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Abstract: Obtaining precise estimates of parameters of infinite-horizon or steady-state simulations can be
expensive because of the need to discard initial outputs to mitigate the effects of initial conditions. We
consider splitting independent replications at the point of output truncation into dependent replications to
reduce point estimator variance and /or simulation cost.
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1. Introduction

Variance reduction techniques (VRTs) are used
to reduce the population variances of point esti-
mators based on simulations of stochastic
processes; for a survey of VRTs, see Nelson
(1987a). Most VRTs are designed for terminating
(sometimes called ‘transient’ or ‘finite-horizon’)
processes. An example of a terminating process is
a store that is open for a fixed number of hours
each day. The natural design for such experiments
is to sample many independent and identically
distributed (i.i.d.) replications of the process. On
the other hand, when simulating the large class of
steady-state (sometimes called ‘infinite-horizon”)
processes, it may be necessary to sample very
long, and thus expensive, replications to overcome
the effects of initial conditions. For example, to
determine the long-run performance characteris-
tics of a continuously operating production sys-
tem, the simulation might be initialized with the
system uncharacteristically empty and idle.

Variance reduction tailored to steady-state
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simulation experiments is largely unexplored. An
exception is Kelton (1986), who examined the
following problem: Consider performing a simula-
tion experiment to estimate 6= lim,_  E[Y)],
which is the same for all j, from the simulation
output process {Y,; i=1,2,...,m; j=
1,2,..., k}, where different replications (/) are
independent, but outputs within a replication (i)
may be neither independent nor identically dis-
tributed, and » = km is fixed. Kelton quantified
the effect of different sample allocation strategies
(choices of k) on the variance of the overall
sample mean
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where Y, is the sample mean of the j-th repli-
cation. When the outputs within a replication are
positively correlated, Kelton showed that in some
specific cases large k is preferable to small & for
minimizing Var[Y]. However, if initial condition
effects are reduced by discarding, say, the first d
outputs from each replication, then one drawback
to large k is that it may be prohibitively expensive
to discard kd outputs.
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In this paper we add an additional ‘degree of
freedom’ to Kelton’s approach by considering the
possibility of splitting each independent repli-
cation at the point of output truncation into s > 2
possibly dependent (antithetic) replications. The
goal is to reduce both the point estimator variance
and the number of outputs discarded. To facilitate
the analysis, we use the autoregressive order 1
(AR(1)) process as a surrogate for the simulation
output process. Specifically, we assume

Y, =6+¢(Y,

17

.—1,1'"0)+Xij (2)
where for fixed j, the {X,;i=1, 2,...,m} are
i.i.d. random variables with mean 0 and variance
62 < o0; we take 0 <¢ <1 so that the outputs
within the j-th replication, {Y,; i=1, 2,...,m},
are positively correlated. The AR(1) was intro-
duced as a model for simulation output processes
by Fishman (1972) because it shares many char-
acteristics observed in these processes, including
autocorrelations that decline exponentially with
increasing lag. Kelton and Law (1984) and Snell
and Schruben (1985) used the AR(1) surrogate to
examine alternative methods for mitigating the
effects of initial conditions, and Kelton (1986)
used it in the study outlined above.

The original motive for investigating antithetic-
variate splitting was the need to precisely estimate
the steady-state expected number of customers in
GI*/G”/c/q bulk arrival-bulk service queues to
validate a diffusion approximation (Lee, 1986).
Mitigating the effects of initial conditions can
require substantial output truncation for these
queues. The antithetic-variate splitting approach
with s =2 was extremely effective, in terms of
both cost and variance reduction, in this applica-
tion. In Section 5 we argue that antithetic-variate
splitting is useful for practical applications as well.

Sections 2 and 3 below give analytic results for
applying antithetic-variate splitting (s = 2) to sta-
tionary and nonstationary AR(1) output processes.
These two cases represent discarding enough ini-
tial output to consider the process to be in steady
state, and directly quantifying the initial condition
bias as a function of d, respectively. Section 4
extends the idea to s > 2 splits, and presents ana-
lytic and simulation results. Section 5 summarizes
the results and gives some practical guidelines. An
outline of how the results were derived is given in
the Appendix.

