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In this article we show how a result used in the analysis of repeated-measures experiments can
aid in the analysis of simulation experiments that employ common random numbers. We
specifically consider the statistical procedure known as multiple comparisons with the best. We
first establish when the proposed procedure provides exact inference, and then show that it is
typically robust when it is not exact. The method is easy to apply in practice.
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1. INTRODUCTION

Common random numbers (CRN) is a variance reduction technique that
decreases the variance of estimators of the differences among the expected
performances of two or more systems. CRN works by inducing positive
dependence across the simulation outputs (responses) from all systems. Un-
fortunately, when there are more than two systems, accounting for the
induced dependence in the statistical inference is difficult and has been a
longstanding problem.

In Yang and Nelson [1991] and Nelson and Hsu [1993] we proposed
control-variate models of CRN. These models account for the effects of CRN
via a linear regression of the simulation outputs on functions of the simula-
tion inputs called control variates. When these models pertain they facilitate
exact multiple-comparison inference under CRN for two or more systems; by
“exact” we mean that no conservative probabilistic inequalities, such as the
Bonferroni inequality, are required. Nelson [1992] provides implementation
details for control-variate-based multiple comparisons.

In some situations the control-variate models are not adequate, in the
sense that some dependence across systems remains after regressing on the
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control variates. Also, the control-variate approach is difficult to apply in
practice because of the need to select appropriate control variates, record
their values, and perform a least-squares regression. In this article we show
that a result used in the analysis of repeated-measures experiments provides
an easy-to-apply, robust procedure that can be used with or without the
control-variate model.

We first review models of CRN, and then establish sufficient conditions for
multiple-comparison inference (Sections 2 and 3). Section 4 defines the
property of sphericity, which is used in the analysis of repeated-measures
experiments, and which we exploit to model CRN. The new multiple-compari-
son procedures that account for CRN are given in Section 5, and Section 6
establishes the robustness of these procedures.

2. MODELS OF CRN

We assume that the goal of the simulation experiment is to compare elements
of the vector parameter 6 = (6,, 6,,..., 6,), where 6, is the expected perfor-
mance of system i. Suppose that larger expected performance implies a better
system. For system i, we consider the parameter §, — max, _ ;0,., which is
system ¢ performance minus the best of the other systems’ performance. In
optimization problems, the parameters 6, — max,_,6,, for i = 1,2,..., r, are
often the parameters of primary interest. If 6, — max ., .0,> 0, then system
i is the best. But even if §, — max,,,0, <0, if 6, — max,,,0,> —e, for
€ > 0, then system i is within € of the best. Simultaneous statistical infer-
ence on 6; — max,, 0, for i =1,2,...,r, is termed multiple comparisons
with the best (MCB).

We focus on MCB because of its close relationship to indifference-zone
ranking and subset selection (see Hsu and Nelson [1988]). However, all of the
results in this article apply to one-sided multiple comparisons with a control
(6; = 6,,Yi # r), and most apply to all-pairwise multiple comparisons (6, —90,,
Yi,/Z i 7). .

Let Y;; be the output from system i on the jth independent replication of
the simulation, for ; = 1,2,...,7 and j = 1,2,..., n. We assume that ElY;]
= 0,. Let C,; be a g; X 1 vector of (possibly functions of) simulation input
random variables from the jth replication of system i, and let p; = E[C, ];
we assume that p; is known since the simulator specifies the distribution of
the simulation inputs.

We approximate the relationship between the simulation inputs and out-
puts by a linear model with unknown parameters, specifically

Y=6+(C,;—n)B, + M (D

where B, is a g; X 1 vector of unknown parameters, and Mits Migs« -5 7, are
Lid. normal random variables. The C, ; are called control variates in the
variance reduction literature (e.g., Nelson [1990]). A point estimator of 0, is
obtained by regressing the outputs Y, ; on the control variates C;; — p,.

Let I, denote the r X r identity matrix. If n; =My, ey, my) s dis-
tributed N(0, 72I,)—in other words, the residuals across systems are inde-

pendent with common variance—then exact MCB inference can be derived
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(Yang and Nelson [1991], Nelson and Hsu [1993]). This condition implies that
all of the dependence across systems due to CRN is explained by the control
variates, which is plausible since CRN directly induces dependence between
the inputs that is translated to the outputs, and model (1) approximates the
relationship between inputs and outputs.

