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Abstract: Obtaining precise estimates of parameters of infinite-horizon or steady-state simulations can be 
expensive because of the need to discard initial outputs to mitigate the effects of initial conditions. We 
consider splitting independent replications at the point of output truncation into dependent replications to 
reduce point estimator variance a n d / o r  simulation cost. 
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I. Introduction 

Variance reduction techniques (VRTs) are used 
to reduce the population variances of point esti- 
mators based on simulations of stochastic 
processes; for a survey of VRTs, see Nelson 
(1987a). Most VRTs are designed for terminating 
(sometimes called ' transient '  or 'finite-horizon') 
processes. An example of a terminating process is 
a store that is open for a fixed number of hours 
each day. The natural design for such experiments 
is to sample many independent and identically 
distributed (i.i.d.) replications of the process. On 
the other hand, when simulating the large class of 
steady-state (sometimes called 'infinite-horizon') 
processes, it may be necessary to sample very 
long, and thus expensive, replications to overcome 
the effects of initial conditions. For example, to 
determine the long-run performance characteris- 
tics of a continuously operating production sys- 
tem, the simulation might be initialized with the 
system uncharacteristically empty and idle. 

Variance reduction tailored to steady-state 
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simulation experiments is largely unexplored. An 
exception is Kelton (1986), who examined the 
following problem: Consider performing a simula- 
tion experiment to estimate O-limi~E[Y~j] ,  
which is the same for all j ,  from the simulation 
output  process {Y,7; i = 1, 2 . . . . .  m; j = 
1, 2 . . . . .  k}, where different replications ( j )  are 
independent, but outputs within a replication (i)  
may be neither independent nor identically dis- 
tributed, and n = km is fixed. Kelton quantified 
the effect of different sample allocation strategies 
(choices of k) on the variance of the overall 
sample mean 

k - '  E m -1 Y,j = E (1) 
j= l  i=1 j=l  

where ~ is the sample mean of the j- th repli- 
cation. When the outputs within a replication are 
positively correlated, Kelton showed that in some 
specific cases larg_e k is preferable to small k for 
minimizing Var[Y]. However, if initial condition 
effects are reduced by discarding, say, the first d 
outputs from each replication, then one drawback 
to large k is that it may be prohibitively expensive 
to discard kd outputs. 
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In this paper  we add an additional 'degree of 
freedom' to Kelton's  approach by considering the 
possibility of splitting each independent repli- 
cation at the point of output truncation into s > 2 
possibly dependent (antithetic) replications. The 
goal is to reduce both the point estimator variance 
and the number  of outputs discarded. To facilitate 
the analysis, we use the autoregressive order 1 
(AR(1)) process as a surrogate for the simulation 
output process. Specifically, we assume 

Yil = 0 "Jr- ~b (Yi_ l ,  j - 0 )  -1- Xij  ( 2 )  

where for fixed j ,  the {X,j; i = 1 , 2  . . . . .  m} are 
i.i.d, random variables with mean 0 and variance 
o 2 < m ;  we take 0 < ~ < 1  so that the outputs 
within the j - th  replication, { Y,7; i = 1, 2 . . . . .  m }, 
are positively correlated. The AR(1) was intro- 
duced as a model for simulation output processes 
by Fishman (1972) because it shares many char- 
acteristics observed in these processes, including 
autocorrelations that decline exponentially with 
increasing lag. Kelton and Law (1984) and Snell 
and Schruben (1985) used the AR(1) surrogate to 
examine alternative methods for mitigating the 
effects of initial conditions, and Kelton (1986) 
used it in the study outlined above. 

The original motive for investigating antithetic- 
variate splitting was the need to precisely estimate 
the steady-state expected number  of customers in 
G I X / G Y / c / q  bulk arrival-bulk service queues to 
validate a diffusion approximation (Lee, 1986). 
Mitigating the effects of initial conditions can 
require substantial output truncation for these 
queues. The antithetic-variate splitting approach 
with s = 2 was extremely effective, in terms of 
both cost and variance reduction, in this applica- 
tion. In Section 5 we argue that antithetic-variate 
splitting is useful for practical applications as well. 

