
which we call the marginal improvement ratio, is 
always less than or equal to 1. However, if it is not 
enough less than 1, then confidence interval per- 
formance, in terms of the properties of the half 

width considered here, is degraded by adding the 
( q + l ) s t  control variate. We let r{M} be the 
breakeven point, or bound, such that 

1 -  R2~[Z(k, q+ l)] 
2 1 - Rs~ [X(k,  q)] 

<~r(M) 

implies that confidence interval performance is no 
worse after adding the (q + 1)st control variate; 
performance is improved if the marginal improve- 
ment ratio is strictly less than r(M}.  We let M 
stand for E[H], or ~ ,  since the bound 
depends on the particular performance measure 
we consider. The results can be summarized as 
follows. 

(1) As q increases, r{ M } decrease for all per- 
formance measures; in other words, the required 
improvement in 2 Ryx[~,(k, q)] is greater for each 
additional control variate added to a fixed set. 

(2) As k increases, r{M} increases and stabi- 
lizes for all values of q; in other words, for large k 
the marginal improvement required for additional 
control variates is less and becomes constant. 

(3) Varying a in the range 0.10, 0.05, and 0.01 
does not significantly affect these results. 

Table 3 shows r{ M } for a = 0.05 and k = 10, 
30 batches as (q, q + 1) goes from (0, 1) to (4, 5). 
When k reaches 30, r{M) has stabilized and is 
close to 1, meaning it is easier to satisfy. However, 

Table 4 
For fixed sample size n and k >~ 41 batches, the marginal 
improvement ratio bound for adding a control variate 

41 0.97 0.92 
51 0.98 0.94 
61 0.98 0.95 
121 0.99 0.98 
o0 1.00 1.00 

Table 3 
For fixed sample size n and k = 10 batches, the marginal improvement ratio bound for adding a control variate when a = 0.05 

(q, q + l )  k=10  k = 3 0  

r{ E[HI} r { ~  } r( E[H]} r { V v I ~ H  ] } 

(0, 1) 0.86 0.66 0.96 0,92 
(1, 2) 0.83 0.63 0.96 0.90 
(2, 3) 0.80 0.60 0.96 0,89 
(3, 4) 0.76 0.55 0.96 0,89 
(4, 5) 0.69 0.47 0.96 0,89 
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comparing Table 3 to the k =  30 row in Ta- 
ble 1 shows that preserving confidence interval 
performance requires greater improvement  in 
R~,x[Z,(k, q)] (smaller marginal improvement  
ratio) than required to preserve point estimator 
variance. Table 4 summarizes the ratios for k = 41, 
51, 61,121, and ~ ,  

5. Probability of coverage 

Under assumptions (i)-(iv), 

p(O~; a, k, q) 

---Pr{I/~(k, q) -011  <<. H ( a / 2 ,  k, q)} 

~ l  - -0[  

for 0~ = 0. In this section we examine the coverage 
function p ( . )  for 01 4= 0. Ideally, p(01; a, k, q) = 
0 for 01 4~ 0, but since that is not possible we 
would like for p ( . )  to decrease rapidly as 0 a gets 
farther away from 0. Let the deviation from 0 be 
A =  10-011  in units of ( ( 1 - R 2 x [ Z ( k ,  q ) ] )o~/  
n }1/2, since the coverage function p ( - )  is symmet-  
ric for positive and negative deviations from 0. 
The derivation of the results below is given in 
Appendix C. 
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Figure 2. Comparison, by number  of batches k, of p(O + 
zl; a, k, q)  for a =  0.05 and q = 0 

that the probabili ty that the confidence interval 
formed from 30 batches covers a value A distance 
from 0 is 0.1 more than one formed from 60 
batches for fixed n. Similar curves for a = 0.10 
and a = 0.01 show the same changes in sensitivity, 
but slightly less or more dramatically, respectively. 

5.2, Fixed k 

5.1. Fixed q 

For  a fixed set of q control variates, 
p(O 6 a, k, q) is a decreasing function of k. Fig- 
ures 2, 3, and 4 show the coverage function at 
various values of k for q = 0, 1, 5 and a = 0.05. 
The units on A differ from figure to figure, but  are 
the same for all curves in a figure. Again, since the 
units differ, it is important  to realize that the 
performance of p ( . )  may be significantly im- 
proved by using more control variates provided 
RZx[Z(k, q)] significantly increases, but  compari-  
son between the figures does not show this. How- 
ever, we can compare the relative changes as k 
varies. 