In this article we extend our results to the case where m.4,M.,..., M., are
distributed i.i.d. N(O, X,), where X is not necessarily 72I,; that is, the
control variates do not capture all of the dependence due to CRN. In addition
to the general model (1), we consider several special cases:

(1) No control variates are employed (g, = 0, Vi).

(2) The control variates are common across all systems (C,; = C;, Vi).

(3) The control variates are common across all systems (C,; = C;, Vi) and
have a common relationship to the simulation response (B; = B, Vi).

Case 1 is of particular importance since no control variates are required. In
cases 2 and 3, we assume that the effect of CRN is to cause the control
variates to take identical values across all systems. When the control variates
are not common, we assume that the effect of CRN is to make then dependent
across systems, but not necessarily identical.

3. SUFFICIENT CONDITIONS FOR MCB

Suppose that 0 is a point estimator of . Critical to the derivation of MCB
inference is the distribution of

D99 =|4_, -0

6, — 6,

where D is the (r — 1) X r matrix obtained by inserting the r X 1 column
vector of —1’s, denoted —1,_,, between the (i — 1)st and the ith columns of
I,_,. A sufficient condition for constructing MCB intervals is that

i 61 - 6i
0, — 0,
DYO ~N|| 6, — 6, |,72QD (2)
0£+1 - 91‘
0, — 0,
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with Q' known, and that there exists an estimator 32 of 72 such that
#2 ~ 1t%2/v and is independent of 0, where X2 denotes the chi-squared
distribution with v degrees of freedom. See Nelson and Hsu [1993] for details.

Let = be the correlation matrix associated with 720, From a computa-
tional standpoint, an additional condition for the formation of MCB intervals

is that E has so-called structure { (Tong [1980)):

1 ADAG e A
/\(21‘))\(11') 1 /\(2“)‘“11
E® . ’ (3
AL AR

where A € (-1, 1). This condition insures that it is possible to numerically
determine certain critical constants used in forming the intervals; see Nelson
and Hsu [1993] for details.

4. SPHERICITY

We say that En, the variance-covariance matrix 7. ;» has the property of
sphericity if it can be represented as

20, + 70 Yt gy, o P+
s = Yo+ 24y + 77 Uy + 4, @
dlr+ [r//l lf[/r+ ¢2 2‘/jr+7-2

where 72 > /rI7_ g2 — Li_1; (the last condition insures that the matrix

is positive definite). Sphericity is a generalization of compound symmetry, in
which

1 »p p
p 1 - p

=0 . . e (5)
p P 1

Several researchers have assumed that the effect of CRN is to induce a
covariance structure satisfying compound symmetry with p > 0 (for example,
Schruben and Margolin [1978], Nozari et al. [1987], and Tew and Wilson
[1993]). Notice that sphericity includes independence (no CRN) as a special
case. The assumption of sphericity is frequently used to account for the
dependence among repeated measurements on a single subject in settings
such as clinical trials.
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Let —7"—71‘-: n—lz}l: Mijp M =71 gy 1M;j» and .= (rn)™'Er 127- 1M, where a -
subscript denotes summing with respect to that subscript. Define

_ —\2
2 _ T Zfaa(ny = W 7, + )
(r-1(n-1

We will exploit and extend the following result, which is often used in the

analysis of repeated-measures experiments (see, for example, Hochberg and
Tamhane [1987]):

THEOREM 4.1. If M., M.,..., M., are distributed i.i.d. N(0,%)), and X,
has the property of sphericity (4), then 7% ~ %} _,,,_1,/((r — D(n = 1)) and
is independent of Ty, Mgy ..., Ty

5. SPHERICITY AND MCB UNDER CRN

In the following we derive exact MCB procedures under the assumption that
3, has the property of sphericity (4). In Section 6 we argue that these
procedures should be robust to departures from sphericity.

