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We present two-stage experiment designs for use in simulation experiments that compare systems in terms of their expected (long-
run average) performance. These procedures simultaneously achieve the following with a prespecified probability of being correct:
(i) find the best system or a near-best system; (ii) identify a subset of systems that are more than a practically insignificant
diflference from the best; and (iii) provide a lower confidence bound on the probability that the best or near-best system will be
selected. All of the procedures assume normally distributed data, but versions allow unequal variances and common random

numbers.
1. Introduction

In this paper we address problems that arise in the design,
reporting and interpretation of simulation experiments
performed to identify the best system, where best means
maximum or minimum expected (long-run average) per-
formance. The procedures we derive allow the simulation
analyst to achieve the following goals, all with a pre-
specified probability of being correct:

1. Design their experiment so as to find the best system,
or one within a practically insignificant difference
from the best system (we refer to this as a “‘good
selection™).

2. Bound the difference between cach system and the
best system, and thereby eliminate all systems that
are more than the practically insignificant difference
from the best.

3. Report a lower confidence bound on the true, but
unknown, probability of selecting a good system,
and on the probability of selecting the unique best
system, for this combination of procedure and sys-
tems.

Many indifference-zone ranking and sclection proce-
dures exist that achieve goal | (see, for instance, Bec-
hhofer er al. (1995) or Goldsman and Nelson (1998)).
Multiple comparison procedures, specifically Multiple
Comparisons with the Best (MCB), can satisfy goal 2
(Hsu, 1996). However, the bounds provided by standard
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MCB procedures are difficult to interpret because they
are constrained confidence intervals: each interval ¢ither
contains zero or has zero as one endpoint. A zero end-
point means that a system can be declared either “no
better than the best” or “no different from the best,”
depending on which endpoint it is. This subtlety is
confusing to many analysts. We solve the problem by
providing fixed-width, unconstrained MCB intervals, a
small extension to existing theory. An important use
of such intervals is to eliminate from further consider-
ation all systems that are clearly inferior to the best
system.

A more fundamental contribution is made by ad-
dressing goal 3. For a given procedure, the Probability of
a Good Selection (PGS) is an unknown property of the
procedure that depends on characteristics of the simu-
lated systems, most critically their true means. In this
paper we provide a Lower Confidence Bound (LCB) for
this property. Our LCB for PGS will never be smaller
than | — o, the guaranteed PGS of the procedure, but can
be considerably higher, indicating a favorable setting lor
finding a system near the best. We also provide a LCB for
the probability of selecting the unique best system, which
we refer to as the Probability of a Correct Selection
(PCS). The LCB for PCS can be less than 1 — «, since our
procedures only guarantee to select the unique best sys-
tern under certain configurations of the means (specifi-
cally, when the best mean is at least § superior to any
other).

The concept of a lower confidence bound on the
probability of a correct selection is similar in spirit to
Hsu’s (1984) S-value, which is the smallest confidence
level at which the sample best system would be declared
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to be the truc best sysiem. In our case we design the
experiment to achieve a given, nominal probability of a
good sclection that we may exceed. For a philosophical
argument against computing lower confidence bounds on
the probability of sclecting the wnmigue best system, see
Bofinger (1994).

The paper is organized as follows: We first describe
how lower confidence bounds on PCS and PGS can be
obtained in general. These LCBs depend on LCBs for
the dilference between the best system and each inferior
system; wc obtain those bounds in Section 3. Section 4
introduces several specific procedures for computing
LCBs on PCS and PGS, and we compare them in
Scction 5. Some illustrutive examples are provided in
Scction 0.

2. The probability of a good selection

Throughout this paper we assume that larger expected
performance implies a better system. Let gy, pty, ..., 14
denote the unknown means ol the £ systems to be com-
pared, and let 7i; denote our point estimator of ;. In this
scction we assume only that the distribution of
i — T — (f; — hg), Tor all i # £, does not depend on
Hys oy oo My

Denote the ordered means by Sy <0 <
Hik=1] < Hyg- and for the moment suppose that our goal is
to find the unique best system [k]; later we address the
problem of finding cither system [£] or a system [i] whose
truc mean is closc enough 10 gy

Our rule will be to select the system with the largest
performance estimate, 7i;. Therefore, the probability of a
(uniquc) correct selection is

PCS =Pr{Ry < By, =12 k—1},
=Pr{Big — R = (g = #) < 12y = sy
i=l,2,..‘,k—-l},
=P|-{D,~<u[k]—p[,.], i=l,2,...,k—l}, (1)

where D;,i=1,2,...,k — | has the same joint distribu-
tion as fiy — g — (g = #g)si = 1,2,k = 1 I the
vitlues of the differences My — Hf) were known, as well as
the joint distribution of Dy, Dy, ..., Dy_y, then (1) might
be evaluated exactly. Since this is impossible in practice,
Kim (1986} suggested replacing p — gy in (1) with
(1 —a}100% LCBs on these differences, thereby provid-
ing a {| —a)l00% LCB on the probability of a correct
sclection (see also Anderson er al. (1977) and Jeong er al.
(1989)). Kim (1986} was only able 1o provide a LCB on
the single diflerence pyyy — py—yj, whereas we will provide
bounds on all k — | differences leading to a much tighter
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LCB on PCS (however, Kim’s bound for the single dif-
ference Hix) — Hg—1) could be tighter than ours for that
single difference). Related bounds are considered by Jeon
et al. (1988) and Kim (1988).

One shortcoming of our proposal is that the LCB on
PCS can be small when there arc one or more systems
whose performance is very close to the best, making a
unique correct selection unlikely. Thus, it makes sense to
provide a LCB on the probability of choosing the best
system or a system whose mean is within a practically
insignificant difference & of the best. That is, we want to
select a system 7 such that gy — w; < 5. We call this event
a “good” selection, and let PGS denote the probability of
a good selection.

We will show, following Section 3 below, that for the
procedures we derive

PGS = Pr{ iy — By ~ (g — 4
<max[d, = ppl, (=12, k- 1},
- Pr{D,- < max(6, gy — pls i =1,20000 k= 1},
()

no matter what the configuration of the true means. Our
approach will be to substitute LCBs for g~ Mgy into (2)
and then evaluate this probability numerically to obtain
our LCB on PGS.

3. Two-sided, fixed-width MCB

The following lemma will be useful for deriving two-
sided, fixed-width MCB confidence intervals:

Lemma 1. (Hsu, 1996, Section 4.2.1} If
Prif, — By — (1 — ) <6, Viti#l}>1-a  (3)

then with probability greater than or equal to | — «

;— max y, € [’?—max’l i&]
15 C;a’:i'LE i e#,‘” 1

fori=1,2,.. k.

Remark. Notice that (3) will hold when we can form si-
multancous two-sided confidence intervals for all-pair-
wise differences y; — u, that take the form p, — 5, £ 6.
For instance, in the usual one-way analysis of variance
model with normally distributed data and equal vari-

ances, setting d = q,((fk_(:)“l)Sp/\/f_z — where ‘7/((!1:(:)—1) is the

| — o quantile of the studentized range distribution of
dimension k and degrees of freedom k(» — 1), and Sf; is
the usual pooled variance estimator (see Equation (7)) -
achieves (3). This is the procedure given by Hsu {1996,
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pp. 103-104). Below we propose two-stage procedures
that allow unequal variances across systems, and allow
the value of § to be specified in advance.

Let 71, 7,..., T, be independent standard ¢ random

varmbles edch with v degrees of freedom, and let
T=k Z, y 7i. Define the random variables

r i/2

i=1

(1—2

and R = max; T; — min; 7;. Let o™ and r\(.'_d) be the
1 — a quantiles of ¥ and R, respectively. The quantities v
and r will be the critical constants in our two-stage pro-

cedures.

3.1. Procedures

Consider the following algorithm for producing fixed-
width confidence intervals for all pairwise comparisons
when the data are normally distributed and independent.
This single algorithm contains two procedures that differ
as to whether sample means or generalized sample means
are used as the point estimators for gy, j4, - - -, th-

Fixed-width, all-pairwise comparisons

Step 1. Specify confidence level | — «, halfwidth ¢ > 0,
and iitial sample size ny > 2.

Step 2. Sample i.i.d. observations Y, Ys,..
all systems /i=1,2,..
sample variances

f’l()—lg r_; .‘~:

fori=1,2,...,k
Step 3. Determine the total sample size needed:
(a) For a sample-mean-based procedure (Pro-
cedure S), let

(1-2)
S;
o [T

-s Yin, from
..k, and compute the

i

(b} For a generalized-sample-mean-based pro-
cedure (Procedure G), let

(1 x)S
N; = max< ng + |, (%) . (5)
Step 4. If N; >np take additional samples Y41,
Yim42y ..+, Yiy, from each system i =1,2,... k.

Step 5. Compute 7i;, i = 1,2,... .k
(a) For a sample-mean-based procedure, let

p3
ﬁf = Y.
N

151

{(b) For a generalized-sample-mean-based pro-
cedure, let

Ni
B= 8%
/=1

where for each i the f;; are chosen such that

/jl - /5;2 - Bma’ Z ﬁij - l’ and

2
2

#3- ( )

ny—1
Step 6. Report the k(k — 1)/2 simultaneous confidence

intervals

i = pg € [ — g £ ],
for all i # £.

A proof that the intervals in Step 6 are indeed simul-
taneous (1 — a)100% confidence intervals when the sim-
ulation output data are normally distributed and
Procedure S is employed can be found in Hochberg
(1975). The corresponding result for the generalized-
sample-mean-based Procedure G is given in Hochberg
and Tamhane (1987, pp. 200-201). In fact, both of these
procedures produce simultaneous confidence intervals for
all contrasts involving g, us,..., 1, but the pairwise
differences are all that we require.

