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ABSTRACT

A simulation experiment performed to estimate the expected number of customers served
per day in a bank is used to illustrate a new definition of simulation experiments and a new
taxonomy of variance reduction techniques. Particular emphasis is placed on how this
framework might lead to automated variance reduction for general simulation experiments.

1. INTRODUCTION

Variance reduction techniques (VRTs) had their origins in survey sampling and
Monte Carlo estimation, and there exist numerous VRTs and reasonably good
guidelines for using them in these applications. Since random sampling always im-
plies variability of estimators, it is natural, and frequently essential, to seek means
of reducing variance. However, application of VRTs in simulation experiments is
difficult because of the complicated, dynamic nature of simulation models. Research
efforts have concentrated on the development of VRTs for narrow classes of simula-
tion models, but there exist no guidelines for using VRTs in general simulation prob-
lems. Practitioners tend to view variance reduction as a complicated exercise with
no guarantee of success. Automated variance reduction in standard simulation
analysis packages is the only hope for widespread use of VRTs in practice, but a
requirement for an automated procedure is a structured “world” in which to work.

Recently, Nelson and Schmeiser (1984a,b, 1985) developed a mathematical-
statistical definition of simulation experiments and a taxonomy of VRTs based on
this definition. The taxonomy views VRTs as compositions of transformations from
six elemental classes, where a transformation maps one simulation experiment into
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another experiment whose statistics may have smaller variance. This framework
is intended to be a first step toward automated variance reduction.

In this paper, we illustrate certain aspects of the framework. The emphasis
is on understanding the components of the “sample space definition,” the six classes
of transformations, and how this approach provides a new perspective on variance
reduction that may eventually lead to automated procedures.

To make the illustration concrete, a textbook simulation experiment, found
to be an excellent example, is used. The example (Bratley et al. 1983) describes a
simulation experiment performed to estimate the expected number of customers
served per day in a bank. The operation of the bank is modeled as follows:

A bank employs three tellers. Each works at exactly the same rate and can handle
exactly the same customers. Most days, all three tellers report for work. However, 15%
of the time only two tellers are present, and 5% of the time only one teller turns up
at work.

The bank opens at 10 A.M., and closes at 3 P.M. From 9:45 A.M. until 11 A.M.,
and from 2 P.M until 3 P.M., one customer arrives every 2 minutes on average, and
from 11 A.M. until 2 P.M. one customer arrives every minute. More precisely, the
intervals between successive arrivals are independent and exponentially distributed with
the appropriate mean. Those customers who arrive before 10 A.M. wait outside the
door until the bank opens; at 3 P.M. the door is closed, but any customers already
in the bank will be served.

Customers form a single queue for the tellers. If, when a customer arrives, there
are n people ahead of him in the queue (not counting the people receiving service),
then he turns around and walks out (“balks” in queueing terminology) with the following

probability:
0 n<35
Plbatk] = (n-5)/5 6<n<9
1 n 2 10

The customer at the head of the queue goes to the first teller who is free. Customer
service times are distributed according to an Erlang distribution with parameter 2 and
mean service time 2 minutes. (Bratley et al., 1983, pp. 13-14).

Although the model is simple, it is still too complicated for an analytic deriva-
tion of the expected number served. Bratley et al. (1983) illustrate simulation
methodology (including a traditional treatment of variance reduction) using an ex-
periment consisting of 200 simulated days of bank operation. Their text includes
a FORTRAN program to execute the experiment. For the numerical results given
later, we used their program and random number generator, and added a subroutine
to initialize the simulation clock and event list. Only one random number stream
was used, but the starting seeds for each random sequence (interarrival times, ser-
vice times, number of tellers at work, and balking decision) were set 200,000 values
apart. [See Bratley et al. (1983, p. 202) for the random number generator, p. 217
for the event calendar routines, and pp. 340-343 for the simulation code.]