5.1 Sphericity and the One-Way Model

For ease of presentation, and because of its practical importance, we first
consider the case of no control variates (g; = 0, Vi), which reduces the
control-variate model (1) to the one-way analysis-of-variance model

Y, =0, +my. (6)

Suppose that the effect of CRN is to cause X, to have a structure satisfying
sphericity (4). We show that exact MCB inference can be based on the sample
mean vector, ¥ = (Y, Y,,...,Y,.).

First notice that

— a2
L 1kj- I(Yij — Y- Y+ Y) LDy —m—m; + 77-)2

(r—1(n-1 B (r-1(n-1)

= 72

so that 72 ~ 732 _;,,_1,/((r = 1X(n — 1)) and is independent of Y by Theo-
rem 4.1. By direct calculation we can show that

”01_6l
by — 0;

DOY ~N|{| 6,_, — 0, |, 72QD
9i+1 - 9i
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where Q% = 2 /nE® and
_ ) 1
1 — —_
2 2
1 1 1
=20 =12 2 (7)
— 2 1
2 2 J

Thus, E has structure  with A’ = 1/v2, and the sufficient conditions for
MCB inference are satisfied by ¥ and 72. The corresponding MCB procedure
is a simple modification of standard MCB (see Appendix A).

The obvious limitation of this result is that CRN must induce a covariance
matrix % that satisfies sphericity. Empirical measures exist to check whether
a sample covariance matrix satisfies sphericity (for example, Grieve and Ag
[1984]). but we argue in Section 6 that the assumption of sphericity is robust
whenever the off-diagonal elements of X, are positive, the standard assump-
tion behind CRN.

5.2 Sphericity and Control Variates

We now assume that the control-variate model (1) holds with g, > 0, except
that X, = Var[n ] = |lo,, || might not equal 7°1,. In this way we attempt to
capture any residual dependence due to CRN that is not explained by the
control variates, and thereby extend the range of applicability of the control-
variate model. . .

. Let 6=1(6,,0,,...,6.) denote the r x 1 vector of control-variate estima-
~ tors of @, and let C denote the collection of all the control variates C, i
:=1,2,...,r and j=1,2,...,n. For convenience of exposition we assume
that each system has the same number of control variates ( q,=qy= - =gq,
= q), but unless explicitly stated the results that follow do not depend on this
assumption. The calculation of @ is described in Appendix A.

The MCB intervals associated with the control-variate model are con-
structed by conditioning on the control variates, C, then showing that the
resulting inference is independent of C (Nelson and HsuA[1993]). Therefore,
we need to investigate the conditional distribution of D8 given C.

From Nelson [1990], we find that 6, = M,Y;, where Y;.= (Y,,,Y,,,..., Y., )
and M, is an n X 1 vector that depends only on C,;,C,,,...,C,,. This result
can be used to show that E[8] = 8, and that 0 is conditionally normally
distributed. The Var[D|C] is given in the following lemma:

LEMMA 5.1.  If model (1) pertains then Var[|C] = MM, q; |

As a consequence of Lemma 5.1, if the control variates are common across
all systemsA(Cij = C;, Vi), so that M, = M for all i, then Var[9|C] = M’ME,,.
Thus, Var{8|C] will satisfy the conditions of sphericity exactly if 2 does. By
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direct calculation we can show that Var{D¥8IC] = 72Q% = r22M'M)E",
where = is given in (7).

For the control-variate model the natural generalization of 7% as an
estimator of 72 is

where the 7),; are the estimated residuals from the least-squares regression
(see Appendix B). The following theorem shows that this is exactly the right
modification in the case of common control variates.

THEOREM 5.1. If model (1) pertains, the control variates are common
across all systems, and X, satisfies spherzczty (4), then, conditional on C,
2~ N g/ ((r = D —q — 1) and is independent of .

Thus, conditional on C, 6 and 72 satisfy the sufficient conditions for MCB
when the control variates are common across all systems.

Lemma 5.1 shows how the Var{8/C] depends on 2 in general. The follow-
ing theorem establishes that, for large n, Var[B&C] 1/nX, even if the
control variates are not common; that is, for n large the conditional variance
of @ approximately satisfies sphericity if X, does.