2. Stationary output process

We first assume that sufficient outputs are dis-
carded from the beginning of each replication to
insure that the remainder of the replication is a
covariance stationary process. For the AR(1) this
means that for fixed j and all i, E[Y,]=9,
Yo=Varl¥,]=6%/(1 - %), and CoY,, ¥,.,,]
= ¢y, for k=1, 2,..., m — i. The joint distribu-
tion of the {Y, } depends on the distribution of
the {X,}, but these are the moments of the
steady-state distribution regardless. We do not
make the common assumption that the { X,;} are
normally distributed, but only that the output
process 1s covariance stationary.

Let d be the number of outputs discarded from
the beginning of each replication; if the number of
outputs discarded is a random variable, then let d
be its expected value. In this section, we do not
include the discarded outputs as part of the sam-
pling budget n = km, since d 1s not under our
control. In the next section, where we consider
nonstationary output processes, d is treated as a
decision variable and its effect on both bias and
variance is quantified.

Let the d-th output from the j-th replication be
denoted Y, which has mean ¢ and variance v, by
the assumptions above. When all k of the rephi-
cations are independent, Kelton (1986) showed
that

— 2 _ i+ 1 2
Var[7] = (m—m¢ 2¢3+2¢ o n
km?(1 - ¢)’(1+¢) k

it

The cost of the experiment is km + kd =n + kd,
where we take the cost of obtaining a single out-
put Y, to be 1. These are the baseline results
against which we compare new procedures. We
assume throughout that » is divisible by k.

When the { X, } are i.i.d. for all i and j we get
the result above. We now consider the possibility
of using antithetic-variate sampling to cause pairs
of replications to be dependent. For the AR(1)
surrogate process we represent this possibility by
assuming

if i=h
Corr| X, 1 Xy o ={p ! i
L Ai2s-1 h'2’] 0 otherwise,
where —1<p<0and j=1,2,..., k/2. For fixed
J, the {X,j; i=1,2,...,m)} remain ii.d. For the
moment, we are not concerned with how the de-
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pendence between input processes (the { X, j} here)
is induced, but we will return to that issue in
Section 4. However, inducing dependence between
input processes to realize dependence between
output processes is typical of the way antithetic-
variate sampling is done.

There are two cases to consider: (1) we inde-
pendently initialize k replications, meaning
{Yy,..., Yy, } are iid., then induce dependence
between pairs of replications following truncation,
or (2) we initialize k/2 independent replications,
but at the point of truncation we split each one
into s=2 dependent replications of length m
starting at the same point. We can represent case 2
by taking Yy, ;= Y;,;, where j=1,2,...,k/2.
The point estimator is still the overall sample
mean (1), but we denote it ¥ for case 1 and Y for
case 2. The estimator ¥ is one form of the classi-
cal antithetic-variate estimator, while ¥ is the new
antithetic-variate splitting estimator. Under the
assumptions all three estimators Y, Y, and Y are
unbiased, so their mean squared errors (MSEs) are
their variances, which are different.

Result 1. Under the assumptions above,

2 _am 2 2
Var[ 7] = (Q+p)n (-9 3) po’
k km?(1—¢)°(1 + ¢)
Var[ 7] = (1 +kp)n $*(1—¢")’(1 = p)o’
km*(1—¢)'(1+¢)
When —1 < p <0, we have (1 + p)n/k <n/k;

however, for both estimators the second term on
the right is nonnegative. While Var[17_] < Var[ Y],
the cost of Y is n + kd, the same as Y, while the
cost of Y is n+ kd/2. (We do not consider the
potential savings from generating fewer random
numbers to be significant.) Thus to make a fair
comparison among Y, Y, and ¥ we need to make
the sampling budget of Y equal to n+ kd. There
are at least two approaches: (1) increase the length
of each of the replications from m to m’ =m +
d/2, or (2) increase the number of split repli-
cations from k/2 to k'/2=k(m+d)/2m+d).
Of course, m’ and &’ /2 would be rounded down
to the nearest integer. Increasing the length of
each replication results in all of the savings from

splitting contributing to ¥, while increasing the
number of replications results in some of the
savings being discarded. In all of the cases consid-
ered, the first approach leads to smaller point
estimator variance, so we only discuss increasing
the replication length from here on.