2. A TAXONOMY OF VARIANCE REDUCTION TECHNIQUES

In the sample space definition of simulation experiments (Nelson and Schmeiser
1984a), a simulation experiment has a context (R, 6), where Q is the sample space
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containing all possible realizations of the simulation input (see below) and 6 is a
vector of unknown parameters on interest. The sample space Q represents all of
the uncertain elements in the system, and 8 is the performance measure that the
simulation experiment is designed to estimate. The context defines the boundaries
of the simulation experiment.

The simulation input, X, is a multivariate random variable modeled by the
known cumulative probability distribution F over Q; that is X v F(x). Thus, we
model the uncertain elements in the system by the probability distribution of their
occurrence, and we will drive the experiment by generating realizations of X accord-
ing to F(x).

The simulation output, Y, is a function of the input and the sampling plan
R+; thatis Y = g(X;R «). The function g embodies the logic of the system, in other
words how it reacts to the uncertain elements. Thus, Y is the observed system
behavior. The sampling plan does not correspond to any physical aspect of the
system, but rather specifies a stopping rule for the execution of the experiment, since
we could conceptually generate outputs indefinitely.

The statistic, Z, is a function of Y and is the estimator of 6; that is Z = h(Y)
and E[Z] 2 6. It is the variance of Z that VRTs reduce. Mathematically precise
definitions of the components of the sample space definition can be found in Nelson
and Schmeiser (1984a).

The bank simulation can be expressed in terms of the sample space definition
as follows: The input, X, is composed of four sequences of random variables, the
number of tellers on duty, the time between customer arrivals, an indicator of
customer balking decisions, and customer service times. The probability distribu-
tions of these random variables are known and used to generate realizations, mak-
ing them inputs. The output, Y, includes the actual arrival time of each customer,
the number in line when each customer arrives, the time each customer completes
service, and the number of customers served. The outputs are derived from the in-
puts, and are essential in the sense that all system performance measures can be
derived from them (essential is a mathematical property needed to prove theoretical
results; see Nelson and Schmeiser 1984a). The function g is implicit in the simula-
tion code, but could conceptually be written explicitly. The sampling plan, R «,
specifies that 200 observations of the daily number of customers served will be sam-
pled. More generally, the sampling plan can specify the length of each output se-
quence. Finally, the statistic is initially the sample average of these 200 observa-
tions of daily number served.

Suppose Z and 6 are scalars, and Z is an unbiased estimator of 6. Then the
variance of Z can be written as

VIZ] = Jolh(g(x:R+)) — 6]°dF(x) (1)

To reduce V(Z), the components of the simulation must be redefined, or transformed,
in a way that makes Eq. (1) smaller while preserving Z as an estimator of 6. In
the sample space definition (R.6) is considered fixed, so the reduction must be
achieved by transforming F, g, R+ and/or h. Nelson and Schmeiser (1984b) define
six mutually exclusive classes of transformations that exhaust the possible transfor-
mations under composition. In words, the classes can be loosely defined as follows:
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1. Distribution Replacement (DR): Redefine the marginal distributions of the inputs
without altering any statistical dependencies among the inputs.

2. Dependence Induction (DI): Redefine the statistical dependencies among the in-
puts without altering any marginal distributions of the inputs.

3. Equivalent Allocation (EA): Redefine the function g from input to output without
altering the allocation of sampling effort.

4. Sample Allocation (SA): Redefine the allocation of sampling effort R « without
altering the function that defines the outputs.

5. Equivalent Information (EI): Redefine the function h from output to statistic
without altering the argument of the statistic.

6. Auxiliary Information (AI): Redefine the argument of the statistic without altering
the function from output to statistic.

VRTs are formed by composing members of these six classes of transforma-
tions. This is a radically different formulation of the variance reduction problem,
but an appropriate one. Variance reduction is only achieved by redefining random
variables in the simulation experiment. The sample space definition captures the
definition of these random variables as they are described by the experimenter: either
as uncertain elements sampled from known distributions, as the result of the reac-
tion of the system to realizations of the uncertain elements, or as an aggregation
of system performance that estimates the unknown system parameters. The six classes
of transformations exhaust the ways these random variables can be redefined. For
a very simple illustration of each class see Nelson and Schmeiser (1983), and for
the decomposition of several well-known VRTs into their elemental transformations
see Nelson and Schmeiser (1985).