THEOREM 5.2. For all i and /, nM;M,0,,5 0,, as n — », where 5
denotes convergence in probability.

Although Theorem 5.1 does not hold if the control variates differ across
systems, Theorem 5.2 implies that 72 will be approximately correct for large
n.

5.3 The Special Case of Common Controls and Muiltiplier

Suppose that the control variates are common across all systems (C;; =¢C,,
Vi), have common relationship to the simulation response (B; = B, Vi), and
2, = 721,. Nelson and Hsu [1993] showed that MCB inference can be derived
based on the control- Varlate estimator O associated with this model, and a
variance estimator 72 with rn — r — g degrees of freedom. A key difference
in this case is that the parameters (8, ) are estimated from a single overall
regression, rather than from r individual regressions for each system (see
Appendix A).
When these conditions hold they imply that

Var[Y,;] = °I, + 61,1, (8)

where Y, = (Y,,,Y,;,...,Y,,) and ¢ = Var[C}B]. Since (8) satisfies the condi-
tions of Sphe!‘lClty w1th 1[;1 ¢/2 for all j, we could also construct MCB
intervals based on the one-way model (6) using the sample mean Y and 72
with (r — 1)X(n — 1) degrees of freedom. Since both the control-variate ap-
proach and the sample-mean approach apply in this special case, which one is
better?
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Nelsop and Hsu [1993] showed that, under these conditions, Var{ 2— Y/,]
= Var[6, — 6,] = 27%/n, so the point estimators are of equal quality. The
correlation structures of  and Y are also identical, so the critical values for
MCB inference will differ only because the degrees of freedom differ. Notice
that rn —r — ¢ > (r - I(n - 1), provided ¢ < n — 1; since ¢ <(n - 1) is
required to use the control-variate model, the control-variate model is pre-
ferred in this special case where both are applicable because it provides more
degrees of freedom for inference.

6. ROBUSTNESS

In this section we argue that we can expect MCB intervals formed under the
assumption of sphericity to be robust to departures from sphericity. The
discussion will be primarily in terms of the one-way model (6), but the results
carry over directly to the control-variate models.

~ 6.1 Mathematical Justification

As a basis for comparison, let

_ Z£=1Z?:1(Yu - Y‘~)2
B r(n—1)

'7:2

which is the usual pooled variance estimator used in multiple-comparison
procedures, such as MCB (see Appendix A). This is the estimator we would
use if we simulated the systems independently or if we ignored CRN.

Let s =r"'%]_ 0, the average marginal variance of the observations
across systems, and let o = (r(r — 1)7'%,, ,0,,, the average marginal co-
variance across systems.

THEOREM 6.1. For 2, =llol,

E72) =g(1«§) )
and
E[#?] = s. (10)

Theorem 6.1 shows that the usual variance estimator, 72, estimates the
average marginal variance, s, while 72 adjusts by something like an average
correlation, ¢/s. In fact, if o; = o? for all i, then o/s is precisely the
average correlation. Therefore, the more nearly equal the covariances of pairs
of systems, the better 72 will approximate the true variance. Notice also that,
when the covariances are positive, 72 will be smaller—and the corresponding
confidence intervals shorter and less conservative—than if we use 72,

Of course, if X, does not exactly satisfy sphericity then the proofs of
confidence interval validity in Section 5 break down. Next we demonstrate
empirically that the intervals can be expected to be robust.
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6.2 Empirical Justification

Before presenting the results of a controlled study, we describe a system
simulation example to serve as motivation. Nelson and Hsu [1993] described
the simulation of five (s, S) inventory policies to determine the one with
minimum expected cost/period over a planning horizon of 30 periods (notice
that this is a minimization problem, rather than a maximization problem).
The demand for product was the only stochastic input process, so the stan-
dardized average demand was used as a control variate; the standardized
average is the sample average divided by the standard deviation. An experi-
ment consisted of n = 30 replications, each of 30 periods, after which 95%
MCB intervals were formed. The entire experiment was repeated 1000 times
to estimate the probability of coverage (which should be 0.95), and the
probability of correct and useful inference, where “correct and useful” means
that the intervals cover 6, — min, 6, and reveal differences when they
really exist (which should be as close to 0.95 as possible). The desired effect of
CRN is to raise the probability of correct and useful inference without
degrading coverage (increasing n will also increase the probability of correct
and useful inference, but with increased computing cost).