Figure 1 shows the effect on yVar[Q], for
Q=Y, Y, and Y, of different k& when ¢ = 0.9,
p=—0.5, n=4000, and d=0, 50 or 100. As d
gets larger, meaning that more outputs must be
discarded before reaching steady-state conditions,
)4 begins to dominate Y, and both dominate Y.
For antithetic-variate splitting the replications
must be long enough (k small enough) or d large
enough so that the effect of the induced negative
dependence between pairs of split replications can
overcome the positive dependence from starting
them at the same point. Figure 2 shows |Var[Q]
with the same AR(1) parameters, but 4 fixed at 50
and n = 1000 or 8000. For Y, the effect of starting
the dependent pairs of replications at indepen-
dent, randomly selected points becomes more pro-
nounced as k increases. However, as the budget »
is increased this effect is diminished.

3. Nonstationary output process

In this section, we explicitly model initial con-
dition effects by starting all replications of the
AR(1) surrogate process at a fixed initial state, y,.
Thus, the output process is no longer stationary.
The length of a replication is m, with the first
d <m outputs discarded, and the total sampling
budget is n=km. In this section the discarded
outputs are part of the total sampling budget since
d will be under our control. The point estimator is
the truncated sample mean

k
Y(d)ysk' Y (m—-d) ¥ Y,
Jj=1 i=d+1
k
) -
=k- ; Y,(d) (3)
where Y(d) is the sample mean of the j-th trun-

cated rephcatlon When all k& of the replications
are independent, Kelton and Law (1984) showed
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that
Var| Y(d)]
k(m—d)(1-¢)°
[, e )2+ (1-¢" )
(m—d)(1-¢)

-1

n(d)

=%

We again consider two estimators analogous to
the previous section: (1) Y(d), the classical anti-
thetic-variate estimator, where we induce depen-

0.36

0.30

0.24

0.18

dence between pairs of replications and discard d
outputs from the beginning of each one, and (2)
Y(d), the antithetic-variate splitting estimator,
where we initialize k/2 independent replications,
but at the point of truncation split each one into
s =2 dependent replications of length m —d.
Functionally, both of the estimators are still the
truncated sample mean. We can represent )A’(d)
by taking Y,,, ;=1Y,,; where j=1,2,..., k/2.
The important differences from Section 2 are that
dependence is induced beginning from the initial
state for the classical antithetic-variate estimator,
rather than after trunction, and that we explicitly
account for the effect of 4 on the bias and the

Y d=0, 50, 100

A
Y d=0
Y d=0, 50, 100
A
Y d=50
A
Y d=100
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Figure 1. y/Var as a function of the number of independent replications k and the truncation amount d for the stationary case with
$=09, p=—05, n=4000 and 0° =1
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variance of all three estimators, rather than assum-
ing that d is large enough to approximate steady-
state conditions.

Result 2. Under the assumptions stated above,
Var[Y(d)] = (1 + p)n(d)/k, and

Var[)}(d)] = ————(1 + pk)n(d)

L SO 1 =p)0*
k(m—d)’(1-$)’(1+9)

If —1<p<0, then Var[f’(d)] < Var[)_’(d)]; for
Var[Y(d)] the second term on the right is positive.

However, Y(d) and Y(d) both cost n, while )7(d)
costs k(m—d)+ kd/2 =n — kd/2. Thus, to make
a fair comparison we consider making the sam-
pling budget of ?(d) equal to » by increasing the
length of each replication to m’ = m + d /2. Again,
this approach dominates increasing the number of
split replications in terms of point estimator vari-
ance in the cases considered. An additional benefit
of increasing the replication length is discussed
below.

Figure 3 shows the effect on yVar[Q(d)] , for
0(d)=Y(d), Y(d), and Y(d), of different k
when ¢ =0.9, p= —0.5, n=16000, and d=0 or
125. The variance of all three estimators increases

0.36
0.30
0.24
VVar
Y
0.18 -
n=1000
A
0.12 Y
Y
y  n=8000
A
0.06 Y
0.00

100
k

Figure 2. yVar as a function of the number of independent replications & and the sampling budget » for the stationary case with
$=09,p=-05 d=50and 6> =1
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with increasing d and k, but Var[?(d)] does
not increase as rapidly. Figure 4 shows the effect
on yVar[Q(d)] of increasing n when d is fixed
at 50. The relative benefit of antithetic-variate
splitting is greater when the sampling budget is
tight.