Application of Lemma 1 immediately yields the desired
two-sided MCB confidence intervals

- me T — maxji :1:5} 6
H; rrflilx Mo S |:I“tl r?;llx He ) ( )

fori=1,2,...,k

Remark. The weights f;; that are used to form the
generalized sample means are chosen so  that

(7; H)/(5/'”,,1 O‘)) has a standard ¢ distribution with

ny — 1 degrees of freedom. See Hochberg and Tamhane
(1987, pp. 196-197).

Remark. If we are willing to believe that the variances
across systems are equal, then it is possible to derive a
sample-mean-based procedure whose expected sample
size is smaller than either version of the procedure pro-
posed above. To do so, replace Steps 2 and 3 with the
following:

Step 2. Sample i.i.d. observations Y, Ys,...

all systems i=1,2,...
pooled sample variance

e DI NIEE0Y 7

y Yiny from
,k, and compute the
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Step 3. Delermine the additional sample size needed:
(1) For an equal-variance, sample-mean-based
procedure (Procedure E), let

(1-a) 2

D k(ro—1) Sp (8)

N; = max < nyg,
0

A proof that this modification leads to valid all-pair-
wisc confidence intervals, and therefore valid MCB in-
tervals, can be found in Hochberg and Tamhane (1987,
pp. 172-173).

Remark. Il we are willing to believe that the joint distri-
bution of (Y}, Y3, ..., ¥i;) can be modeled as multivariate
normal with a variance-covariance matrix that satisfies
the sphericity condition, then it is possible to derive a
sumple-mean-based procedure that allows for dependence
across sysiems. Such dependence might occur if Common
Random Numbers (CRN) were employed (for a discus-
sion of sphericity and its use to approximate the effect of
CRN, sec Nelson and Matejcik (1995)). To do so, replace
Steps 2-4 with the following:

Step 2. Sample iid. random vectors (Y, Ya;,..., Vi),
J=1,2,...,np across all systems, and compute
the sumple variance of the difference as

ny

Si = (k=1 (HO_])ZZ phi=k 'v+?‘)2’

1 j=1
(9)
WhCIC Vi=k'S v, and V.o=k'mg
X Zl—- Z"il Yij.
Step 3. Determine the additional sample size needed:
(a) For a sample-mean-based procedure that
allows CRN (Procedure C), let
(1-2) :
Tk (k1) (g =114
N; = N = max{ ny, ThikZ - 1)7E
0
Step 4. I N > ny, sample additional i.i.d. random vec-
tors (YU, ) TP K{'j)a Jj=np+Ling+2,....N
across all systems.

A proof that this modification leads to valid all-pair-
wise confidence intervals, and therefore valid MCB in-
tervals, can be based on Hochberg and Tamhane (1987,
pp. 210=-211) and Stein (1945).

3.2. Inference

What inlcrence is possible at the end of the procedures
deflined above? The MCB intervals (6) imply that

Nelson and Banerjee

M — maxey; , < H; — Maxey; fy + 0 with confidence level
at least 1 — «. Therefore, if this upper bound is less than
zero we can infer that system 7 is inferior to the best; if
this upper bound is less than —é, and we have chosen 6 so
that differences greater than & are practically significant,
then we can claim that system { is inferior to the best by
more than é.

Let B = argmax ,; that is, B is the index of the system
selected as best. Notice that we can also claim, with
probability > | — «, that

Hp — THAX Ry 2 lip max Ky 6> —0.
Thus, with confidence level 1 — « we are assured that we
have made a good selection in that the mean of the se-
lected system is within & of the true best mean. Stated
differently, the event

o = {p; —He— (i —pp) <6, Vi €:i#€}

implies a good selection will be made. In fact, even less is
required. Nelson and Goldsman (1998) show that

=1},

is sufficient to guarantee a good selection. Clearly &/ C %
Now consider the event

@ = {7 ~ By — (g — ) <0, i=1,2,...

G = {ﬁ[,-] = ) — () — o) < max[d, ppy — gl

,k—]}.

Clearly 4 C %', so Pr{¥'} > Pr{%}. Itis also the case the
¢ implies a good selection will be made:

i=1,2,...

o Iy < pyy — 8, so that [] is not a good selection,
then ¢’ implies that Ji Fij) < Hyy and system [i} will not
be selected.

. If,u[,l > g — 9, so that [i] is a good selection, then &
implies that 7 — Hyg — (#yg — syg) < 6 for all such
[{]. This is precisely the event & that guarantees a
good selection will be made.

Thus, PGS > Pr{%¢'} and we will obtain a LCB on PGS
by obtaining a LCB on Pr{%'}. To achieve this we replace
the unknown differences ppy — sy by (1 —a)100% si-
multaneous LCBs of the form

#[k]_ﬂiZﬁB_ﬁi_éa

for all 7 £ B. These bounds are based on the fact that the
two-sided MCB intervals (6) impiy that
. — > . — 1. —
MAX fe = 4 Z WAX Ky = Hy J,

for i=1,2,...,k with probability >1 —a. In the Ap-
pendix we carefully justify the use of this result to provide
LCBs on gy —

Given these LéBs we treat jip — 1i; — 0 as constants
and assert a (1 — cx)lOO% LCB for PGS of the form

PGS > Pr{D; < max[8,7i; =, — 8], Vi:i# 8}, (10)
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and for PCS of the form
PCS > Pr{D; < g — g, — 48, Vi:i# B} (11)
To compute these bounds we must be able to evaluate the

right-hand sides of (10) and (11), which is the topic of the
next section.

4. Computing lower confidence bounds on PGS

In this section we show how to evaluate PGS for
each version of the two-stage procedure if rthe true
means are known. To evaluate PCS we simply replace
max|[, sy — 1] bY kg — py; in each derivation. LCBs on
PGS and PCS are obtained by replacing the unknown

153

(PCS) is only meaningful if it 1s greater than 1 —a
(respectively, 1/k).

4.1. Procedure S: sample means, unequal variance

Let & = 6/(\/50(1_“)), and let oﬁ.] be the variance of an

.\ no—l R
observation from system [i]. Then

PGS > Pl’{ﬁ[i] ~ Ty — (g — ppg) < max(é, py — ],
i=1,2,.. . k= 1},

_prd Hin— P - (i) = 1)
\/(Uf,-]/N[r]) + (0% /Ni)

max[é,,u“.] - ﬂ[z]]

differences pyy — py; by the LCBs for them obtained in the ; 1,2,... k=1
previous section. \/(Gﬁ-i/N[i}) + (Gfk]/N[k])
All the derivations that follow begin with the statement
PGS > Pl‘{ﬁ[q — T — (g — pg) < max(d, py — pyl, > ped 7 max[9, uyy — upl/¢
= F 2 /2 TYRY
=12,k 1} (12) V@IS + (ah/Shy)
Since the right-hand side of (12) is guaranteed to be i=1.2 k-1 (13)
>1 — a by the design of our procedures, the LCB on PGS T ’
will never be less than 1 — a. In fact, the LCB on PGS
Table 1. NS/N® for o = 0.10
df\k 3 4 5 6 7 8 9 o 11 12 13 14 15
1 14.2 357 64.7 97.7 139.0 1894 2384 2908 3534 3898 5027 568.0 644.8
2 2.74 4.13 5.37 6.52 7.63 8.87 9.78 10.73 12.06 12.54 14.12 15.03 15.96
3 3.6l 2.40 2.86 3.36 372 4.11 4.57 4.87 5.21 5.68 6.03 6.28 6.68
4 1.55 1.91 2.26 2.52 2.81 3.02 3.34 3.59 379 4.00 4.23 4.44 4.601
5 1.42 1.73 1.96 2.20 2.37 2.65 2.83 3.02 321 337 3.53 3.65 3.79
6 1.35 1.59 1.82 1.98 2.21 2.39 2.54 2.71 2.85 297 3.09 3.22 3.37
7 1.30 1.51 1.70 1.92 2.06 2.23 2.37 2.50 2.62 2.75 2.87 2.98 32
8 1.28 1.49 1.67 1.84 1.98 2.14 2.24 2.37 2.48 2.61 2.73 2.84 2.96
9 1.26 1.43 1.62 1.76 1.90 2.03 2.15 2.27 2.39 2.51 2.62 274 2.89
10 1.23 1.40 1.58 171 1.86 1.97 2.09 2.22 2.31 2.44 2.55 2.68 2.77
11 1.21 1.41 1.55 1.68 1.80 1.92 2.04 2.16 2.26 0.09 2.52 2.60 2.71
12 1.21 1.38 1.53 1.66 1.77 1.89 2.00 2.12 2.23 2.40 2.44 2.54 2.64
13 [.19 [.38 1.51 1.63 1.74 1.86 1.98 2.10 2.22 2.35 2.4] 2.51 2.59
14 1.19 1.37 1.51 1.60 1.72 1.84 1.95 2.07 2.18 2.30 2.37 2.47 2.55
15 1.17 1.35 1.49 1.59 1.71 1.82 1.94 2.05 2.16 2.28 2.34 2.44 2.51
16 1.19 1.34 1.46 1.58 1.69 1.81 1.94 2.04 212 224 2.30 2.41 248
17 1.20 1.32 .44 1.56 1.68 1.79 1.91 2.01 2.10 2.21 2.28 2.38 2.46
18 [.18 1.33 1.44 1.56 1.67 1.80 1.89 1.99 2.08 2.19 2.26 2.35 244
19 .17 1.31 1.43 1.54 1.66 1.79 1.88 1.98 2.06 2.18 2.25 2.33 242
20 1.18 1.32 1.42 1.53 1.66 1.78 1.86 1.96 2.04 2.14 224 2.32 2.40
30 1.15 1.25 1.38 1.49 1.60 1.69 1.79 1.86 1.96 2.05 2.13 2.21 2.29
40 1.13 1.26 1.37 1.46 1.56 1.66 1.74 1.83 1.93 2.00 2.08 217 2.25
50 1.13 1.25 1.35 1.46 1.54 1.64 1.72 1.81 1.90 1.97 2.07 2.15 2.22
60 1.13 1.24 1.34 1.43 1.53 1.62 1.71 1.79 1.88 1.97 2.05 2.13 2.20
70 1.13 1.23 1.33 1.42 1.52 1.61 1.69 1.79 1.87 1.94 2.03 2.10 2.18
80 1.13 1.23 1.32 1.43 1.51 1.60 1.69 1.78 1.86 1.94 2.03 2.10 2.18
90 1.12 1.22 1.32 1.42 1.52 1.60 1.68 1.77 1.86 1.93 2.01 2.10 2.7
100 1.11 1.22 1.32 1.42 1.50 1.59 1.68 1.76 1.85 1.93 2.01 2.09 2.16
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Table 2. N3/N" for « = 0.05