Results from Nelson and Hsu [1993] are displayed on the first two lines of
Table I. The one-way model ignores the effect of CRN, leading to over
coverage and a low probability of correct and useful inference. The control-
variate model assumes that the single control variate entirely explains the
effect of CRN: it works well in this example, nearly tripling the probability of
correct and useful inference.

The last two lines of Table I display results for the one-way and control-
variate models using 72 and 72, respectively; that is, assuming that %
satisfies sphericity. The performance is also good for these models, meaning
that the nominal coverage is maintained or nearly maintained along with a
large probability of correct and useful inference. This is particularly satisfy-
ing for the one-way model because it is very easy to apply relative to the
control-variate model.

Was this example particularly well suited for the assumption of sphericity?
We estimated X, for each model from 5000 replications, then calculated
Grieve and Ag’s [1984] & measure of sphericity; ¢ takes values between 0 and
1, with 1 indicating perfect conformance to sphericity. The values of & were
0.53 and 0.50 for the one-way and control-variate models, respectively (recall
that for the control-variate model X, is the variance-covariance matrix of the
residuals after removing the effect of the control variates). Both values
indicate significant departures from sphericity. This example is representa-
tive of what we have observed in many system simulation examples: despite
significant departures from sphericity, multiple-comparison procedures based
on 72 show robust performance.

From Theorem 6.1, we expect confidence intervals based on 72 to be
shorter, and therefore sharper, than those based on #* in the presence of
positive dependence. However, it is not obvious that these shorter intervals
will maintain the nominal coverage probability, because the joint distribution
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Table I.  Results for the Inventory Model

model coverage correct and useful inference
one way with 72 1.00 0.15
control variate with 72 0.95 0.43
one way with 72 0.94 0.48
control variate with 72 0.93 0.51

of Y and 72 depends critically on the assumption of sphericity. Since it is very
difficult to find system simulation examples that systematically depart from
this assumption, we designed the distribution-sampling experiment described
below to obtain an idea of the robustness of the approximation over the range
of possible cases.

Let a subscript (i) represent the unknown index of the ith smallest 6; e.g.,
6, 1s the largest system performance parameter. Define the event

- = /2
g = )fL—' Y(,).‘—(Q - 0(r>) < d}.jla,(r,l)(”-l)% _}:; ,Vl 7+ (r)}

where drljf’(,_l)(n‘l) is the appropriate critical value for (1 — @)100% MCB
confidence intervals under the assumption of sphericity (see Appendix A).
The event & is analogous to one-sided multiple comparisons with a control,
where the control system is the unknown best system. Let & be the event
that the MCB intervals cover 6, — max ++i0,,Yi. Hsu and Nelson [1988]
showed the Pr{#} > Pr(&}. Our experiments estimate Pr{&) over the space of
correlation matrices = with positive off-diagonal elements. We chose this
performance measure because Pr{&} does not depend on 0, while Pr{#7} does.
The experiments were conducted as follows:

(1) Fix the number of systems, r, number of replications from each system,
n, and the confidence level, 1 — «. We considered r = 3, 5, and 10
systems; n = 10 and 30 replications; and 1 — a = 0.95.

(2) Generate a random r-dimensional correlation matrix = using the method
of Marsaglia and Olkin ([1984], p. 471). This method transforms a ran-
domly generated point on the r-dimensional unit sphere into a correlation
matrix. We modified the method to generate a point on the unit sphere
with all positive coordinates, which leads to a correlation matrix with all
positive elements.

(3) Generate n i.i.d. random vectors Y, ~NO,E),j=1,2,...,n, and score a
“hit” if & occurs; specifically, if (Y, — V. < A} F - V21, Vi # )

(4) Repeat step 3 a total of 5000 times to obtain an estimate of Pr{#}, denoted
Pr{&} (this gives two significant digits of precision).