If we do not equate sampling budgets, then all
three estimators Y(d), ¥(d), and )A’(d) are identi-
cally biased. The bias is (Kelton and Law, 1984)

(3o —8)¢" (1 — 9" )
(m—d)1-9¢)

The bias decreases with increasing d and increas-
ing m. Thus, increasing the length of each repli-
cation in Y(d) to m’ =m + d/2 makes the anti-
thetic-variate splitting estimator less biased than
Y(d) and Y(d) for the same budget, decreasing its
MSE relative to the other estimators. Increasing
the number of split replications in Y(d) has no
effect on the bias.

E[Q(d)] —6=

4. Multiple splitting

In Sections 2 and 3 we considered splitting & /2
independent replications at the point of truncation
into s =2 possibly dependent replications. The
natural next step is to consider s > 2 splits on each
of k/s independent replications. Suppose first
that, with the exception of starting from the same
point, the split replications are also independent.
Then for the AR(1) process we have

Result 3. For s> 2 independent splits of k/s
independent replications

(s—1)¢*(1—9¢™)’0>
km*(1- )’ (1+¢)

Var[Y] = —Z +

var[ ¥(d)]
_a(d) | (s=De1-¢)(1-¢m¢)
k ke(m—d)(1—-¢)(1+¢)

where Y denotes the stationary case and )A’(d) the
nonstationary case. While the variances increase
as s increases, the cost of both estimators goes
down. The cost of ¥ is n+kd/s compared to
n+kd for Y, and the cost of l?(d) is n—(s—
1)kd/s compared to n for Y(d). Thus, the length

of each replication could be increased to m’ =m
+ (s — 1)d/s in both cases.

Extending the idea of dependent splits to s> 2
is not straightforward. It is well known that if X,
has cumulative distribution function (cdf) F, then
the pair {X,,, ,, X,,,;} can be generated with
minimal possible covariance by letting X,,, ;=
F7(U) and X,,,=F '(1-U), where U~
U(0, 1), the uniform distribution on the interval
(0, 1). This is one method for realizing the nega-
tive correlation we assumed for the AR(1) process.
However, there is no corresponding general results
for making { X, ; j=1,2,.... s} negatively corre-
lated.

One possibility 1s the ‘rotation sampling’
scheme proposed by Fishman and Huang (1983).
In rotation sampling, we let X, = F (U * (j -
1)/s), j=1,2,...,s, where

U+(j=-1)/s
pa ol _) if0<U<1-(i-1)s
s U+(j—1)/s—1

if1-(j~1)/s<U<1.

For several distributions F (e.g. exponential), ro-
tation sampling achieves the minimal possible
average correlation among the {X,: j=
1,2,...,s}, and for many other distributions it
achieves greatly reduced average correlation. Re-
sults in Fishman and Huang suggest that rotation
sampling will become more effective as s in-
creases. Unfortunately, these results do not permit
derivation of explicit expressions for the variance
of alternative estimators using the AR(1) surro-
gate process.

To investigate the performance of both anti-
thetic (s =2) and rotation (s > 2) splitting, we
simulated GI/G/1 queues with Weibull distrib-
uted interarrival and service times. Thus, the
M /M /1 queue is a special case. The performance
measures considered were 8,, the steady-state ex-
pected delay in the queue, and 8,, the steady-state
expected number of customers in the system; 8, is
the parameter of a discrete-time process, like 8 for
the AR(1), while #, is the parameter of a continu-
ous-time process. Unlike the AR(1), a replication
j of the GI/G/1 process is not a function of a
single input process {X,;i=1,2,...,m}, but
rather two input processes: the interarrival times
and service times. Thus, synchronization of ran-
dom number streams is important to achieve the
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desired negative dependence. A separate stream of
U(0, 1) random numbers for each input process
works well in this simple queue, but in complex
simulations more sophistication may be required.
This point is discussed further in the next section.

The estimators Y(d), Y(d), and ?(d) were
investigated with m’=m+ (s —1)d/s for Y(d).
In the experiments, each independent replication
was initialized with the queue empty and idle. At
the point of truncation, which was dth customer
waiting time in the queue, the entire state of the
simulation, including the current random number
seeds for each input process, was recorded. This
information was used to restart split replications.