Nelson and Banerjee

ik 3 4 s 6 7 8

9 10 1 12 13 4 15

[ 2743 8270 1620 27439 40646 567.42
2 3.42 5.56 7.52 9.37 1115 13.06
K 2.07 2.77 3.29 397 4.49 4.95
4 [.63 2.07 2.46 2.79 314 3.37
5 1.47 1.82 2.10 2.35 2.54 2.83

6 1.38 1.66 1.90 2.08 2.33 2.51

713.73
1479 16.00 18.24 19.11 21.19 22.84 24.15

85240 1105.82 1252.63 156643 1823.19 2072.28
5.55 5.88 6.27 6.95 7.30 5.82 8.20
3.73 395 4.29 4.46 4.72 542 5.13
3.05 3.24 3.43 3.61 3.78 3.90 4.03

2.69 2.83 2.98 3.08 3.22 3.35 3.50

7 [.32 1.55 1.75 2.00 2.17 2.31 2.47 2.59 2.71 2.83 2.95 3.07 3.20
8 .28 1.53 1.72 1.90 2.05 2.20 2.29 241 2.54 2.67 2.78 2.90 3.01
9 1,27 1.46 1.66 1.8} 1.97 2.08 2.18 231 2.45 2.54 2.66 2.79 2.92
0 .23 1.41 1.62 1.75 1.92 1.99 2.12 2.26 2.34 2.47 2.58 2.71 2.80
Il 1.22 1.43 .58 1.72 .83 1.95 2.07 2.18 2.29 2.43 2.53 2.62 2.72
12 1.21 1.41 1.56 1.71 1.78 1.91 2.02 2.13 2.25 2.38 2.45 2.57 2.64
13 1.20 1.39 1.52 1.65 1.76 1.88 1.99 2.10 2.23 2.32 241 2.50 2.58
14 1.19 1.38 [.5] 1.62 1.74 1.86 1.97 2.09 2.19 2.29 2.36 2.46 2.54
15 1.17 1.36 1.50 1.60 1.71 1.85 1.95 2.06 2.16 2.25 2.34 243 2.50
16 1.20 1.34 1.47 1.59 1.70 1.83 1.96 2.04 2.13 2.22 2.29 2.40 2.47
17 1.21 1.34 |.45 1.56 1.70 1.79 1.91 2.02 2.10 2.19 2.27 2.37 2.44
18 1.20 1.33 1.44 1.55 1.67 1.79 1.88 1.99 2.08 2.18 2.25 2.33 2.42
19 1.19 1.31 143 1.54 1.66 1.78 .88 1.99 2.05 2.15 2.22 2.32 2.40
20 1.19 1.32 1.41 1.54 1.64 1.78 1.86 1.96 2.04 2.13 2.21 2.30 2.37
30 1.16 1.26 1.38 1.50 1.59 1.68 1.78 1.85 1.94 2.03 2.10 2.18 2.25
40 1.13 1.26 1.37 1.45 1.55 1.64 1.73 1.8l 1.90 1.98 2.04 2.14 2.21
50 112 1.25 .35 1.45 .53 1.62 1.71 1.79 1.87 1.95 2.03 2.11 2.18
60 1.12 1.24 1.33 1.43 1.52 1.60 1.68 .78 1.85 1.94 2.01 2.09 2.16
70 113 1.23 1.33 1.41 1.51 1.60 1.67 1.76 1.84 1.91 1.99 2.06 213
80 1.13 1.23 1.31 1.42 1.50 1.58 1.67 1.75 1.83 1.91 1.98 2.05 2.13
90 .12 1.22 1.32 1.40 1.50 1.58 1.66 1.75 1.83 1.90 1.97 2.06 2.12
100 1.12 1.22 1.31 1.40 1.48 1.57 1.66 1.74 1.82 1.90 1.97 2.05 2.12
where Fe o0
~ —~ > _ x|0, — L
fip = P — (g — ) (14} > 11 / Fa l(f + max|3, uy ,U[.]]/f)
Z,' = ! f=—00
el Ng) + (/M)
X dFyet(0)] (15)

and (13) follows because N; > Siz/é2 for all ;. We then
follow the steps in the proof of Proposition | in Rinott
(1978) 1o show that

0 [ @ max[d, pyy — wyl/€
" b;/o 11 =/0 m(\/(”o - )(1/a+1/b)

X dG,,(,_l(a) dGnu—l(b): (]4)

where G,y is the cdf of a ¥ random variable with ng — 1
degrees of freedom. To obtain a (1 —«)100% lower
confidence bound on PGS we substitute (I — o)100%
lower confidence bounds on Hig) — Mg in (14) and evaluate
the integral numerically.

Certainly (14) will be difficult to evaluate. However, in
the Appendix we show that

where F, _, is the cdl of the standard  distribution with
ng — 1 degrees of freedom. This expression is easier to
evaluate.

4.2. Procedure G: generalized means
Let & = 5/r'"" Then

ng

PGS > Pf{ﬁ[f] — Ty — (i — Hpg) < max{s, ppy — pql;

i:I,2,...,k—l},

¢ - 9 ¢ ’

i=1,2,...,k—l},

_ Pr{ﬁ[i] — My By — Py N max [, gy —
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Table 3. N5/NE for o = 0.01
dfvk 3 ¢ 5 6 7 8 9 10 11 12 13 14 15

2234 989.0 21969 3883.1 6620.8 9121.0 [1604.3 14509.0 18559.5 207237 28693.0 36037.3 376352
1082 18.71 2724 3384 4334 5538l 57.98 63.81 74.54 75.45 84.22 94.12  100.62
483  6.66 844 1006 1076  12.10 13.90 14.45 15.07 17.22 18.12 18.69 19.86

]

2

3
4 328 438 5.23 593 6.63 6.73
5 290 362 4.01 4.49 4.72 5.22
6 263 38 3.49 in 4.12 4.31
7 247 290 317 3.50 3.66 378
8 242 280 3.06 3.24 3.40 3.49
9 236 2.65 292 301 317 3.19
10 232 254 2.82 2.89 3.03 3.02
11 229 255 2.7 2,78 2.83 2.88
12 227 250 2.64 2.75 2.73 2.79
13 224 246 2.56 2.67 2.68 271
14 220 243 2.54 2.58 2.61 2.73
15 217 240 2.51 2.54 2.56 2.65
16 227 235 245 2.48 2.52 2.62
17 226 236 2.38 2.46 2.51 2.54
18 223 235 2.39 2.45 2.48 2.48
19 222 233 2.35 241 2.45 246
20 222 232 2.29 2.39 245 241
30 2,18 217 2.24 2.29 2.29 2.26
40 212 215 222 2.19 2.23 2.15
50 210 217 2.17 217 2.17 2.12
60 210 214 2.14 2.14 2.16 2.07
70 2.11 2.10 2.14 2.14 2.13 2.06
80 207 212 2.09 2.10 2,12 2.02
90 208  2.09 2.09 2.08 2.11 2.04
100 208  2.09 2.09 2.09 2.08 2.01

7.47 7.83 .50 8.49 9.07 9.15 9.45
5.50 5.71 5.93 6.19 6.30 6.50 6.45
4.52 4.61 4.76 4.76 4.88 4.94 5.05
3.90 3.99 4.04 4.14 4.16 4.31 4.34
3.48 3.56 3.67 3.69 3.82 3.86 3.93
320 3.34 3.40 3.46 3.50 3.60 367
3.02 317 322 3.23 3.33 3.40 142
2.88 3.03 3.07 312 3.20 3.21 3.29
2.77 2.91 295 3.05 3.06 311 3.1
2.68 2.84 2.94 2.94 2.95 2.99 3.00
2.57 2.79 2.83 2.88 2.87 2.88 2.91
257 2.74 2.76 2.7 2,78 2.81 2.82
2.62 2.68 2.71 272 2.70 275 2.74
2.54 2.64 2.65 2.68 2.65 2.71 2.68
2.49 2.62 2.61 2.61 2.64 2.64 2.68
2.46 2.57 2.58 2.60 2.56 2.5% 2.62
2.44 2.52 2.53 2.55 2.52 2.56 2.58
2.25 2.31 2.33 2.35 2.37 2.36 2.34
2.17 2.24 2.24 2.25 2.24 2.26 2.26
2.1 2.18 2.18 2.20 2.20 2.20 2.21
2.06 2.15 2.16 2.17 2.16 2.16 217
2.06 2.13 2.13 212 2.16 2.13 2.13
2.06 2.10 212 212 2.12 213 2.13
2.04 2.11 211 2.10 2.10 2.13 2.11
2.03 2.07 2.10 2.10 211 2.10 2.10

max|é, py — i
=Pr{7}ng+ [ #::[k} #[]]!
i=1,2,... k- l},
T k=
= f - ([ + max[é, Hig — #[i]]/é)anu—l (5,
=l
I=—00

(16)

where 71, 75, ..., T}, are independent standard r random
variables, each with ny — 1 degrees of freedom, and £, _,
is the cdf of the ¢ distribution with ny — 1 degrees of
freedom. The fact that (ﬁm-#m)/é,f: 1,2,...,k are
independent ¢ random variables follows from Stein
(1945).