Sections 2 and 3 below give analytic results for 
applying antithetic-variate splitting (s = 2) to sta- 
tionary and nonstationary AR(1) output processes. 
These two cases represent discarding enough ini- 
tial output to consider the process to be in steady 
state, and directly quantifying the initial condition 
bias as a function of d, respectively. Section 4 
extends the idea to s >~ 2 splits, and presents ana- 
lytic and simulation results. Section 5 summarizes 
the results and gives some practical guidelines. An 
outline of how the results were derived is given in 
the Appendix. 

2. Stationary output process 

We first assume that sufficient outputs are dis- 
carded from the beginning of each replication to 
insure that the remainder of the replication is a 
covariance stationary process. For the AR(1) this 
means that for fixed j and all i, E [ ~ j ] = O ,  
70 - Var[Kj] = o 2 / ( 1  - -  ~b2), and Cov[Y,j, Y,+h.j] 
= q~h'y 0' for h = 1, 2 . . . . .  rn - i. The joint distribu- 
tion of the {~ j}  depends on the distribution of 
the {Xo}, but these are the moments  of the 
steady-state distribution regardless. We do not 
make the common assumption that the { Xij } are 
normally distributed, but only that the output 
process is covariance stationary. 

Let d be the number  of outputs discarded from 
the beginning of each replication; if the number  of 
outputs discarded is a random variable, then let d 
be its expected value. In this section, we do not 
include the discarded outputs as part  of the sam- 
piing budget n = km,  since d is not under our 
control. In the next section, where we consider 
nonstationary output processes, d is treated as a 
decision variable and its effect on both bias and 
variance is quantified. 

Let the d-th output from the j - th replication be 
denoted Y0j, which has mean 0 and variance 7'0 by 
the assumptions above. When all k of the repli- 
cations are independent, Kelton (1986) showed 
that 

Var[Y]  = ( m - - m g p 2 - -  2dp+ 2 ~ m + l ) ° 2  -- -- ~ 

kin2(1 _ q>)3(1 + +)  k"  

The cost of the experiment is k m  + kd  = n + kd,  
where we take the cost of obtaining a single out- 
put Y,y to be 1. These are the baseline results 
against which we compare new procedures. We 
assume throughout that n is divisible by k. 

When the { X,j } are i.i.d, for all i and j we get 
the result above. We now consider the possibility 
of using antithetic-variate sampling to cause pairs 
of replications to be dependent. For the AR(1) 
surrogate process we represent this possibility by 
assuming 

0 if i = h ,  
C°rr[Xi '2J - l '  Xh'2J] = 0 otherwise, 

where - 1 ~< p ~< 0 and j = 1, 2 . . . . .  k / 2 .  For fixed 
j ,  the { Xo; i = 1, 2 . . . . .  m} remain i.i.d. For the 
moment,  we are not concerned with how the de- 
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pendence between input processes (the ( X~j } here) 
is induced, but we will return to that issue in 
Section 4. However, inducing dependence between 
input processes to realize dependence between 
output processes is typical of the way antithetic- 
variate sampling is done. 

There are two cases to consider: (1) we inde- 
pendently initialize k replications, meaning 
{ Y01 . . . . .  Y0k } are i.i.d., then induce dependence 
between pairs of replications following truncation, 
or (2) we initialize k / 2  independent replications, 
but at the point of truncation we split each one 
into s = 2 dependent replications of length m 
starting at the same point. We can represent case 2 
by taking Yo.2j-1 = Yo,2j, where j = 1, 2 , . . . ,  k /2 .  
The point estimator is still the overall sample 
mean (1), but we denote it I 7 for case I and I ~ for 
case 2. The estimator 17 is one form of the classi- 
cal antithetic-variate estimator, while Y is the new 
antithetic-variate splitting estimator. Under the 
assumptions all three estimators Y, 17, and Y are 
unbiased, so their mean squared errors (MSEs) are 
their variances, which are different. 