The sample variances were computed using the
formula

Var[Q(d)] = (k/s(k/s—1)) "
k/s

X gl {0,(d) - 0(d))?

for Q(d)=Y(d), Y(d) or ¥(d), s=1 for inde-
pendent sampling, s = 2 for antithetic variates and
antithetic splitting, and s=4 or 8 for rotation
splitting; Q (d) denotes the average of all outputs
in an independent replication. Thus, when anti-
thetic sampling is used, all dependent replications
are averaged to form 17,.(d ) or I?,(d ) for j=

0.36
0.30
0.24
VVar
0.18
.......... ¢ deias
N
.......................................... -
.......................................................... .
A
0.06 =
~ A
Y.Y d=0
0.00
20 100

k

Figure 3. yVar as a function of the number of independent replications k and the truncation amount d for the nonstationary case
with ¢ = 0.9, p = —0.5, n =16000 and 0> =1
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1, 2,..., k/s. Notice that antithetic sampling re-
sults in a loss of degrees of freedom from k£ — 1 to
k/s—1.

Tables 1 and 2 show results for M/M /1 queues
with traffic intensities 0.5 and 0.8, respectively.
Tables 3 and 4 also show results for traffic intensi-
ties 0.5 and 0.8, but with Weibull parameters such
that the interarrival and service time distributions
are more bell shaped (the specific parameters are
given in the tables). The basic experiment had a
sampling budget n= 16000 and trunction point
d = 240; the value of d was selected based on
results in Kelton and Law (1984) for M/M/1
queues. The basic experiment was replicated 25

times, each replication providing an estimated
variance using the formula above. The results re-
ported in the tables are the average and standard
error of the average of the 25 replications.
Variance reductions of more than 50% are
clearly achievable. Rotation splitting was generally
more effective for s = 8 splits, and sometimes vari-
ance increases relative to s =2 splits occurred for
s =4. Also notice that larger variance reductions
were obtained for estimating #,, the expected
number of customers in the system. Although
these results are encouraging, they are not defini-
tive since this is only one experiment. However,
antithetic-variate splitting does seem to be more

0.36

0.30

0.24

VVar

0.18
Y

0.12 ~ n=8000
Y
A
Y
Y

0.06 ~
Y n=32000
A
Y

0.00

20 50

100
k

Figure 4. yVar as a function of the number of independent replications k and the sampling budget n for the nonstationary case with
$=09,p=-05,d=50and 6% =1
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Table 1

Results for 25 replications of GI/G/1 simulation with n =
16000, k = 40, d = 240, and Weibull parameters a, =1.0, 8, =
1.0, a, =1.0, B, = 0.5 (standard errors in parentheses) ?

vVar{Y(d)] Varl¥(d)] VarfY¥(d)]
s=2 s=4 s=38
6, 935 8.51 5.20 430 372
(0.62) (0.90) (0.55)  (0.55)  (0.54)
6, 1711 11.29 6.62 6.43 4.97
(1.06) (1.29) 0.78)  (0.90) (0.71)

2 All results X104,

Table 2

Results for 25 replications of GI/G/1 simulation with n =
16000, k = 40, d = 240, and Weibull parameters a; =1.0, B,=
1.0, «, =10, B, = 0.8 (standard errors in parentheses) ?

var[Y(d)] Vvaf¥(d)] Vvarf¥P(d)]
s=2 s=4 s=8
6, 114 0.84 0.75 0.92 0.57
(0.15) (0.10) 011)  (0.16)  (0.10)
6, 149 1.05 0.87 1.02 0.64
0.20) 0.12) ©14) (019 (0.11)

* All results X107 1.

Table 3

Results for 25 replications of GI/G/1 simulation with n =
16000, k = 40, d = 240, and Weibull parameters a; = 2.0, 8, =
1.8482, a, = 2.0, 8, = 0.5642 (standard errors in parentheses) #

Var[Y(d)] Varf(d)] Var¥(d)]
s=2 s=4 =8
8, 303 3.01 1.64 1.40 1.14
0.18) (0.28) (0.13)  (0.17) (0.16)
8, 11.54 1.32 0.74 3.32 1.77
(0.56) 0.12) (0.04) (0.38) (0.22)

2 All results X106,

Table 4

Results for 25 replications of GI/1/1 simulation with n=
16000, k& = 40, d = 240, and Weibull parameters a; = 2.0, 8; =
1.8284, a, = 2.0, B, = 0.9027 (standard errors in parentheses) #

var[Y(d)] Varld¥(d) Var[¥(d)
s=2 s=4 s=8
6, 445 3.97 227 201 2.05
(0.22) (0.26) (015) (0.19) (0.28)
6, 623 1.63 0.92 2.08 1.37
(0.28) (0.11) 006) (0.18) (0.19)

& All results X105,

effective than classical antithetic variates, as ex-
pected from the AR(1) results. For an example of
a successful application of rotation sampling in
the simulation of Markov chains, see Fishman
(1983ab).