4.3. Procedure E: sample means, equal variance

Let & = 8/g4",. Then
PGS > Pl’{ﬁ[.-] — H — (1 — #py) < max[d, gy — p)s
i=12,.,k-1},

H = 4 P = e max(d, g — )

=Pr <
\/55/1\' \/55/N \/S2/N
i=1,2,...,k—15,
max|d, py — Ly
ZPr{zs + 2 i Hl
i=1,2,... k- l},
T k-
= f Fitno-1) (t + max/[§, ppy — um]/f)
= oo i=1
X dFy(ne-1y(1),
where Ty, T, ..., T; are independent ¢ random vﬁriables,

each with k(no — 1) degrees of freedom, and Fy,,_)) is the
cdf of the r distribution with k(ny — 1) degrees of free-
dom. The fact that (,ﬁ[,] - ﬂm)/\ /‘S,%/N,l = l, 2, v ,k arc
independent standard ¢ random variables follows from
Stein (1945).
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Table 4. Critical values o5

Nelson and Banerjee

df\k 3 4 5 6 7 8

9 10 1 12 i3 14 I5

1623 2319 2899 3508 4345 4917

l
2 14.66 17.54 2043 2242 2513 2840
3 7.47 8.56 .62  10.63 11.08 11.90
4 5.40 6.32 6.98 7.60 8.07 8.39
5 4.72 545 5.89 6.39 6.75 7.07
6 4.29 4.94 5.31 5.73 6.07 6.32
7 4.03 4.59 4.99 5.34 5.64 5.89
8 3.89 4.42 4.75 5.09 5.39 5.64
Y 3.79 4.25 4.59 4.88 5.18 543
10 3.69 4.13 4.48 4.76 5.03 5.26
I 3.64 4.03 4.38 4.67 4.92 5.14
(2 3.56 3.98 4.30 4,58 4.82 5.07
13 3.52 3.90 4.22 4.54 4.76 4.99
14 3.40 3.86 4.19 4.45 4.72 4.99
15 3.42 382 4.15 4.43 4.66 4.90
16 3.42 mn 4.12 4.39 4.62 4.86
17 3.40 377 4.06 4.34 4.60 4.80
18 3.36 3.74 4.05 4.32 4.57 4.77
19 3.33 3.71 4.04 4.29 4.53 4.74
20 332 3.71 3.98 4.26 4.49 4.73
30 3.22 3.58 3.87 4.13 4.35 4.58
40 318 3.51 3.82 4.08 4.30 4.50
50 315 3.50 3178 4.03 424 4.48
60 3.4 3.49 3.76 4.01 4.23 442
70 313 3.45 375 4.00 4.21 4.43
80 3.09 3.46 3.72 397 4.21 4.38
90 310 344 3.71 3.96 4.22 4.39
100 3.09 3.43 3.71 395 4.16 4.38

5422  601.0 6593 6889  805.1 903.0 92100

29.18  30.71 33.31 3356 3539 3171 38.88
12.77 13.11 13.66 1437  14.80 15.05 15.68
8.79 9.14 9.59 9.78 10.19 10.33 10.66
7.35 7.70 7.96 8.21 8.42 8.68 8.83
6.65 6.86 7.02 7.28 7.51 1.67 7.88
6.12 6.41 6.61 6.81 6.97 7.20 7.34
5.87 6.07 6.29 6.47 6.69 6.82 6.98
5.67 5.88 6.06 6.26 0.41 6.61 6.75
5.51 5.70 5.89 6.05 6.26 6.42 6.58
5.37 5.59 5.78 5.90 6.11 6.28 6.45
5.30 5.49 5.66 5.84 6.00 6.19 6.33
5.25 5.39 5.58 5.75 592 6.08 6.24
515 5.33 5.52 5.70 5.87 6.01 6.15
5.14 5.27 5.46 5.63 5.80 5.96 6.10
5.08 5.24 5.42 5.59 5.73 5.89 6.03
5.00 5.20 5.38 5.56 5.68 5.86 5.98
497 5.16 5.34 5.50 5.67 5.82 5.96
4.94 5.14 5.30 5.48 5.62 5.77 5.93
491 5.1 5.27 5.43 5.56 5.75 591
4.7 495 5.11 5.28 5.45 5.57 5.72
4.69 4.85 5.03 5.18 5.34 5.48 5.62
4.64 482 4.99 5.14 5.31 5.45 5.59
4.60 4.80 4.95 5.13 5.28 5.42 5.54
4.59 4.77 4.93 5.09 5.25 5.37 5.51
4.58 4.73 4.92 5.07 5.23 5.38 5.51
4.56 4.76 4.92 5.06 5.22 5.37 5.51
4.56 4.72 491 5.06 5.21 5.35 5.49

4.4. Procedure C: sample means, sphericity

| —e
Let & = 3/ 52 -1y~ Then
PGS > Pf'{ﬁm = Ry = (e — pyg) < max{S, sy — gyl

i= l,2,...,k—l},

!7[.'] - ﬁ[k; - (H[;] - U[k]) < max[(sa.u[k] - Il[i]]

=Pr ,
2S53/N \J252/N
i=1,2,... k=15,
¢ Sv Y
zPr{T,-gm'x[‘ aill ””], —1,2,.. k- l},
V2§
oo o0 1
= / / H(D(x+ymax[5,y[k]—,u[,-]]/é)]
i=1

y=—00 X=-00

x dO()dH 1y (mg-1) (1), -

where T1,7,...,T;—; are multivariate ¢ random vari-
ables with common correlation 1/2 and (k — )(rg — 1}
degrees of freedom, and Hy_(p—1) is the codf of

V7Ev, with v=(k—1)(ng—1). The fact that

(ﬁ[’] _ﬁ[k] — (,ll[l] _ plkl))/‘ﬂSg/N,z = 1,2,. .,,k are

multivariate ¢, and the validity of the last integral
expression, can be deduced from Theorem 2 of Nelson
and Matejcik (1995).

5. Critical values and comparison of procedures

One penalty for adopting a confidence-interval procedure
that allows unequal variances across systems is that the
resulting intervals tend to be wider than those that would
be obtained for the same systems when assuming equal
variances. This is primarily due to the loss of degrees of
freedom in the variance estimators of the individual vani-
ances as opposed to the pooled variance estimator. Since,
for our procedures, we assure that the width of the confi-
dence intervals will be fixed at 4, the consequence of
allowing unequal variances is that we tend to take more
replications than we would if we assumed equal variances.
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Table 5. Critical values p3¢°

dfi\k 3 4 5 6 7 8 9 10 11 12 i3 14 15
30.9 439 56.6 70.6 84.1 98.0 109.0 118.5 134.5 142.9 159.8 172.4 183.80

1
2 6.59 8.17 9.48 10.63 11.69 12.75
3 4.42 5.20 5.86 6.48 7.00 7.47
4 3.65 4.28 4.80 5.26 5.65 5.99
5 332 3.90 4.33 4,70 5.02 5.33
6 3.13 3.64 4.04 4.39 4.70 4.97
7 3.00 3148 3.85 4.20 4.48 4.74
8 2.92 3.40 3.74 4.05 4.33 4.59
9 2.88 3.30 3.65 3.94 4.23 447
10 2.81 3.23 3.58 3.86 4.14 4.37
11 2.78 119 3.53 381 4.07 431
12 2.74 315 349 3.78 4.01 4.26
13 2.71 312 3.44 3.74 3.98 4.21
14 2.70 310 3.42 3.70 3.95 4.18
1S 2.67 1.07 3.39 367 391 4.16
16 2.66 3.05 3.37 3.66 3.89 4.13
17 2.66 3.04 3.35 J.62 3.88 4.08
18 2.64 3.02 334 3.6l 3.84 4.06
19 2.62 3.00 3.32 3.58 3.83 4.05
20 2.61 3.00 3.30 3.58 3.80 4.05
30 2.55 2.92 3.23 3.49 3.72 3.93
40 2.53 290 319 3.44 367 3.89
50 2.51 2.87 KR 3.43 3.64 3.87
60 2.50 2.86 315 3.41 3.64 3.84
70 2.49 2.85 3.15 3.39 3.62 3.83
80 2.48 285 3.13 3.40 3.61 3181
90 2.48 2.84 313 3.38 3.61 181
100 2.48 2.83 J12 3.38 3.59 3.80