Result 1. Under the assumptions above, 

Var[ ~7 ] _ (1 + p)~/ q~2(1 - -  cm)2po2 
k 

VarrPlt-J - (1 +p)~ /  
k 

- - +  

km2(1 - q~)3(1 + q~) 

q~2(1 - -  q~rn)2(l  - -  10)0 2 

km2(1 - ~)3(1 + q~) 

When - 1 ~ O ~< 0, we have (1 + O)~/k  ~< ~l/k; 
however, for both estimators the second term on 
the right is nonnegative. While Var[}7._] ~< Var[I~], 
the cost of 1 ~ is n + kd, the same as Y, while the 
cost of I ~ is n + kd /2 .  (We do not consider the 
potential savings from generating fewer random 
numbers to be significant.) Thus, to make a fair 
comparison among Y, Y, and I 9" we need to make 
the sampling budget of I ~ equal to n + kd. There 
are at least two approaches: (1) increase the length 
of each of the replications from m to m ' =  m + 
d/2 ,  or (2) increase the number of split repli- 
cations from k / 2  to k ' / 2  = k ( m  + d ) / ( 2 m  + d). 
Of course, m'  and k ' / 2  would be rounded down 
to the nearest integer. Increasing the length of 
each replication results in all of the savings from 

splitting contributing to I~, while increasing the 
number of replications results in some of the 
savings being discarded. In all of the cases consid- 
ered, the first approach leads to smaller point 
estimator variance, so we only discuss increasing 
the replication length from here on. 

Figure  1 shows the effect on ~ ,  for 
Q = Y ,  Y, and I ~, of different k when q~=0.9, 
p = -0 .5 ,  n =4000, and d = 0 ,  50 or 100. As d 
gets larger, meaning that more outputs must be 
discarded before reaching steady-state conditions, 

begins to dominate Y, and both dominate Y. 
For  antithetic-variate splitting the replications 
must be long enough (k small enough) or d large 
enough so that the effect of the induced negative 
dependence between pairs of split replications can 
overcome the positive dependence from starting 
them at the same point. Figure 2 shows 
with the same AR(1) parameters, but d fixed at 50 
and n = 1000 or 8000. For 17, the effect of starting 
the dependent pairs of replications at indepen- 
dent, randomly selected points becomes more pro- 
nounced as k increases. However, as the budget n 
is increased this effect is diminished. 

3. Nonstationary output process 

In this section, we explicitly model initial con- 
dition effects by starting all replications of the 
AR(1) surrogate process at a fixed initial state, Y0- 
Thus, the output process is no longer stationary. 
The length of a replication is m, with the first 
d < m outputs discarded, and t.he total sampling 
budget is n = kin. In this section the discarded 
outputs are part of the total sampling budget since 
d will be under our control. The point estimator is 
the truncated sample mean 

k 

?(d)- k E (m- d)-' E 
j = l  i = d + l  

k 

= k - '  E ~ ( d )  (3) 
j= l  

where ~ ( d )  is the sample mean of the j- th trun- 
cated replication. When all k of the replications 
are independent, Kelton and Law (1984) showed 
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that 

Var[ Y(d)]  
o 2 

k(m-d) (1  - 0 )  2 

• [1 - 0(1 -- 0m-d)(2 + 02a+'(1 - 0m-d))  