5. Conclusions

The results in this paper indicate that anti-
thetic-variate splitting can be more effective than
the classical antithetic-variate estimator in
steady-state simulations where antithetic sampling
is effective. As in all applications of antithetic
sampling, it is essential to design the simulation
experiment so that negative correlation induced
between input processes is preserved in the output
processes. There are three key factors in the de-
sign: The method of input process generation, the
synchronization of the random number streams,
and the monotonicity of the input-output
transformation. We discuss these factors briefly as
they pertain to antithetic-variate splitting; for in-
depth discussions see Kleijnen (1974) and Bratley,
Fox and Schrage (1983).

Dependence induction, such as antithetic-
variate sampling, usually requires the inverse cdf
method of random-variate generation as described
in Section 4. Other variate generation methods
that are employed when no closed-form expres-
sion for the inverse cdf exists are not designed to
induce dependence between input processes by
manipulating the random number streams. While
these other methods are fast relative to numeri-
cally inverting the cdf, the variance reduction
achieved by the antithetic-splitting estimator may
make numerical inversion worth the extra effort.
Recently, Schmeiser and Kachitvichyanukul (1986)
proposed fast, noninverse cdf algorithms that per-
mit dependence induction.

The antithetic-variate splitting estimator facili-
tates synchronization of the random number
streams. Unlike the AR(1) surrogate process used
here, the dependence induced between outputs in
practical simulations may decrease as the repli-
cation length increases because of lack of synchro-
nization. Inducing dependence after the trunca-
tion point helps to preserve as much dependence
as possible in the outputs of interest. Thus, the
antithetic-splitting estimator may actually perform
better than indicated by the AR(1) results in prac-
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tical problems relative to the classical antithetic-
variate estimator.

Factors that are important in deciding how to
apply antithetic-variate splitting in practical prob-
lems include the total sampling budget, the degree
of negative correlation that can be induced, and
the degree of positive correlation within each rep-
lication. Unfortunately, the relevant correlations
are rarely known in practice. Also, the experiment
design may need to reflect other criteria in ad-
dition to point estimator variance. For example, if
interval estimates are desired then degrees of free-
dom, point estimator bias, and point estimator
normality play a role (Nelson, 1987b). In its favor,
the antithetic-splitting estimator is less biased than
either the sample mean or the antithetic-variate
estimator for the same number of replications and
truncation point.

Directly extrapolating the AR(1) results to
practical simulations is problematical. Even if the
optimal design (in terms of point estimator vari-
ance) is determined for the AR(1) process, we do
not know how well the AR(1) represents the simu-
lation. The AR(1) and GI /G /1 simulation results
suggest the following tentative recommendation:
If initial condition effects are moderate with re-
spect to the available budget, use antithetic split-
ting (s =2). If initial condition effects are severe
so that d is large, use rotation splitting with s > 8.
Overall, the antithetic-variate splitting approach
appears promising and practical for steady-state
simulations requiring large initial truncations.

We have used the term ‘splitting’ in a sense not
too different from the VRT by the same name
(Kahn, 1956; Nelson, 1987a). In classical splitting,
when the state of a dynamic simulation enters an
important subset of states (e.g. a subset of states
from which a rare event is likely to occur), s
independent replications are started and their re-
sults averaged. The idea is to precisely estimate a
conditional expection; i.e. the expected system
response given the system is in a certain subset of
states. Antithetic-variate splitting could further
sharpen the estimate, and all the preceding results
apply directly.

Appendix

Kelton and Law (1984) show that for the AR(1)
process (2)

(yo,—8)o" (1 —9" )
(m—-d)(1-9)
+H{(1 - )Tie’ 1y,
X0 (1= X, )
x{(m—d)1-¢)} "

The key to the results in this paper is to notice
that if Cort{ X;,;_;, X;,,]=p, then Var[(X,,, ,
+ X.2,)/2]=(1+ p)a?/2. All the results can be
derived by direct calculation of the appropriate
variance, noting which X, terms are common,
independent, and dependent in the calculation.
For the stationary cases, we take Y, to be a

random variable with mean # and variance v,,.

Y(d)y=60+
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