13.68 1434 1543 1592 1673 17.54 18.18
7.95 8.31 8.71 9.08 9.40 9.59 10.10
6.32 6.59 691 7.16 7.44 7.68 7.87
5.63 5.89 6.14 6.37 6.57 6.79 6.98
5.23 5.46 5.66 5.88 6.08 6.27 6.47
498 5.22 5.42 5,61 5.80 5.98 6.16
4.8} 5.01 5.23 5.43 5.60 5.78 594
4.68 4.90 5.12 5.27 5.46 5.65 5.80
4.60 4.83 4.99 5.18 5.36 5.51 5.68
4.54 4.73 492 5.09 5.27 5.43 5.60
4.47 4.67 4.85 5.04 5.19 5.37 5.52
4.42 4.62 4.80 4.97 5.15 5.30 5.45
4.39 4.57 4.76 495 5.09 5.25 5.41
4.36 4.54 4.73 490 5.07 5.23 5.37
434 4.52 4.69 4.86 5.02 5.19 5.34
429 4.49 4,66 4.84 4.99 5.16 5.30
4.26 4.46 4.64 4.82 4.97 5.12 5.28
4.26 4.46 4.61 4.79 494 5.11 5.26
4.24 4.43 4.59 4.77 493 5.08 523
4.14 4.30 4.49 4.65 4.81 4.95 5.10
4.08 4.25 443 4.60 4.74 4.90 5.04
4.06 4.23 4.40 4.57 4.72 4.87 5.01
4.03 4.21 4.38 4.55 4.70 4.84 4.98
4.01 4.20 4.36 4,52 4.68 4.81 4.96
4.01 4.1 435 4.52 4.66 4.80 4.95
4.00 4.19 4.35 4,50 4.65 4.81 4.94
4.00 4.17 4.34 4.51 4.66 4.80 4.94

In this section we compare the additional sampling effort
required for the unequal-variance procedures relative to
the equal-variance procedure. In order to make this com-
parison, we consider the case in which the variances across
systems are actually equal, since this s the case in which we
would lose the most in terms of the extra sampling effort.
We do this both for the ordinary sample-mean-based
procedure (Procedure S) and the generalized-sample-
mean-based procedure (Procedure G). We comment briefly
on the potential benefit of the sample-mean procedure that
allows for common random numbers (Procedure C).

This section also provides tables of the critical values
A=) and o0~ since few such values appear in the
published literature.

5.1. Procedure S

Let the total number of replications required for system i
when using Procedure S be denoted by N3. This is given
by expression (4). Similarly let NE denote the total
number of replications required for each system when we
assume equal variance, Procedure E. This is given by the
expression (8). In what follows we assume that the in-
difference level 4 is small enough or the variance from the
first ny samples is large enough so that the total number

of replications N; required is much larger than the initial
sample size ng; i.e., N; 3> ng. Thus, the ratio of the addi-
tional samples required in the two cases is approximately
(neglecting integrality)

1p—1

~E = | T
N Dk je(my—1)p

2
NS Val~9s,

Now when the variances for the systems are all equal,
E[S?] = E[S‘g]. Therefore,

2
ENS] | VA TY

E[NE] - (1—a)
kk(ng—1)

This quantity is tabulated at confidence levels of 90, 95
and 99% in Tables 1, 2 and 3, respectively. See Tables 4,
5 and 6 for the values of v( “3 used for this comparison.
These values were obtamed by simulation using 100 000
replications for each value, and almost all are accurate to
the second decimal place.

From these tables we see that Procedure S is less effi-
cient than Procedure E when variances are in fact equal.
The number of additional samples increases rapidly with
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Table 6. Critical values vf?

Nelson and Banerjee

df\k 3 4 5 6 7 8

9 10 11 12 13 14 15

1 15.3 220 287 348 414 48.4
2 4.66 5.85 6.84 7.69 8.50 9.31
3 3.45 4.12 4.68 5.25 5.69 6.10
4 2.97 354 4.04 4.44 4.80 5.13
5 2.76 3.29 3.70 4.06 4.37 4.68
6 2.63 3.11 3.51 3.83 4.14 441
7 2.55 3.00 3.37 3.70 3.98 4.24
8 2.49 2.94 3.29 3.59 3.88 4.13
9 2.46 2.87 322 3.52 3.79 4.04
10 2.42 283 318 3.46 373 397
H 2.39 2.80 313 342 3.68 391
12 23 2.7 3.10 3.39 3.64 3.88
13 2.34 2.75 3.07 3.36 3.6] 3184
14 2.33 2.74 3.06 3.32 3.58 18l
15 2.31 2.71 3.03 331 3.56 3.79
16 2.30 2.70 3.02 3.30 3.54 an
17 2.30 2.67 3.00 3.27 3.52 3.74
I8 2.29 2.68 2.99 3.27 3.50 3.73
19 pvr 2.65 2.98 3.24 3.49 372
20 2.28 2.60 297 3.23 3.48 3.71
30 2.22 2.59 2.91 3.16 341 3.62
40 220 2.59 2.88 3.13 3.37 3158
50 2.20 2.56 2.86 3.12 334 3.56
60 2.19 2.55 2.85 3.10 3.34 3.54
70 2.18 2.54 2.84 3.09 3.32 3.53
80 2.18 2.54 2.83 3.09 3.31 352
90 2.17 2.53 2.83 3.08 332 3.51
100 2.16 2.53 2.82 3.09 3.30 3.50

54.5 60.4 66.9 71.9 80.5 86.0 91.93
9.93 10.54 11.32 11.78 12.44 12.99 13.52
6.53 6.37 7.22 7.53 7.83 8.08 3.43
5.44 5.74 5.99 6.23 6.49 6.73 6.92
4.95 5.20 5.45 5.67 5.87 6.09 6.27
4.66 4.89 5.10 5.32 5.51 5.70 5.88
447 4.71 4.91 5.10 5.29 547 5.64
4.36 4.57 4.76 4.96 5.14 5.32 5.47
4.26 4.47 4.67 4.85 5.02 5.20 5.37
4.19 4.40 4.58 4.76 494 5.11 5.26
4.13 4.33 4.52 0.90 4.89 5.03 5.20
4.08 4.28 4.48 4.70 4.81 497 5.13
4.05 425 443 4.65 4.78 4.94 5.09
4.02 4.21 440 4.60 4.73 4.90 5.05
4.00 4.18 4.37 4.58 4.71 4.87 5.01
398 4.17 4.33 4.54 4.67 4.84 498

395 4.14 4.32 4.51 4.65 4.81 4.96
3.92 4,12 4.30 4.49 4.63 4.78 4.94
3.92 4.11 4.27 4.48 4.61 4.77 4.92

3.90 4.09 4.26 4.44 4.60 4.75 4.39
3.83 3.99 4.17 4.35 4.49 4.64 4.78
i 3.95 413 4.29 4.44 4.60 4.74
3.75 3.93 4.10 4.26 4.42 4.57 4.71
3.73 3.91 4.09 4.26 4.40 4.55 4.69
372 3.91 4.07 4.23 4.38 4.52 4.67
3N 3.90 4.06 4.23 4.38 4.52 4.66
37 3.88 4.06 4.22 4.37 4.52 4.65
3.70 388 4.05 4.22 4.37 4.50 4.65

the number of systems we are comparing. For example,
with iy = 10 initial replications (that is df = 9) at the
95% confidence level we need around 27% more repli-
cations per system for Procedure S as compared to Pro-
cedure E when & = 3 systems, whereas we need almost
double the number of experiments comparing k = 7 sys-
tems. At higher degrees of freedom - that is, with larger
1y — this dilference is less. For example, with #ny = 31
(df = 30) and at the 95% confidence level, we need 16%
morg replications per system for Procedure S as com-
pared to Procedure E when k£ = 3 systems versus 60%
more replications for £ = 7 systems.

Also notice that as we increase the number of initial
replications, ng, we nced fewer additional replications
beyond ng. This is as expected, since a larger initial
sample provides a more precise variance estimator.

5.2, Procedure G

Let NS denote the total number of replications required
for system / when using the generalized-sample-mean
procedure, Procedure G. This is given by the expres-
sion (5). Then under the same assumptions as in the
previous scction we have the following relationship
between NS and NE,

(1-2)

E[NiG] ~ Pno—1
El — (1-2)
E[vE) Qi i (mp—1)

This quantity is tabulated at confidence levels of
90, 95 and 99% in Tables 7, 8 and 9, respectively. See

Tables 10, 11 and 12 for the values of r,(,(l,:c,’) used for this
comparison. These values are also obtained via simula-
tion and almost all are accurate to the second decimal
place.