The sensitivity of the coverage function to k 
changes dramatically as q increases. For  example, 
the difference between the k =  30 and k =  ov 
curves when no control variates are used (Figure 
2) is slight, as reported by Schrneiser (1982). How- 
ever, when q --- 5 control variates, the k = 30 and 
k = 61 curves differ by = 0.1 for some values of 
A, and that much again from k = ~ .  This means 

For a fixed number  of batches, we again look 
at the effect of adding control variates. Figures 5, 
6, and 7 give p ( . )  for k = 10, 30, and 61, respec- 
tively, as q goes from 0 to 5 at the a = 0.05 level. 
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Figure 3. Comparison, by number  of batches k, of p(O + 
,~; a, k, q) for a =  0.05 and q =1 
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Figure 4. Comparison, by number of batches k, of p(O + 
zl; a ,  k ,  q )  fo r  a = 0.05 a n d  q = 5 
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Figure 6. Comparison, by number of control variates q, of 
p(O + A; o~, k ,  q )  fo r  a = 0.05 a n d  k = 30 

Since q changes for each curve in a figure, the 
units on each curve are different (recall that the 
units are { ( 1 -  2 Ryx[Y~(k, q)])o2/n )1/2, which 
changes with q). One way to interpret the curves 
is as the degradation in p ( . )  that would occur if 
the addition of another control variate resulted in 

2 only a negligible increase in Ryx[~(k , q)]. 
As k increases, the coverage function becomes 

less sensitive to the number of  control variates, 

even if the additional control variates contribute 
little. In fact, when k = 61, the curves for q = 0 
and q = 5 are almost identical. However, since 
additional control variates can dramatically de- 
crease p ( . ) ,  another perspective on the figures is 
that as k increases, less is required of  R2x[Y~(k, q)] 
to improve the coverage properties of  the confi- 
dence interval. Similar behavior is observed for 
other values of  a. 
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Figure 5. Comparison, by number of control variates q, of 
p(O + A; a ,  k ,  q )  f o r  a =  0.05 a n d  k = 1 0  
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Figure 7. Comparison, by number of control variates q, of 
p(O + A; a, k, q) fo r  ~ =  0.05 a n d  k = 61 
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6. Implications 

The results in Sections 3, 4, and 5 were derived 
under the assumption that the original output 
process { Z i } is an i.i.d, normal process. There are 
good reasons to batch a process that is already 
i.i.d., such as the outputs from replications in a 
finite-horizon experiment. The unbiasedness of the 
control-variate point estimator and the coverage 
probability of the control-variate confidence inter- 
val both depend on the normality of the output 
process. Even when the output process is i.i.d., it 
may not be normally distributed. Batching im- 
proves the approximation. Thus, point estimator 
bias can be reduced, and confidence interval 
coverage can be improved, by batching indepen- 
dent data. The results in this paper show that little 
is lost in estimator performance if 30 to 60 batches 
are used. 

The results also apply to infinite-horizon ex- 
periments when independent realizations are em- 
ployed and the total sampling budget, n, is fixed. 
In this case, the design decision is how to allocate 
the sampling budget to replications. To use the 
results above, each replication corresponds to a 
batch of size b = n/k, where k is the number of 
replications. Our results suggest dividing the 
budget into a modest number (30 to 60) of long 
replications. Since initial-transient effects are a 
concern, long replications are preferred from that 
standpoint as well. 

The focus of this paper, however, is on the 
design of single-realization experiments. While 
Schmeiser (1982, p. 566) concluded that "10 ~ k ~< 
30 is reasonable for most simulation situations", 
we modify those bounds to 10 ~< k ~< 60 if from 1 
to 5 control variates are employed, particularly if 
the number of control variates is greater than 1. 
As a general principle, the more control variates 
that are used the larger we would like k to be. Of 
course, k should not be so large that dependence 
and nonnormality of the batch means is signifi- 
cant, so k = 60 may not be possible. Our results 
do not account for the biases introduced when k 
is too large, but since the maximum allowable k is 
usually unknown (and ill-defined), the possibility 
that it is small is still more reason to use k no 
larger than necessary for good point and interval 
estimator performance. Our results also show that 
determining the maximum allowable k is not nec- 
essary in many cases, but  rather determining that 

k > 30 or k > 60 is allowable is all that is im- 
portant. 