[ (m - -  d)(1 - 0 2) 

k 

We again consider two estimators analogous to 
the previous section: (1) IT(d), the classical anti- 
thetic-variate estimator, where we induce depen- 

dence between pairs of replications and discard d 
outputs from the beginning of each one, and (2) 
I)(d), the antithetic-variate splitting estimator, 
where we initialize k/2 independent replications, 
but at the point of truncation split each one into 
s = 2 dependent replications of length m -  d. 
Functionally, both of the estimators are still the 
truncated sample mean. We can represent f ' (d)  
by taking Yd,2j-1 = Yd,2j, where j = 1, 2 . . . . .  k/2. 
The important differences from Section 2 are that 
dependence is induced beginning from the initial 
state for the classical antithetic-variate estimator, 
rather than after trunction, and that we explicitly 
account for the effect of d on the bias and the 
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Figure 1. ~ as a function of the number  of independent  replications k and the t runcat ion amount  d for the stationary case with 
d~ = 0.9, O = - 0 . 5 ,  n = 4000 and 02 =1  
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var iance of all three est imators ,  ra ther  than  assum- 
ing that  d is large enough to approx imate  s teady-  
state condit ions.  

Result  2. Unde r  the assumpt ions  stated above,  
Var[l?(d)]  = (1 + p ) * l ( d ) / k ,  and 

Var[  19(d)] (1 + p ) T l ( d )  
k 

~2(1 - q~2d)(1 - qam-d)2(1 - p ) o  .2 
+ 

k ( m  - d)2(1 - q~)3(1 + ~b) 

I f  - 1  ~< p ~< O, then Var[lT(d)] ~< Var[Y(d)] ;  for 
Var[12(d)] the second te rm on the right is positive. 

However ,  Y ( d )  and IV(d) bo th  cost n, while Ig(d) 
costs k ( m  - d )  + k d / 2  = n - k d / 2 .  Thus, to make  
a fair  compar i son  we consider  making  the sam- 
pling budget  of  19(d) equal  to n by  increasing the 
length of each replicat ion to m '  = m + d / 2 .  Again,  
this approach  domina tes  increasing the n u m b e r  of  
split replicat ions in terms of  point  es t imator  vari- 
ance in the cases considered.  An addit ional  benefi t  
of  increasing the replication length is discussed 
below. 

Figure_3 shows the effect on ~ V a r [ Q ( d ) ] ,  for 
Q ( d ) =  Y ( d ) ,  ~ ' (d) ,  and I~(d), of  different k 
when ~ = 0.9, p = - 0 . 5 ,  n = 16000, and d =  0 or 
125. The  variance of all three es t imators  increases 

0.36 

0.30 

0.24 

0.18 Y 

A 

0.12 Y 

Y 

Y . . . . . . .  - - m u m : : :  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A 

Y 0.06 

0.00 

n=1000 

n=8000 

20 50 100 

k 

Figure 2. ~ as a function of the number of independent replications k and the sampling budget n for the stationary case with 
~ = 0.9, p = -0.5, d =  50 and 02=1 
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with increasing d and k, but IVar[I~(d)]  does 
not increase as rapidly. Figure 4 shows the effect 
on ~Var[Q(d)]  of increasing n when d is fixed 
at 50. The relative benefit of antithetic-variate 
splitting is greater when the sampling budget is 
tight. 

If we do not equate sampling budgets, then all 
three estimators l?(d), I~(d), and Y(d)  are identi- 
cally biased. The bias is (Kelton and Law, 1984) 

E[Q(d)]  - 0 =  (Y°-O)*a+x(1 __,m-d) 
(m - d)(1 - , )  

The bias decreases with increasing d and increas- 
ing m. Thus, increasing the length of each repli- 
cation in l~(d) to m ' =  m + d /2  makes the anti- 
thetic-variate splitting estimator less biased than 
Y(d) and 17(d ) for the same budget, decreasing its 
MSE relative to the other estimators. Increasing 
the number of split replications in 17(d) has no 
effect on the bias. 