There is one other key aspect of variance reduction. While there are many
VRTs, not all of them will work in any particular experiment. In fact, a VRT ap-
plied in an inappropriate situation may actually increase variance, or worse may
lead to an invalid estimator. How does one know if a VRT will be effective? The
answer is prior knowledge, which we define as any information, either known with
certainty or suspected, beyond what is needed to construct the original experiment.
There are several sources of prior knowledge, including the experimenter, the model
itself, or previous experimentation. The available prior knowledge is a real con-
straint on the variance reduction that can be achieved.

3. AUTOMATION

An automated variance reduction procedure based on our taxonomy might work
in the following way (the framework presented here is part of ongoing research in
conjunction with Bruce Schmeiser of Purdue University):

1. Express the simulation experiment in the standard form of the sample space
definition.

2. Determine the available prior knowledge, based on a taxonomy of prior
knowledge, from all available sources.
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3. Match the prior knowledge to elemental transformations that require it to be
effective.

4. Match the transformations to VRTs decomposed in terms of their elemental
transformations.

5. Implement the VRT, perform the experiment, and evaluate the results.

Steps 2, 3 and 4 are likely to be iterative and interactive. We hasten to point
out that more basic research is required before any such procedure can be im-
plemented. A great deal of work has been done on step 4 (Nelson and Schmeiser
1985). However, the taxonomy of prior knowledge in step 2 is the subject of cur-
rent research efforts. For the illustration below, we will use the following simple
taxonomy that designates the source of prior knowledge as coming from

1. The experimenter’s knowledge (PI.E)

2.  The model itself (PI.M)

3. Universally true mathematical relationships (P1.U)
4. Pilot experimentation (PI1.P)

The VRTs presented below are not new; we use familiar ones because our main
purpose is to illustrate the taxonomy of variance reduction rather than survey VRTs.
The taxonomy can also facilitate the discovery of new VRTs, as explained in Nelson
and Schmeiser (1985). Because our perspective is radically different, we need to
familiarize researchers and practitioners with it so that we can learn from their
insights.

4, VARIANCE REDUCTION
The following notation will be used:

Y, = number of customers served on day i
6 = E[Y,] = expected number of customers served on day i
C( ,) = covariance of the enclosed quantities

In the original bank simulation the statistic is the sample average

200
Z = 200-1 3 Y,

The direct, or “crude,” approach is to simulate 200 days of bank operation
and use Z as the estimator of 6. Notice that the outputs from each day, {Y,}, are
independent and identically distributed random variables. The results of this simula-
tion experiment, which match those of Bratley et al. (1983), are Z = 240.92
customers, with the estimated variance of Z being 2.78.

One statement of the variance reduction problem is to derive an unbiased
estimator of 6 that has significantly smaller variance than Z without expending too
much additional effort to derive it. This is rather specific, and a more general
characterization of variance reduction is given in Nelson and Schmeiser (1984b).
All numerical results will be summarized in Section 5.
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4.1. Al and El

Combinations and transformations from EI and Al are the easiest to implement
because they only redefine the statistic and do not alter the logic of the simulation
model. For example, the experimenter may realize that the number of customers
served each day differs from the number that arrive by the number that balk, an
example of PLE. Let A; be the number of customers that arrive, and B, be the
number of customers that balk on day i, both auxiliary outputs that can be derived
from the four essential outputs mentioned earlier. Then

6 = E[Y,) = E[A, - B] = 247.5 — E[B,]

which implies that 6 can be indirectly estimated by estimating E[B,]. Since A,
and B, are both random variables, a source of variation is eliminated. The new
statistic is

200
Z' = 2475 - 200! % B, (2)

where the prior knowledge that E[A] = 247.5 comes from the known distribu-
tion of customer arrival times (PI.M). Equation (2) is an example of an indirect
estimator (INDIR). INDIR tends to be a very problem specific strategy, depending
almost entirely on the experimenter’s knowledge. However, an automated procedure
should permit the experimenter to incorporate such insights when they are available.