From the tables we see that the general trend in be-
havior is similar to that of Procedure S. However, we
observe that the number of replications is considerably
smaller for this procedure as compared to the ordinary
sample-mean-based procedure. The difference is more
apparent at higher confidence levels. For example, using
Procedure S with ng = 10 and | — a = 0.99, we need al-
most two and a half times more replications, relative to
Procedure E, when k = 3 systems and more than three
times more experiments when & = 7 systems. The corre-
sponding values for the Procedure G are 18 and 59%,
respectively. Thus, this method is much more economical
than the one based on ordinary sample means, although
still less efficient than Procedure E when variances are
equal.
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Table 7. N9/NE for a = 0.10
df\k 3 4 5 6 7 8 9 10 i1 12 13 14 i5
1 11.92  27.22 4691 68.11 95.03 12646 15693 188.53 22703 25044 319.13 360.11 410.22
2 2.45 343 4.26 4.98 5.72 6.43 6.95 7.56 8.31 8.57 9.56 10.06 10.61
3 3.30 2.03 2.28 2.56 2.76 2.94 320 3.33 3.50 373 3.90 3.97 4.20
4 1.42 1.62 1.80 1.92 2.04 212 2.28 2.37 2.44 2.51 2.61 2.66 2.73
5 1.30 1.46 1.55 1.65 1.71 1.82 1.89 1.96 2.01 2.05 2.10 2.1 2.14
6 1.23 1.35 1.45 1.49 1.59 1.64 1.67 1.72 1.75 1.77 1.79 1.82 1.86
7 1.19 1.28 1.34 1.43 1.46 1.51 1.55 1.57 1.5¢ 1.61 1.63 1.65 1.68
8 1.17 1.26 1.31 .37 1.40 1.45 .45 1.47 1.49 1.51 1.53 1.55 1.58
9 1.14 1.21 .29 1.31 1.34 1.37 1.38 1.40 142 1.45 1.46 1.47 1.50
10 1.12 1.18 1.25 1.27 1.31 1.32 1.33 1.35 1.37 1.39 1.41 1.44 1.44
11 1.11 1.19 1.23 1.24 1.27 1.29 1.29 1.32 1.33 1.36 1.37 1.38 1.39
12 1.10 1.17 1.2} 1.23 1.24 1.26 1.27 1.29 1.30 1.32 1.33 1.34 1.35
13 1.09 1.16 1.18 1.21 1.22 1.23 1.25 1.27 1.29 1.29 1.31 1.31 1.32
14 1.09 1.15 1.18 1.18 1.20 1.21 1.23 1.25 1.27 1.27 1.28 1.28 1.29
15 1.07 1.14 1.17 1.17 1.19 1.21 1.22 1.23 1.25 .25 1.26 1.27 1.27
16 1.09 1.13 1.14 1.16 1.17 1.19 1.22 1.22 1.23 1.23 1.23 1.25 1.24
17 1.09 1.12 1.13 1.15 1.17 1.18 1.19 1.21 1.21 1.22 1.22 1.23 1.23
18 1.08 112 1.13 1.15 1.16 1.18 1.18 1.19 1.20 1.20 1.20 1.21 1.21
19 1.08 .10 112 1.13 1.15 1.18 1.17 1.19 1.18 1.19 1.19 1.20 1.21
20 1.08 .11 111 112 1.15 1.17 1.16 1.17 1.17 .18 1.19 1.19 1.19
30 1.06 1.05 1.08 1.09 1.10 1.10 1.11 1.10 1.11 1.12 1.12 1.12 1.12
40 1.04 1.05 1.06 1.06 1.07 1.08 1.07 1.08 1.08 1.08 1.08 1.09 1.09
50 1.04 1.05 1.05 1.06 1.05 1.07 1.06 1.06 1.06 1.06 1.07 1.07 1.07
60 1.03 1.04 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.06 1.06 1.06 1.06
70 1.03 1.04 1.04 1.04 1.04 1.05 1.04 1.05 1.04 1.04 1.05 1.05 1.05
80 1.03 1.03 1.03 1.04 1.04 1.04 1.03 1.04 1.04 1.04 1.04 1.05 1.04
90 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.04 1.03 1.04 1.04 1.04

100 1.02 1.03 1.03 1.03 1.03 1.03

1.03 1.03 1.03 1.03 1.04 1.03 1.03

5.3. Procedure C

The critical values for Procedure E, assuming indepen-
dent systems and equal variance, and the sample-mean-
based procedure assuming that CRN has been used to
induce dependence, Procedure C, are q,,(:k_:g_l and
qﬂ&‘?l)(no_l), respectively. A quick check of these values
(see, for instance, Hochberg and Tamhane (1987)) shows
that they are very close provided sy is not too small.
Thus, the relative efficiency of the two procedures will
depend on E[S7]/E[S3].

If we assume that the true variances are equal, and
further that the correlation induced between any pair of
systems under CRN is p > 0, then we can show that
E[S;]/E[S2] = | — p. Therefore, Procedure C will tend to
be more efficient than Procedure E if CRN achieves any
positive correlation, and much more efficient if p is close
to 1. Of course, the assumption of sphericity, just like that
of equal variance, 1s an approximation that is rarely if
ever precisely true in practice.

6. Examples

In this section we present two examples: The first is a toy
example in which the true means and variances are under
our control, while the second arose in research on agile

manufacturing systems. In both cases we apply Pro-
cedure G.

To illustrate the performance of these procedures,
consider £ = 5 independent systems represented by nor-
mal distributions with means and variances as shown in
Table 13. Suppose we take ny = 10 initial replications
from each, apply Procedure G with | —a=10.9 and
d=10.5,1 or 2, and compute the LCBs on PCS and PCS
from the data. The last two columns of Table 13 show the
average of these LCBs across 100 replications of the en-
tire procedure,

The primary feature to notice in these results is that
the LCB on PGS always remains larger than 0.9, while
the LCB on PCS may be larger or smaller than 1 — ¢
depending on how large or small is our indifference zone
0. A large value of ¢ implies little second-stage sampling
and a small chance of sclecting the unique best system
{remember that these are realizations of lower confidence
bounds on PCS, which is why the estimated PCS can be
below 1/k = 0.2); while a small value of & delivers precise
estimates and a larger chance of selecting the unique
best.