4. Multiple splitting 

In Sections 2 and 3 we considered splitting k / 2  
independent replications at the point of truncation 
into s = 2 possibly dependent replications. The 
natural next step is to consider s ~> 2 splits on each 
of k / s  independent replications. Suppose first 
that, with the exception of starting from the same 
point, the split replications are also independent. 
Then for the AR(1) process we have 

Result 3. For s >t 2 independent splits of k / s  
independent replications 

~/ ( s  -- 1 ) . 2 ( 1  -- *m)20"2 

Var[ I~1 = ~- + k m 2 (  1 _ * ) 3 (  1 -{- * )  , 

Var[ )~(d)] 

_ ~/(d) + ( s -  1) ,2(1 - , 2 a ) ( 1  - , m - a ) :  

k k ( r n _ d ) 2 ( l _ , ) 3 ( l + , )  

where I7 denotes the stationary case and IT"(d) the 
nonstationary case. While the variances increase 
as s increases, the cost of both estimators goes 
down. The _c°st of 1~ is n + kd / s  compared to 
n + k d  for Y, and the cost of Y(d)  is n - ( s -  
1)kd/s  compared to n for Y(d). Thus, the length 
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of each replication could be increased to m ' =  m 
+ (s - 1)d/s in both cases. 

Extending the idea of dependent splits to s > 2 
is not straightforward. It is well known that if X,j 
has cumulative distribution function (cdf) F, then 
the pair { X~.2j_I, X,,2j} can be generated with 
minimal possible covariance by letting )(,.21 ~= 
F I(U) and X, .2 j=F 1 ( 1 -  U), where U -  
U(0, 1), the uniform distribution on the interval 
(0, 1). This is one method for realizing the nega- 
tive correlation we assumed for the AR(1) process. 
However, there is no corresponding general results 
for making { X,j; j = 1, 2 . . . . .  s } negatively corre- 
lated. 

One possibility is the 'rotation sampling' 
scheme proposed by Fishman and Huang (1983). 
In rotation sampling, we let X,j = F -  1(U * ( j  - 
1) / s ) ,  j = 1, 2 . . . . .  s, where 

U+ ( j -  1) /s  

U *  j - 1  _ i f O < ~ U < l - ( j - 1 ) / s ,  

s U + ( j - 1 ) / s - 1  

i f l - ( j - 1 ) / s < ~  U < l .  

For several distributions F (e.g. exponential), ro- 
tation sampling achieves the minimal possible 
average correlat ion among the { X , /  j = 
1, 2 . . . . .  s}, and for many other distributions it 
achieves greatly reduced average correlation. Re- 
sults in Fishman and Huang suggest that rotation 
sampling will become more effective as s in- 
creases. Unfortunately, these results do not permit 
derivation of explicit expressions for the variance 
of alternative estimators using the AR(1) surro- 
gate process. 

To investigate the performance of both anti- 
thetic (s = 2) and rotation (s > 2) splitting, we 
simulated G I / G / 1  queues with Weibull distrib- 
uted interarrival and service times. Thus, the 
M / M / 1  queue is a special case. The performance 
measures considered were 01 , the steady-state ex- 
pected delay in the queue, and 0 2 , the steady-state 
expected number of customers in the system; 01 is 
the parameter of a discrete-time process, like 0 for 
the AR(1), while 0 2 is the parameter of a continu- 
ous-time process. Unlike the AR(1), a replication 
j of the G I / G / 1  process is not a function of a 
single input process { X,j; i = 1, 2 . . . . .  m}, but 
rather two input processes: the interarrival times 
and service times. Thus, synchronization of ran- 
dom number streams is important to achieve the 
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desired negative dependence.  A separate stream of 
U(0, 1) r andom numbers  for each input process 
works well in this simple queue, but  in complex 
simulations more  sophistication may  be required. 
This point  is discussed further in the next section. 

The estimators Y(d) ,  IT(d), and I?(d) were 
investigated with m" = m + (s  - 1 ) d / s  for I~(d). 
In  the experiments, each independent  replication 
was initialized with the queue empty  and idle. At  
the point  of  truncation, which was d t h  customer  
waiting time in the queue, the entire state of  the 
simulation, including the current r andom number  
seeds for each input  process, was recorded. This 
informat ion was used to restart split replications. 