A more general strategy for using auxiliary information is to modify, or con-
trol, the outputs of interest based on knowledge of what the realization of an aux-
iliary output should have been. A key to such strategies is that the auxiliary output
and the output of interest must be dependent random variables.

For example, it seems likely that the number of customers served each day in
the bank depends on the number of tellers at work, since a longer queue of waiting
customers increases the probability of balking for newly arriving customers. Dur-
ing the 200 days of simulated bank operation, we expect to see 160 days with three
tellers at work, 30 days with two tellers, and 10 days when only one teller is pres-
ent; this is known from the distribution of the number of tellers at work (P1.M).
However, it is unlikely that the expected distribution will occur, which means that
while our sample is random it is not entirely representative. In particular, the possible
under- or overrepresentation of days with only one teller at work is a source of
variability. This suggests trying to correct or control the sample by weighting each
observation on the basis of whether the number of tellers was under- or overrepre-
sented. This VRT is often called poststratified sampling, but we call it poststratifying
the sample (PSTRAT) to make it clear that the sampling plan R+ is not affected.

An output is said to belong to stratum j if there were f tellers at work on the
day the output was generated. Let Y, be the ith such output, N ; the number of days
with j tellers at work, j = 1, 2, 3, and p, = .05, p, = .15, and p, = .80. Then
provided that there is at least one observation from each stratum

P

Z' = L
j=1i—lN’,

Mw
I M_=Z

Y 3)

ij
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is an unbiased estimator of 8 (PI.U). The statistic Z gives each output weight 1/200,
while Z" gives weight p/N,. If the outputs distribute themselves proportionately
with respect to the strata (i.e., N; = 200p,) then this reduces to 1/200. Otherwise,
if stratum j is overrepresented the weight is less than 1/200, and the weight is greater
than 1/200 if the stratum is underrepresented. The statistic Z' uses the auxiliary in-
formation N, to correct for disproportionate sampling; it also requires less specific
prior knowledge than INDIR, and is thus more readily automatable.

Control variates (CV) are another means of correcting a nonrepresentative sam-
ple. The strategy is to use the difference between a parameter estimated from aux-
iliary outputs and its known expectation to adjust the estimator of the quantity of
interest (8, the daily number served in the example). Unlike PSTRAT, which only
requires that the auxiliary output and the output of interest be dependent, CV re-
quires a specific kind of dependence, namely linear correlation (Nelson 1985).

The expected number of customers to arrive each day is 247.5, as mentioned
above. Clearly the number that arrives is closely related to the number that is served.
In fact, if the queue remains short they should be almost identical. A common form
of the CV estimator is the linear control, which in this example would be

7' =7 — b(A - 247.5) 4)

where A is the sample mean of the {A;}, and b is a constant that can be chosen
to enhance the effectiveness of the control estimator,

The choice of b that minimizes the variance of Eq. (4) isb* = C(A,.Y)/V(A)
(see for instance Law and Kelton 1982). However, estimating b from the same
simulation output can cause Eq. (4) to be biased. If the output of interest and the
control variate are commensurate, meaning that they measure quantites in the same
units, then setting b = 1 is sometimes an effective, though not optimal, strategy.
It is clearly a strategy well-suited for automation. In our example Y, and A, both
count numbers of customers, so b = 1 is an option.

A second approach is to estimate b * from preliminary or pilot simulation ex-
periments. This involves extra simulation effort, negating some of the gain from
variance reduction. However, if we do not know a priori what auxiliary outputs
might make good control variates (i.e., which ones are strongly correlated with the
outputs of interest), then pilot runs can supply this prior information (P1.P) as well
as providing an independent estimate of b*. An automated procedure should have
the facility to perform pilot experiments when the necessary prior information is
not available from other sources. It is also possible to induce dependence where it
does not inherently exist using transformations in DR. Thus, one class of transfor-
mations can set up VRTSs based on other classes.