As a second, more realistic example, consider a ques-
tion that arose in research on agile manufacturing sys-
tems. Suppose a portion of such a system consists of two
stations in tandem, station 1 and station 2, but just one
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Table 9. NS/NE for « = 0.01
df\k 3 4 5 6 7 8 9 10 11 12 13 14 5
l 111.7 4945 10984 1941.5 33104 4560.5 5802.2 72545 9279.8 10361.8 14346.5 18018.6 18817.6
2 5.41 9.35 13.62 1692 2167 2791 28.99  31.90  37.27 37.72 42.11 47.06 50.31
3 241 3.33 4.22 5.03 5.38 6.05 6.95 7.22 7.54 8.61 9.06 9.34 9.93
4 1.64 2.19 2.62 296 3.3 3.37 373 3.91 4125 4.24 4.54 4.58 4.72
5 1.45 1.81 2.00 2.25 2.36 2.61 2.75 2.86 2.96 3.09 3.15 325 3.23
6 1.32 1.59 1.75 1.86 2.06 2.15 2.26 2.31 2.38 2.38 2.44 2.47 2.52
7 1.24 1.45 1.59 1.75 1.83 1.89 1.95 2.00 2.02 2.07 2.08 2.15 2.17
8 1.21 1.40 1.53 1.62 1.70 1.74 1.74 1.78 1.84 1.84 1.91 1.93 1.96
9 1.18 1.32 1.46 1.50 1.59 1.60 1.60 1.67 1.70 1.73 1.75 1.80 1.83
10 1.16 1.27 1.41 1.45 1.52 1.51 1.51 1.58 1.61 1.61 1.67 1.70 1.71
I 1.14 1.27 1.35 1.39 1.42 1.44 1.44 1.51 1.54 1.56 1.60 L.60 [.65
12 1.13 1.25 1.32 .37 1.36 1.40 1.39 1.46 1.48 1.52 1.53 1.55 1.55
13 1.12 1.23 1.28 1.33 1.34 1.35 1.34 1.42 1.47 1.47 1.48 1.50 1.50
14 1.10 1.22 1.27 1.29 1.30 1.36 1.29 1.40 1.41 1.44 1.44 1.44 1.45
15 1.09 1.20 1.26 1.27 1.28 1.32 1.28 1.37 1.38 1.39 1.39 1.4] 1.41
16 1.13 1.18 1.23 i.24 1.26 1.31 1.31 1.34 1.35 1.36 1.35 1.37 1.37
17 1.13 1.18 1.19 1.23 1.26 1.27 1.27 1.32 1.33 1.34 1.33 1.35 ).34
18 1.11 1.17 1.20 1.23 1.24 .24 1.25 1.31 1.30 1.30 1.32 .32 1.34
19 1.11 1.17 1.18 1.21 1.23 1.23 1.23 1.28 1.29 1.30 1.28 1.29 1.31
20 1.11 1.16 1.15 1.20 }.22 1.2¢ 1.22 1.26 1.26 1.27 i.26 1.28 1.29
30 1.09 1.09 1.12 1.14 1.14 1.13 1.12 1.16 1.16 1.18 i.18 1.18 1.17
40 1.06 1.07 1.11 1.09 1.1] 1.08 1.09 1.12 1.12 1.12 1.12 1.13 1.13
50 1.05 1.08 1.08 1.08 1.09 1.06 1.06 1.09 1.09 1.10 1.10 1.10 1.10
60 1.05 1.07 1.07 1.07 1.08 1.03 1.03 1.07 1.08 1.08 1.08 1.08 1.08
70 1.06 1.05 1.07 1.07 1.07 1.03 1.03 1.06 1.06 1.06 1.08 1.06 1.06
80 1.03 1.06 1.05 1.05 1.06 1.01 1.03 1.05 1.06 1.06 1.06 1.06 1.06
S0 1.04 1.05 1.05 1.04 1.05 1.02 1.02 1.05 1.05 1.05 1.05 1.06 1.06
100 1.04 1.05 1.04 1.04 1.04 1.01 1.01 .04 1.05 .05 1.05 i.05 1.05
Table 10. Critical values r3°
dfi\k 3 4 5 o 7 8 9 0 11 12 13 14 15
1 2008 2713 330.1 3926 4787 5362 5850 6388 7090 738.0 858.8 9344 967.10
2 18.89  21.50 2447 2645 2942 3307 3349 3502 3779  38.08 30.70 42.23 43.82
3 9.84 10.88 12.00 13.0t 13.43 14.27 1515 15.61 16.06 16.75 17.27 17.54 18.19
4 7.22 g.14 .88 9.49 9.98 10.22 10.57 10.89 11.40 11.47 11.93 12.04 12.29
5 6.34 7.07 7.49 7.95 8.30 8.59 8.88 9.15 9.38 9.64 9.76 10.t! 10.13
6 5.80 6.42 6.77 7.15 7.45 7.68 7.98 8.12 8.28 845 8.64 8.76 8.89
8 5.27 5.76 6.07 6.34 6.62 6.78 7.01 7.10 7.29 7.36 7.56 7.65 7.73
9 5.11 5.56 5.87 6.08 6.34 6.52 6.72 6.84 6.98 7.09 7.19 7.34 7.38
10 4.99 5.41 5.71 5.93 6.15 6.32 6.51 6.64 6.76 6.81 6.98 7.04 7.13
I 491 5.27 5.58 578 6.00 6.15 6.35 6.46 6.58 6.61 6.77 6.84 6.99
12 4.80 5.19 5.49 5.71 5.87 6.04 6.22 6.31 6.42 6.53 6.61 6.73 6.80
13 4.76 5.12 5.38 5.66 5.81 593 6.11 6.20 6.34 6.41 6.50 6.61 6.67
14 4.69 5.06 5.34 5.55 3.71 593 5.97 6.10 6.22 6.35 6.41 6.48 6.57
15 4.65 5.01 5.28 5.50 5.65 5.83 5.96 6.04 6.14 6.23 6.31 6.41 6.48
L6 4.63 4.94 525 5.42 5.59 5.78 5.91 5.98 6.09 6.17 6.21 6.33 6.38
17 4.61 4.94 5.17 5.39 5.57 5.68 5.82 5.92 6.02 6.12 6.16 6.28 6.31
18 4.56 491 517 537 5.51 5.65 5.76 5.91 597 6.04 6.15 6.21 6.23
20 4.51 4.85 5.04 5.28 5.45 5.58 5.70 5.79 5.88 597 6.00 6.11 6.19
30 4.37 4.67 491 5.09 522 5.40 547 5.55 5.64 574 5.82 5.87 5.90
40 4.32 4.59 4.84 4.98 5.15 5.27 5.38 5.46 5.53 5.61 5.66 5.74 5.79
50 4.28 4.58 4.79 4.96 5.08 5.23 5.31 5.38 5.46 5.54 5.62 5.67 5.72
60 4.25 4.55 4,76 4.93 5.07 517 5.23 5.35 544 5.51 5.55 5.61 5.67
70 4.24 4.51 4,75 492 5.04 516 5.23 5.33 5.40 5.45 5.57 5.57 5.62
80 4.19 4.53 4.70 4.88 5.02 5.11 5.24 5.29 5.39 5.45 5.51 5.57 5.62
90 4.20 4.50 4.70 4.85 5.01 513 5.21 5.30 5.37 5.42 5.48 5.57 5.60
100 4.20 4.50 4.70 4.86 4.597 5.09 5.20 5.25 5.36 5.42 5.49 5.54 5.59
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Table 11. Critical values r$%5
dfi\k 3 4 5 6 7 8 9 10 1 12 13 14 15
] 394 53.2 66.5 81.4 96.2 110.7 122.0 132.7 149.0 158.4 176.2 189.2 201.40
2 8.72 10.37 11.84 13.03 14.17 15.30 16.30 17.00 18.15 18.66 19.55  20.36 21.10
3 5.91 6.71 7.42 8.05 8.56 9.03 9.51 9.84 10.22 10.60 10.91 11.06 11.58
4 4.90 5.58 6.10 6.53 6.89 7.19 7.48 7.74 8.02 8.18 8.47 8.64 8.79
5 4.48 5.09 5.49 5.83 6.11 6.37 6.62 6.83 7.02 7.20 7.35 7.49 7.63
6 4.23 4.75 513 5.42 5.69 5.89 6.10 6.26 6.40 6.57 6.70 6.84 6.98
7 4.05 4,53 4.87 5.18 5.40 5.59 5.76 5.96 6.09 6.20 6.33 6.45 6.54
8 395 443 4.72 4.99 5.21 5.41 5.57 5.69 5.86 5.97 6.07 6.19 6.27
9 3.89 4.30 4.6l 4.84 5.06 5.25 5.39 5.53 5.67 5.76 5.88 5.98 6.08
10 379 4.21 4.52 4.75 496 5.12 5.29 5.43 5.51 5.63 5.74 5.82 591
11 3.76 4.16 4.45 4.67 4.88 5.03 5.19 5.32 541 5.51 5.62 5.70 5.80
12 3.70 4.10 4.40 4.63 4.79 497 5.10 5.22 533 5.44 5.53 5.61 5.69
13 3.67 4.07 4.33 4.59 4.76 4.90 5.05 5.15 5.27 5.36 5.46 5.53 5.62
14 3.67 4.05 431 4.52 4.71 4.87 4.99 5.10 5.20 5.32 5.38 5.47 5.55
15 3.62 4.00 4.27 4.50 4.66 4.83 4.95 5.04 5.16 5.26 5.34 541 5.50
16 3.60 397 425 4.47 4.63 4.78 4.93 5.02 5.12 5.21 5.28 5.38 544
17 3.60 3.96 4.22 4.42 4.61 4.74 4.88 4.99 5.08 5.18 5.25 5.32 5.40
18 3.56 3.93 420 4.41 4.57 4.72 4.84 495 5.05 5.14 5.22 5.30 5.36
19 3.55 3.90 4.17 4.37 4.54 4.70 4.81 4.94 5.00 5.12 5.18 5.25 533
20 3.54 3.90 4.16 4.36 4.51 4.69 4.80 4.90 4.98 5.07 5.15 5.23 5.30
30 3.45 3.80 4.04 4.26 4.40 4.53 4.66 4.73 4.83 493 4.99 5.05 511
40 343 3.77 4.01 4,17 434 4.47 4.58 4.66 4.77 4.83 4.90 4.98 5.03
50 3.40 374 3197 417 4.30 4.44 4.55 4.64 4.72 4.79 4.87 4.93 499
60 3.38 3.72 397 4.14 4.29 4.41 4.50 4.60 4.70 4,78 4.85 4.90 4.94
70 337 371 395 4,12 4.28 4.40 4.48 4.60 4.67 4.74 4.81 4.87 492
80 3.36 3.71 393 4.12 4.26 4.37 4.47 4.57 4.66 4.73 4.80 4.86 491
90 3.35 3.08 393 4.10 4.25 4.37 4.47 4.57 4.64 4.71 4.78 4.85 490
100 3.36 3.68 391 4.09 423 4.35 4.47 4.55 4.64 4.72 4.79 4.84 4.88
opcrator; sce Fig. 1. Jobs come in to the system at station ~ SEIZEI: The worker gives priority to station 1.
1 at the rate of £ per hour. After arrival a job needs to be That is, at the end of a set up completion
set up at the station by the operator. After setting up the if there is a job in buffer 1 she shifts to
job, the station processes it to completion without re- buffer 1 irrespective of the situation in
quiring any assistance by the operaror. Following com- buffer 2.
pletion at station 1, the job ne;ds to be set up by the SEIZE2: The worker gives priority to buffer 2 irre-
operator at station 2, and then is processed at station 2 - . .
: IR ' . spective of number of jobs in buffer 1. The
without requiring any assistance from the operator. After ite of the SEIZE] poli
complction at station 2 the job leaves the system. The Oppostic Of the poacy.
processing rate and the sct up rate at the two machines PREEMPTI1: Whenever there are jobs waiting to be set
are jty, f, and py, fi,, respectively. We assume that there is up at buffer 1, the operator sets up a job
no walking time between the two stations. Holding costs there. Even when she is currently setting up
of ¢; and ¢; per job per unit time are incurred while the a job at station 2, she abandons that job
jobs arcin stations | and 2, respectively. The operator has and finishes all the jobs in buffer 1 before
to decide which station to set up first when there are jobs returning to complete the set up at 2.
wailing al both stations. .Th.e problem is to find 4 policy PREEMPT2: The same as above except the preemption
lor the operator that minimizes the expected holding cost .
. is in favor of buffer 2.
of the system.
We considered the following policies, some of which  THI1(n): The operator follows the FIFO policy

have been examined previously in Desruelle and Steudel
(1996) and Nakade er al. (1997):

FIFO: The worker sets up the jobs on a First-
Come-First-Serve basis. This is the sim-
plest policy.

until the number of jobs in buffer 1
reaches », at which point she switches to
the PREEMPTI policy (and switches
back to FIFO when the number of jobs in
buffer 1 falls below n). For this example
we used n = 3.
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Table 12. Critical Values r§?

df\k 3 4 5 6 7 8 9 10 1 12 13 14 15
19.8 27.1 34.5 41.1 48.5 55.9 62.5 68.8 75.8 81.5 90.8 96.8 103.70
6.23 7.54 8.60 9.50 10.40 11.21 11.84 12.51 13.29 13.77 14.48 15.03 15.59

I
2
3 4.65 5.35 5.92 6.43 6.93 7.30
4 4.01 4.61 5.10 5.47 5.78 6.07
5 in 427 4.66 4.99 525 5.49
6 3.55 4.05 442 4.69 4.96 5.17
7 3.45 391 4.23 4.52 4.74 4.94
8 337 3.83 4.13 4.38 4.61 4.80
9 3.32 3.74 4.07 4.29 4.50 4.69
10 3.26 3.68 3.99 4.21] 442 4.60
11 3.23 3.64 3.94 4.16 4306 4.54
12 3.19 3.59 3.89 4.12 4.30 4.48
K 3.16 3.57 3.84 4.09 426 4.41
14 3.16 3.55 3.83 4.04 422 4.38
15 3.13 3.52 379 4.02 4.20 4.36
16 311 3.51 7 4.00 4.17 4.33
17 3.12 3.47 3.75 3.97 4.15 4.29
18 3.09 347 374 3.96 4.12 4.27
19 3.08 3.44 372 3.93 4.10 4.27
20 308 345 37 3.91 4.09 4.24
30 3.01 3.36 3.e3 3.82 3.99 4.12
40 298 335 3.59 377 3.94 4.08
50 297 332 3.57 3.76 3.91 4.06
60 2.96 3.30 3.56 175 3.90 4.02
70 2.95 3.30 3.55 173 3.89 4.02
80 2.95 3.30 3.53 373 388 4.00
90 2.94 3.28 3.53 7 3.88 3.99
100 293 3.28 3.52 3.72 3.86 3.99