The sample variances were computed  using the 
formula  

V ~ r [ a ( d ) ]  = ( k / s ( k / s  - 1)) -1 

k/s  
× ~., { Q j ( d ) - Q ( d ) }  2 

j~ l  

fo r  Q(d) = Y ( d ) ,  l~(d)  or  IT(d),  s = 1 for  inde-  
p e n d e n t  sampling, s = 2 for antithetic variates and 
antithetic splitting, and s = 4 or  8 for rotat ion 
splitting; Q y ( d )  denotes the average of  all outputs  
in an independent  replication. Thus, when anti- 
thetic sampling is used, all dependent  replications 
are averaged to form ~ ( d )  or ~ ( d )  for j =  
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Figure 3. ~ as a function of the number of independent replications k and the truncation amount d for the nonstationary case 
with ~ = 0.9, p = -0.5, n =16000 and 02 =1 
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1, 2 . . . . .  k / s .  Notice that antithetic sampling re- 
sults in a loss of degrees of freedom from k - 1 to 
k / s -  1. 

Tables I and 2 show results for M / M / 1  queues 
with traffic intensities 0.5 and 0.8, respectively. 
Tables 3 and 4 also show results for traffic intensi- 
ties 0.5 and 0.8, but with Weibull parameters  such 
that the interarrival and service time distributions 
are more bell shaped (the specific parameters  are 
given in the tables). The basic experiment had a 
sampling budget n = 16000 and trunction point 
d =  240; the value of d was selected based on 
results in Kelton and Law (1984) for M / M / 1  
queues. The basic experiment was replicated 25 

times, each replication providing an estimated 
variance using the formula above  The results re- 
ported in the tables are the average and standard 
error of the average of the 25 replications. 

Variance reductions of more than 50% are 
clearly achievable. Rotation splitting was generally 
more effective for s = 8 splits, and sometimes vari- 
ance increases relative to s = 2 splits occurred for 
s = 4. Also notice that larger variance reductions 
were obtained for estimating 02, the expected 
number  of customers in the system. Although 
these results are encouraging, they are not defini- 
tive since this is only one experiment. However, 
antithetic-variate splitting does seem to be more 
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Figure 4. ~ as a function of the number  of independent  replications k and the sampling budget  n for the nonstat ionary case with 
q~ = 0.9, 0 = -0 .5 ,  d ~  50 and o 2 = 1  
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Table 1 
Results for 25 replications of G I / G / 1  simulation with n = 
16000, k = 40, d = 240, and Weibull parameters a 1 = 1.0, /31 = 
1.0, a 2 = 1.0, /32 = 0.5 (standard errors in parentheses) a 

s = 2  s = 4  s = 8  

01 9.35 8.51 5.20 4.30 3.72 
(0.62) (0.90) (0.55) (0.55) (0.54) 

02 17.11 11.29 6.62 6.43 4.97 
(1.06) (1.29) (0.78) (0.90) (0.71) 

a All results ×10 4. 

Table 2 
Results for 25 replications of G I / G / 1  simulation with n = 
16000, k = 40, d = 240, and Weibull parameters a I = 1.0, /31 = 
1.0, a 2 = 1.0, f12 = 0.8 (standard errors in parentheses) a 

Var[Y(d)] Var[ ]7(d)] Var[ ]7(d)] 

s = 2  s = 4  s = 8  

01 1.14 0.84 0.75 0.92 0.57 
(0.15) (0.10) (0.11) (0.16) (0.10) 

0 2 1.49 1.05 0.87 1.02 0.64 
(0.20) (0.12) (0.14) (0.19) (0.11) 

a All results × 10-1. 

Table 3 
Results for 25 replications of G I / G / 1  simulation with n = 
16000, k = 40, d = 240, and Weibu11 parameters a 1 = 2.0, fll = 
1.8482, a 2 = 2 .0 ,  fiE = 0.5642 (standard errors in parentheses) a 

Vfir[Y(d)] Vfir[l?(d)] V~tr[ l~(d)] 

s = 2  s = 4  s = 8  

01 3.03 3.01 1.64 1.40 1.14 
(0.18) (0.28) (0.13) (0.17) (0.16) 

02 11.54 1.32 0.74 3.32 1.77 
(0.56) (0.12) (0.04) (0.38) (0.22) 

a All results × 1 0  - 6 .  