Ultimately, our findings should be incorporated 
into automated procedures for simulation output 
analysis and variance reduction. Typically, such 
procedures use statistical tests of hypothesis to 
determine if assumptions such as independence 
and normality are significantly violated (see, e.g., 
Chen and Seila, 1987). Because of the nature of 
statistical tests some erroneous decisions will be 
made, particularly since in many cases the hy- 
potheses are known to be false, a priori. The 
smaller the number of batches k (equivalently, the 
larger the batch size b) the better the approxima- 
tion of independence and normality, so an auto- 
mated procedure should not insist on more batches 
than necessary to insure good performance of the 
point and interval estimators. In the range 30 ~< k 
~< 60, the properties of the half width, H(-) ,  and 
the coverage function p( . ) ,  become increasingly 
less sensitive to k and q. The tests of hypothesis 
can be performed with values of k greater than 60, 
but even if a larger k is deemed acceptable further 
reduction of k can be made to gain more confi- 
dence in the approximation without sacrificing 
much in estimator performance. 

Although there are frequently many potential 
control variates in a simulation experiment, it is 
our opinion that it is seldom possible to find more 
than five effective control variates. A subset of 
control variates may be selected from a larger set 
by choosing the ones that appear to make the 
most significant contribution to variance reduc- 
tion. For example, Lavenberg, Moeller and Welch 
(1982), and Wilson and Pritsker (1984b) used for- 
ward selection and stepwise regression procedures, 
respectively, to select control variates in queueing 
network simulation. If batch means or indepen- 
dent reahzations are used, our results suggest ex- 
amining the estimated 2 R vx[Z(k, q)] values (com- 
puted automatically by most regression packages) 
for each fitted regression model and comparing 
them to the marginal improvement ratio bounds. 
As a rule of thumb, our results show that as the 
number of batches approaches 60, the penalty for 
adding even an ineffective control variate is slight, 
while the improvement from adding an effective 
control variate will be great. Thus, we recommend 
that an automated procedure initially search for 
an appropriate number of batches in the range 
30 ~< k ~< 60 to gain robustness from selection er- 
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rors. If at least 30 acceptable batches cannot be 
achieved, then serious consideration should be 
given to increasing the total sample size n. If the 
total sample size is increased, either to improve 
the independence and normality approximation or 
to achieve a confidence interval with prespecified 
half width, our results indicate that there is little 
reason to increase the number of batches beyond 
60. Development of an algorithm based on these 
principles is reported by Afionuevo and Nelson 
(1988). 
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Appendix A 

The derivations below depend on assumptions (i)-(iv), which imply that Z~, i = 1, 2 . . . . .  n, is an i.i.d. 
(q + 1)-variate normal process. However, assumption (ii) can be replaced by the weaker assumption (ii'), 
analogous to Schmeiser (1982): 

(ii ')  For an output process of length n, there exists a (usually unknown) number of batches 2 ~< k*  ~< n 
such that the batch means process Zj(k) ,  j = 1, 2 . . . . .  k, is an i.i.d. (q + 1)-variate normal process for any 
k <~k*. 

The results stated above and derived below hold under assumption (ii ') when k ~< k*.  Of course, there 
is no k*  in general, but the central premise of batch means analysis is that for a small enough number of 
batches (equivalently, large enough batch size) the difference between the batch means process and an i.i.d. 
normal process, in terms of the properties of the point and interval estimators, is negligible. 

To show that the derivations are unaffected by (ii'), recall that we defined 2;(k, q) = Cov[ Zj(k)].  In the 
special case when (Zg } is an i.i.d, process (assumption (ii)), 2(1, q ) =  n-12 .  This relationship does not 
hold under (ii ')  but, for k<~k*, ,Y(1, q )=2~(k ,  q)/k, since the batch means are independent. Thus, 

= Ry~[Z(k, q)] for k ~ k*. 
Results derived below under assumption (ii) also hold under (ii ') when k ~< k * provided they are stated 

in units of ~(1, q). Specifically, the units are 

2 
2 OY(k) = ( 1  2 [•(1, q ) ] )o ~ ,  (1-Ryx[~,(k ,q)])-- ' -  ~ --Ryx 

z = Var[~.(k)]. In the i.i.d, special case (ii), o ~ =  ay2/n. For  simplicity, we derive the results where oy(k) 
under (ii), but a completely analogous derivation yields the same results under (ii ')  for k restricted to be 
less than or equal to k*.  