1.73 8.03 8.36 8.64 8.91 5.08 9.45
6.35 6.60 6.79 6.98 7.21 7.37 7.53
5.73 592 6.10 6.26 6.40 6.54 6.67
5.35 5.51 5.65 5.81 5.93 6.06 6.19
5.11 5.28 5.40 5.53 5.65 5.75 5.86
4.96 5.10 5.22 5.34 5.45 5.56 5.65
4.82 4.96 5.09 5.21 5.31 5.40 5.48
4.73 4.86 4.99 5.09 5.19 5.28 5.36
4.65 4.79 4.90 5.01 5.10 5.19 5.28
4.60 4.72 4.84 4.93 5.02 5.11 5.19
4.56 4.68 4.79 4.87 4.98 5.06 5.14
451 4.62 4.74 4.84 492 4.99 5.08
4.48 4.59 4.71 4.79 4.88 4.96 5.04
4.46 4.56 4.67 4.76 4.83 493 4.98
4.42 4.54 4.63 4.73 4.81 4.89 4.96
4.39 4.51 4.61 4.71 477 485 493
4.38 4.50 4.57 4.68 4.74 4.82 491
4.36 4.47 4.56 4.66 4.74 4.81 4.87
4.27 4.34 4.44 4.53 4.60 4.66 4,72
4.19 4.29 4.38 4.46 4.53 4,60 4.66
4.17 4.26 4.34 442 4.50 4.56 4.62
4.14 423 4.32 4.42 448 4.54 4.60
4.12 4.23 4.30 4.38 4.45 4.51 4.57
4.10 421 4.30 4.37 4.44 4.51 4.56
4.10 4.20 4.29 4.36 4.44 4.50 4.55
4.11 4.20 4.28 4.36 4.43 449 4.54

TH2(n); The operator follows the FIFO policy until
the number of jobs in buffer 2 reaches n, at
which point she switches to the PRE-
EMPT2 policy (and switches back to FIFO
when the number of jobs in buffer 2 falls

below #). For this example we used n = 3.

Interarrival, service and set up distributions are taken
to be exponential. The arrival rate 1s fixed at 4 = 2 jobs/
hour; the service distribution parameters are shown in
Table 14 along with the holding costs. Notice that with
the cost in both buffers being equal, minimization of the

Table 13. Average LCB on PGS and PCS over 100 replications

of Procedure G with my =10, 1 —a = 0.9 and % = 4.07
when the data are normally distributed
Wyyeonslls Gy, ..., 0% ) L/C-:BPGS IfBPCS
0.0.0,0.1 1,2,3.4,5 0.5 0.98 091

1.0 0.97 0.21

2.0 0.97 0.03
1,2,34,5 1,1,1,1,1 0.5 0.99 0.96

1.0 0.9% 0.47

20 0.98 0.15

O

Fig. 1. Layout of stations for the tandem queueing system used
in the example.

Station 1 Station 2

total holding cost is equivalent to the minimization of the
total WIP in the system; our goal is to find the policy with
the lowest expected holding cost per unit time.

A cost reduction of more than $1 was considered
significant, so we set 4 = 1. Using confidence level
1 —a =109 and ny = 10 initial replications for the k =7
alternatives, the critical value for Procedure G s

’,30,9) =4.50. Since smaller cost is better, we applied

Table 14. Service and cost parameters for the agile manufac-
turing example

Station Processing rate Set up rate Holding cost
(Jobs/hour) (Jobs/hour) (3/job/hour)
Station | 4 4 1

Station 2 6 6 ' ]
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Table 15. Results from the agile manufacturing system simulation

Policy FIFO PREEMPT{ PREEMPT? SEIZE] SEIZE2 THI(3) TH2(3)
index | ! 2 3 4 5 ] 7

1i; 543 8.06 4.43 4.63 7.59 6.05 5.13
N; 28 129 24 23 123 45 32

Procedure G to the negative of the simulation output data,
then converted the final results back to positive costs.

Table 15 summarizes the simulation results. The policy
PREEMPT?2 has the smallest estimated expected cost and
would be selected as the best. Our 90% LCB on PGS is
0.98, showing that we have added assurance that PRE-
EMPT?2 is a good selection. meaning that its expected
cost is within $1 of the true minimum expected cost, even
il it is not the true best. However, since our LCB on PCS
is only 0.01, there is no strong evidence that PREEMPT?2
is the unique best.

But we can say more. With confidence level at least
90%, we can claim that all policies whose sample means
arc 4.43 + | = 5.43 or greater are clearly not the best; this
includes PREEMPTI, SEIZE2 and THI1(@3). Some of
these — specifically PREEMPTI and SEIZE2 — can be
claimed to be more than $1 from the true best. For in-
stance, since fi, — Mingg) I, — 6 = 8.06 — 4.43 — 1 = 2.63,
we can claim that PREEMPTI is at least $2.63 more
costly than the true best policy. If we decided that it was
uscful 1o determine the unique best, then this analysis
would justify eliminating PREEMPTI, SEIZE2 and
THI(3) from consideration in any follow-up analysis
using a smaller indifference zone, 6.

7. Conclusions

The procedures presented in this paper provide quite a
bit of uselul information to the experimenter, much
more than other indifference-zone procedures that have
been proposed for this problem. However, this inference
comes at a price that indicates areas for further re-
scarch.

All of the procedures in this paper are conservative if
the primary interest is in sclecting a good system (recall
that each procedure also provides inference on all-pair-
wisc comparisons). In other words, PGS > | — « for aff
configurations ol the means p,5,..., . Procedures
that are much tighter (require less sumpling) while still
providing the same inference are desirable.

The method for constructing the LCBs on PCS and
PGS arc parametric, meaning that they depend strongly
on the assumption of normally distributed data. Non-
parametric versions, based on bootstrapping for instance,
would be extremely valuable since the LCB could account
for both the possible increase in confidence due to en-
countering a favorable configuration of the means, and

also the possible degradation in confidence due to viola-
tion of the assumptions of the procedure.
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Appendix

Calculating PCS and PGS for Procedure S

To establish the computational formula (15) presented in
Section 4.1 we need the following lemma;:

Lemma 2. (Tamhane, 1977) Let 0,0z, ..., Ok be inde-
pendent random variables, and let gi{qi,q2,...,9:),

j=1,2,...,p, be non-negative, real-valued functions, each
one non-decreasing in each of its arguments. Then

7
ELng(Q.,Qz,-.-,Qk ]
j=1

Notice that (14) can be written as

=1 % max|J, My — Hi J/é )
: i=1 / (\/(Ho - ] l/a + l/C

a=0)

P

H Jj QlaQZV"aQ)]'

X dG,,D_|((l) 3 (Al)

where C is a ¥® random variable with ny — 1 degrees of
freedom. Since this expected value is non-decreasing in C,
the lemma may be applied to obtain

TT max|[6, e — pyl/¢
Al)>H / /(D( V(no— D(1/a+ l/b))

b=0 a=0

X dGng—-l (a)dGng—l (b)

But the term inside [ | is just Rinott’s integral for the case
k =2 systems, which by the proof of Proposition 3 in
Rinott (1978) is equal to

[ee]

] Foomi (r + max[ﬁ,,u[,(] — u[i}]/é)dlﬁ,o_l(t).

{=—00

165

Lower confidence bounds on py, — i

We propose simultaneous (1 —a)100% LCBs for
Hi) — #» for all i # [k], of the form

{tpg — 1wy > g = — 0, Vi:is# B} (A2)

Here we will prove that the event (A2) holds whenever the
event ./ holds, and since by the design of our procedures
Pr{.</} > | — a, the bounds have the desired confidence
level.

Theorem 1. The event o implies the event (A2).

Proof. We know that the event .o/ implics that

TN —maxg, — 0 <y, — max pp < 1, — max i, + 0
H; Z;«‘ilf =K g#iltﬂ—-ll E;c’:i‘lg+,

fori=1,2,...,k, which can be rewritten as
max fiy — i+ > MAX e — f; 2 max He — 1; = 0.
(A3)
There are two cases to consider:
1. If B = [k], then this together with (A3) implies that

WA fie = By = g = I
> max i, — #; — J,
= s He 15 3

=M~ — 0,

for all i # [k] (since B = [k]). Therefore (A2) holds.
2. If B # [k], the same reasoning as in Case | implies
that

My — #; > g — 1 — 6,
for i # B, [k]. For i = B we need to establish that
g — Mg > fig — Ty — - (A4)

Notice that the left-hand side of (A4) is the param-
eter we need Lo bound, and the right-hand side is the
lower bound that we actually use. Notice also that
Hg — g > 0 by the definition of [k], so that any
non-positive lower bound will be valid. But since
the event ./ holds, we are guaranteed that

- '“Ikl (#g — ) < 8, which  implies that
,uﬁ —Hy <0 since —(uz — ) is non-negative.
Therefore the right-hand side of (A4) is less-than-
or-equal-to zero. a
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