Table 4 
Results for 25 replications of G I / I / 1  simulation with n = 
16000, k = 40, d = 240, and Weibull parameters a 1 = 2.0, fix = 
1.8284, a 2 = 2 . 0 ,  f lZ = 0.9027 (standard errors in parentheses) a 

Var[Y(d)l Vail )7(d)l Vat[IT(d)] 

s = 2  s = 4  s = 8  

01 4.45 3.97 2.27 2.01 2.05 
(0.22) (0.26) (0.15) (0.19) (0.28) 

02 6.23 1.63 0.92 2.08 1.37 
(0.28) (0.11) (0.06) (0.18) (0.19) 

a All results × 10 -5. 

effect ive t h a n  classical  an t i the t i c  var iates ,  as ex- 
pec ted  f rom the  AR (1 )  results .  F o r  a n  e x a m p l e  of  
a successful  app l i c a t i on  of  r o t a t i o n  s a m p l i n g  in  
the  s i m u l a t i o n  of  M a r k o v  chains ,  see F i s h m a n  
(1983ab) .  

5. Conclusions 

T h e  resul ts  i n  this pape r  i nd ica t e  tha t  an t i -  
the t ic -var ia te  sp l i t t ing  can  be  m o r e  effect ive t h a n  
the  c l a s s i ca l  a n t i t h e t i c - v a r i a t e  e s t i m a t o r  i n  
s teady-s ta te  s i m u l a t i o n s  where  an t i t he t i c  s a m p l i n g  
is effective. As  in  all  app l i ca t i ons  of  an t i t he t i c  

sampl ing ,  i t  is essent ia l  to des ign  the  s i m u l a t i o n  
e x p e r i m e n t  so tha t  nega t ive  co r r e l a t i on  i n d u c e d  
b e t w e e n  i n p u t  processes  is p rese rved  in  the  o u t p u t  
processes.  The re  are  th ree  key  factors  i n  the  de- 
s ign:  The  m e t h o d  of  i n p u t  process  gene ra t ion ,  the 
s y n c h r o n i z a t i o n  of  the r a n d o m  n u m b e r  s t reams,  
a n d  the  m o n o t o n i c i t y  of  the  i n p u t - o u t p u t  

t r a n s f o r m a t i o n .  W e  discuss  these factors  br ie f ly  as 
they  pe r t a i n  to an t i t he t i c -va r i a t e  sp l i t t ing ;  for  in-  
dep th  d i scuss ions  see K l e i j n e n  (1974) a n d  Brat ley,  
F o x  a n d  Schrage (1983). 

D e p e n d e n c e  i n d u c t i o n ,  such  as an t i the t i c -  
va r i a t e  sampl ing ,  usua l ly  requi res  the  inverse  cdf  

m e t h o d  of  r a n d o m - v a r i a t e  g e n e r a t i o n  as desc r ibed  
in  Sec t ion  4. O the r  var ia te  g e n e r a t i o n  m e t h o d s  
tha t  are e m p l o y e d  w h e n  n o  c lo sed - fo rm expres-  
s ion  for the inverse  cdf  exists are n o t  des igned  to 

i n d u c e  d e p e n d e n c e  b e t w e e n  i n p u t  processes  b y  
m a n i p u l a t i n g  the r a n d o m  n u m b e r  s t reams.  W h i l e  
these  o the r  m e t h o d s  are fast  re la t ive  to n u m e r i -  
ca l ly  i nve r t i ng  the  cdf, the v a r i a n c e  r e d u c t i o n  
ach ieved  b y  the  an t i t he t i c - sp l i t t i ng  e s t ima to r  m a y  
m a k e  n u m e r i c a l  i nve r s ion  wor th  the  ext ra  effort .  
Recen t ly ,  Schmeise r  a n d  K a c h i t v i c h y a n u k u l  (1986) 
p r o p o s e d  fast,  n o n i n v e r s e  cdf  a lgo r i t hms  tha t  per-  
m i t  d e p e n d e n c e  i n d u c t i o n .  