Note that there are other techniques, such as Jackknifing (Bratley et al., 1983),
that deal with the bias from estimating b* without the need of pilot runs. Depend-
ing on the situation, an automated procedure should be capable of choosing be-
tween the available options.

4.2. SA

When it is possible to fix the sampling plan SA strategies can be extremely ef-
fective. VRTs, such as stratified sampling (STRAT), allocate sampling effort deter-
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ministically to outputs that have specific characteristics. Unfortunately, in the simula-
tion of complex, dynamic systems it is sometimes impossible to fix more than the
overall simulation run duration. However, one notable exception is when the simula-
tion involves independent replications with randomly selected initial conditions that
can be fixed rather than randomly sampled. In our example, the number of tellers
at work each day fits this criteria.

The question now becomes one of deciding the appropriate allocation of sam-
pling effort. Let n, be the number of days allocated with j tellers at work, j = 1,
2, 3. Note that n; is part of the sampling plan R «, whereas N; in PSTRAT was an
auxiliary output. Proportional allocation, n; = 200p;, can be shown to be no worse
than random sampling, and so is a good strategy for automation. However, given
the strata the optimal allocation is (Cochran 1977)

where of is the variance of Y, given there are j tellers at work. Notice that the op-

timal allocation is proportional not only to the probability of an observation from
strata j (p;), but also to the variance within the strata. The primary motivation
behind VRTs based on SA is to allocate limited sampling effort where it does the
most good. Since the o; are usually not known, they must be estimated to use op-
timal allocation. Here again, pilot runs can provide useful prior information.

The STRAT statistic is the same as the PSTRAT Eq. (3), but with N, replaced
by n;. STRAT is generally more effective than PSTRAT, but requires control of the
simulation sampling plan. PSTRAT is often referred to as a special case of STRAT,
but the taxonomy reveals how they are actually different.

4.3. Combined Strategies

A taxonomy of VRTs that expresses VRTs as compositions of elemental transfor-
mations immediately suggests trying combinations of different classes. The difficulty
for an automated procedure, and even for a sophisticated experimenter, is to
recognize when the desired effect from applying one class of transformations con-
flicts with the effect from applying another. Al and EI are rather natural partners,
since the first usually facilitates the second. SA transformations can sometimes be
combined with these two.

In the bank example, we combined CV with PSTRAT and with STRAT by
forming a CV estimator like Eq. (4) for each stratum individually, and then com-
bining them. The new statistic is

7' = 31 p{Y — b(Ai - 247.5)}

!

where Y/ and Ai are the sample means of {Y,} and {A,}, respectively, from stratum
j, based on N; or n; observations for PSTRAT or STRAT, respectively. STRAT and
PSTRAT divide the simulation into three separate problems (days with 1, 2, or 3
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tellers at work), to which CV can be applied individually. Thus, we do not expect
a conflict. Another, unexplored possibility, is combining PSTRAT or STRAT with
INDIR; again no conflict should result.

4.4. DR, DI and EA

Bratley et al. (1983) illustrate antithetic variates, which is based on DI transfor-
mations, and importance sampling, which is based on DR transformations, for the
bank simulation; neither was effective. DI, while frequently used, is problematic
because dependence induced between inputs may not yield the desired dependence
between the outputs, unless we have a great deal of prior knowledge about how
g maps inputs into outputs. VRTs based on DI are most useful for comparing alter-
native systems using common random numbers and to facilitate other VRTs as men-
tioned earlier. An illustration of DI for comparing alternatives is given in the next
section. DR strategies are not well-suited for automation because, as Eq. (1) shows,
the overall effect of distorting the input distribution is difficult to predict in a com-
plex simulation.

EA transformations, not illustrated here, are sometimes used to set up strategies
based on Al by producing new, auxiliary outputs. However, there are few VRTs
based on EA because redefining g involves fundamentally redefining the logic of
the system of interest. See Nelson and Schmeiser (1985) for an example.