Appendix B 

Let { X = x } represent the condition that ( X u --- xu . . . . .  Xq, = Xq~ }, i = 1, 2 , . . . ,  n. The key to deriving 
properties of H(a/2, k, q) is that, under (i)-(iv), we can write Var[O(k, q ) [ X = x ]  = ( 1 -  

2 Ry~[ Y~( k, q )])( o2(k ))s, where 

s = k  -a + ( k -  1 ) - a [ ~ -  # ] ' 2 ~ ( k ,  q ) - ' [ Y -  #] 

(see Venkatraman and Wilson, 1986). Now the batch means ~ ( k ) ,  j = 1, 2 . . . . .  k, are i.i.d, q-variate 
normal vectors. Thus, 

k [ . ~ _ # ] , ~ x ( k  ' q ) - l [ ~ _ # ]  - T2(k_  1), 
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where T Z ( k -  1) is a Hotelling T 2 random variable with k -  1 degrees of freedom (Anderson, 1984). 
Using the relationship between the T 2 distribution and the F distribution, we immediately get E[S] = (k 

- 2)/[k(k - q - 2)]. These results are needed below. 
Recall the definition of H(a/2,  k, q) from equation (5). To compute E[H] and Var[H] we first notice 

that 

E[  82(k,  q) lX = x] = (1 - R2x[ Z ( k ,  q)])  o},k,. 

Also, conditional on { X = x }, 

(k - q - 1)82(k,  q) /02(k ,  q) - x 2 ( k  - q - 1), 

where x 2 ( k - q -  1) is a chi-squared random variable with k - q - 1  degrees of freedom (Rao, 1973). 
Then, analogous to Schmeiser (1982, Appendix A), 

V/ 2 / ' ( (k  - q ) / 2 )  
E[8(k ,  q) t X = x ]  = k - q - 1  F ( ( k - q - 1 ) / 2 )  o ( k ,  q), 

where F(-) is the gamma function. Thus, in units of {(1 - R2y[2(k,  q)])off/n }~/2 

2k F ( ( k -  q ) / 2 )  E [ ~ ] .  (B.1) 
E [ H ( a / 2 ,  k, q)] = t ( a / 2 ,  k - q - l )  k - - q - 1  F ( ( k - q - 1 ) / 2 )  

Similarly, we have 

E[H2(a /2 ,  k, q)] = t 2 ( a / 2 ,  k - q - 1)((k - 2 ) / ( k  - q -  2))(1 - RZ,.x[Z(k, q)])a~2/n. 

Combining this with (B.1) gives 

~/Var[H(a/2,  k, q)] 

k - 2  
--t(a/2, k - q - a )  k - q - 2  

in units of {(1 -RZyx[~(k, q)])OyZ/n} 1/2. 

2k V 2 ( ( k - q ) / 2 )  E 2 [ ~ - ] I  
k - q - 1  F 2 ( ( k - q - 1 ) / 2 )  J 

~/2 

(B.2) 

The only term in (B.1) and (B.2) that could not be derived analytically as a function of k and q is 
E[~-] .  We estimated E [ ~ - ]  via numerical integration by expressing S = 1 /k  + T2(k - 1) / (k (k  - 1)) = 
1/ (k(1  - B)), where B is a random variable having a beta distribution and parameters q/2 and (k - q)/2. 
Then, 

7 [ - l /2b(q-2) /2(1  b) (k-q-2)/2 db, E[v~-] = ; j01(1 - b) 

where "~ is the normalizing constant for the beta distribution. The IMSL function DCADRE with relative 
error and absolute error set at 0.00001 was used to perform the integration on an IBM 3081-D computer. 
Double precision arithmetic was used to calculate all results presented in the tables, including the 
evaluation of F(.).  A check on the coding of the numerical integration was provided by Monte Carlo 
sampling based on 200000 realizations of T2(k - 1) for each value of k and q. The IMSL subroutine 
GGBTR was used to generate beta variates that were transformed into T 2 variates, and the same starting 
seed was used for each estimate. The standard error of all the estimates was less than 0.001. 

Appendix C 

Under assumptions (i)-(iv) and conditional on ( X = x ), we have 

Pr{ 10(k, q) -OI/~ar[ l~(k ,  q)]1/2 < t (a /2 ,  k -  q -  1)} = 1 - a 
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(see Lavenberg and Welch, 1981, Appendix A). Since the fight-hand side does not depend on X, the 
random variable in the expression has a t distribution with k - q - 1 degrees of freedom unconditionally 
as well. 

We are interested in 

Pr{ l~(k ,  q)-Oll<H(a/2, k, q)) =Pr{ [ (~(k,  q)-O)~(O____!~-j-O)l t(a/2, k - q - 1 ) }  
~ar[  O(k, q) ] , /2  < 

The random variable in the expression has a noncentral t distribution with noncentrality parameter 

= (0 - 01) / Var [~(k ,  q)] 1/2 = (0 - 01)((k - q - 2 ) / ( k  - 2) 

in units of {(1 2 -Ryx[~(k , q)])o2/n] 1/2. The IMSL subroutine M D T N  was used to compute the 
noncentral t probabilities p ( - )  for various values of k, q, et, and A = 0 -- 01. 
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