T h e  an t i t he t i c -va r i a t e  sp l i t t ing  e s t ima to r  facili-  
ta tes  s y n c h r o n i z a t i o n  of  the r a n d o m  n u m b e r  
s t reams.  U n l i k e  the  AR (1 )  sur roga te  process  used  

here,  the  d e p e n d e n c e  i n d u c e d  b e t w e e n  o u t p u t s  in  
p rac t ica l  s i m u l a t i o n s  m a y  decrease  as the repli-  
c a t i on  l eng th  increases  because  of  lack of  synchro -  
n i za t i on .  I n d u c i n g  d e p e n d e n c e  af ter  the t runca -  
t ion  p o i n t  he lps  to preserve  as m u c h  d e p e n d e n c e  
as poss ib le  in  the  o u t p u t s  of  interest .  Thus ,  the 
an t i t he t i c - sp l i t t i ng  e s t ima to r  m a y  ac tua l ly  p e r f o r m  
be t t e r  t h a n  i n d i c a t e d  by  the  AR (1 )  resul ts  in  p rac -  



B.L. Nelson / Antithetic-variate splitting for steady-state simulations 369 

tical problems relative to the classical antithetic- 
variate estimator. 

Factors that are important in deciding how to 
apply antithetic-variate splitting in practical prob- 
lems include the total sampling budget, the degree 
of negative correlation that can be induced, and 
the degree of positive correlation within each rep- 
lication. Unfortunately, the relevant correlations 
are rarely known in practice. Also, the experiment 
design may need to reflect other criteria in ad- 
dition to point estimator variance. For example, if 
interval estimates are desired then degrees of free- 
dom, point estimator bias, and point estimator 
normality play a role (Nelson, 1987b). In its favor, 
the antithetic-splitting estimator is less biased than 
either the sample mean or the antithetic-variate 
estimator for the same number of replications and 
truncation point. 

Directly extrapolating the AR(1) results to 
practical simulations is problematical. Even if the 
optimal design (in terms of point estimator vari- 
ance) is determined for the AR(1) process, we do 
not know how well the AR(1) represents the simu- 
lation. The AR(1) and G I / G / 1  simulation results 
suggest the following tentative recommendation: 
If initial condition effects are moderate with re- 
spect to the available budget, use antithetic split- 
ting (s = 2). If initial condition effects are severe 
so that d is large, use rotation splitting with s > 8. 
Overall, the antithetic-variate splitting approach 
appears promising and practical for steady-state 
simulations requiring large initial truncations. 

We have used the term 'splitting' in a sense not 
too different from the VRT by the same name 
(Kahn, 1956; Nelson, 1987a). In classical splitting, 
when the state of a dynamic simulation enters an 
important subset of states (e.g. a subset of states 
from which a rare event is likely to occur), s 
independent replications are started and their re- 
suits averaged. The idea is to precisely estimate a 
conditional expection; i.e. the expected system 
response given the system is in a certain subset of 
states. Antithetic-variate splitting could further 
sharpen the estimate, and all the preceding results 
apply directly. 

Appendix 

Kelton and Law (1984) show that for the AR(1) 
process (2) 

. )  

( m  - d ) ( 1  - 

) , :1¢  ix,, + {(1- Z 

-~ zir"/= d + 2 (1 - - ~ m - i + l ) x i j  

1 

The key to the results in this paper ~s to notice 
that if Corr[K,2/_ 1, K.2;] = P, then Var[(X, 2j_ 1 
+ X/,2/)/2 ] = (1 + p)rr2/2. All the results can be 
derived by direct calculation of the appropriate 
variance; noting which X 0 terms are common. 
independent, and dependent in the calculation. 
For the stationary cases, we take Yoj to be a 
random variable with mean 0 and variance 70. 
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