5. NUMERICAL RESULTS SUMMARY

In this section we briefly summarize the results of simulation experiments per-
formed using the VRTs illustrated in Section 4. These results are only intended to
give a sense of the magnitude of variance reduction possible applying only simple
VRTs that are suited to easy automation, and to demonstrate that intuition is not
always a reliable guide for predicting the effectiveness of VRTs. Of course we can
only estimate the variance reduction achieved, so our results are also subject to sam-
pling variability.

The experiments all involved simulating 200 days of bank operation and
employed the same random number streams as the crude experiment. Using the
same streams is an example of DI, because the inputs of the various simulations
are dependent, rather than being independently sampled. The sample space defini-
tion encompasses all nine simulations as one experiment, and the parameters of in-
terest are the percentage variance reductions (which are differences). Positive
dependence reduces the variance of estimators of relative differences and gives us
more confidence that the estimated reductions below are valid.

In the cases of optimal CV and STRAT, 20 pilot runs (banking days) were made
to estimate b and o;, respectively. We do not directly measure the additional ef-
fort required here since the purpose of this paper is illustration. However, we note
that an automated procedure would have to aid the experimenter in making a deci-
sion about the effort to expend searching for and implementing a VRT.

The estimated variance for the PSTRAT experiment comes from a formula sug-
gested by Cochran (1977), but modified for sampling from infinite populations. The
formula, which is an approximation, is
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P,'V[Yi,'] + (1 _p;)V[Yﬁ]
1 200 2002

Table 1 shows reductions ranging from a low of 39% to a high of 97% . More
sophisticated strategies could almost certainly squeeze out further reductions. Of
more interest here is that the combination of PSTRAT and CV, which employs only
transformations in Al and EI, was extremely effective. With more and more simula-
tion packages providing data bases for storing simulation outputs, such VRTs are
particularly appealing.

Table 1
Experimental Results.

Experiment Z V(Z) % Reduction
crude 240.92 2.78 —
INDIR 240.89 1.70 39%
PSTRAT 239.79 .92 67 %
CV (b* = .83) 240.54 1.73 38%
CV (b=1) 240.46 1.70 39%
STRAT (optimal) 239.46 .92 69 %
STRAT (prop.) 239.95 .99 64 %
PSTRAT + CV (optimal) 239.11 .07 97 %
STRAT + CV (optimal) 239.11 .08 97 %

6. CONCLUSIONS

If VRTSs are ever to be widely used in practice, variance reduction will have
to be incorporated into standard simulation analysis packages as an automated, prob-
ably interactive procedure. To achieve automation, a structured environment such
as the taxonomy of VRTs illustrated here is needed. While only a simple example
has been used, more complicated simulation experiments introduce no additional
complexity into the taxonomy.

Applying VRTs always involves a trade-off between the additional effort re-
quired and the variance reduction achieved. VRTs based on Al and EI, such as CV
and PSTRAT, are good candidates for being totally automated, meaning applied
without any help from the experimenter, because they only affect the statistical
analysis and not the design of the simulation experiment. However, variance reduc-
tions of two or more orders of magnitude will usually require the experimenter’s
participation. Ways to include the experimenter, who may know little or nothing
about variance reduction, in the procedure is still an open research question.

VRTs are often presented, as in this paper, in the context of simulating a single
system. In this context the potential gains do not seem worth the effort. However,
simulation experiments are more frequently performed to compare multiple system
configurations, and the experimentation done sequentially. For example, when the
simulation represents the objective function in an optimization problem, or when
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the results of the simulation are needed in real time. In these situations there is the
potential for tremendous savings from variance reduction, and investing some ef-
fort in pilot experiments makes sense. There has yet to be any systematic study of
how to effectively use pilot runs; e.g., what runs should be made and what infor-
mation should be extracted. Two examples were suggested above.

The key to applying VRTs is the availability of prior knowledge. The idea
behind most VRTs is some mathematical relationship; e.g., V(X = Y) = V(X) +
V(Y) = C(X,Y). Other sources of prior knowledge are the experimenter, the model,
and pilot experiments. The illustration above showed contributions from all three.
However, a taxonomy of prior knowledge that facilitates both discovering it and
using it is needed to make automated variance reduction a reality.
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