(5) Repeat steps 2-4 a total of 1000 times to estimate the distribution of
Pr{&} over a random sample of correlation matrices, =.
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Fig. 1. Estimated coverage probability Prig} for r = 5 systems and n = 30 replications.

This experiment bypasses two problems that affect all parametric mul-
tiple-comparison procedures—nonnormal data and heteroscedastic data—and
focuses on the effect of positive correlation. The results are therefore opti-
mistic in the same way that any parametric multiple-comparison procedure is
optimistic with regard to these assumptions. However, the results are pes-
simistic in the sense that typically Pr{#} > Pr(&}, but we are estimating
Pr{&}.

Since the results were nearly identical for all cases of r and n, we only
present the single case r = 5 and n = 30. Over the 1000 generated correla-
tion matrices, the minimum, mean, and maximum values of Pr(#) were 0.89,
0.94, and 0.99, respectively; a histogram is given in Figure 1. Most of the
randomly generated correlation matrices departed significantly from the
assumption of sphericity; a histogram of the ¢ values for the 1000 correlation
matrices is given in Figure 2. Figure 3 is a scatter plot of & and Pr{&). Notice
that a very large value of & is associated with coverage of about 0.95, but
other values of & can be associated with undercoverage, overcoverage, or
correct coverage.

Our experience with system simulation examples indicates that coverage
as low as 0.89 when the nominal level is 0.95 is rather pathological, provided
the normal-theory assumptions are not significantly violated. And we know
that typically Pr(#} > Pr{&}. Therefore, Figure 1 encourages us to believe
that the procedure is robust enough to be used in practice. Since the perfor-
mance of the procedure was not affected by the number of systems, r, we
could inflate the nominal-coverage probability somewhat (say 0.97 when we
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Fig. 2. Sphericity measure ¢ for the correlation matrices for r = 5 systems.
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Fig. 3. Scatter plot of & and P{&)} for r = 5 systems and n = 30 replications.
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want 0.95) and still do better than procedures based on the Bonferroni
inequality, where the necessary inflation is an increasing function of r.
Although we had hoped that the sphericity measure & would act as an
indicator of pathological cases, this does not appear to be true. We continue to
look for such an indicator.

APPENDIX A

This appendix defines notation and procedures. Let ® denote the right
Kronecker product (also called direct product) of two matrlces and let x~
denote min{x, 0} and x* denote max{x, 0}.

MCB for the One-Way Model

If the simulation data satisfy the one-way model (6) with X = 721, then a
set of (1 — @)100% simultaneous confidence intervals for 6, — max,,;6, is

5
(Yz T?SXY/ drof rne 1)7\/ n) )
L
+
2
{ Y, — Y, +diZg )/
l_( i r;}ax “Lrn-nT n) }

for i =1,2,...,r, where d;°f,,_,, is the 1 — « quantile of an (r — 1)-
dimensional multlvarlate t random variable with r(n — 1) degrees of freedom
and correlation matrix (7) (see, for instance, Hochberg and Tamhane [1987)),
and 7 is defined in Section 6.1.

When 3 satisfies sphericity, the only adjustment to (11) is to replace #
with 7 and use a multivariate t quantile with (r — 1)(n — 1) degrees of
freedom.

(11D

Regression Formulations for the Control-Variate Models

Since the expected value of the control variate from system i, p;, is known,
we can take p; = 0 without loss of generality.

Let
Y,
Y= Y_Zl
Y.
where Y, = (Y;;,Y,,,...,Y,,) denotes the responses across all n replications

from system i.
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Similarly, let

C,.
C= C,Z'
C..
where
Ciy |
o
c.=| "
Ci.
Organize the unknown parameters as
6, ]
B,
Y=
67‘
L. Br 4
Then the least-squares estimator of vy is ¥ =(G&® 'G'Y, where
X, 0 - 0
0 X, - 0
o o0 . X

r

and X, =[1,,C,]. This representation shows that the elements of ¥ are
obtained from r individual regressions, e.g., 0, is the first element of
X X)'X'Y,.

For the case when B; = 8 for all i, let G = [X,Cl, where X =1, ® I, and
C is as defined above. Then

and ¥ = (GG 'G'Y.
APPENDIX B
Proor oF LEMMA 5.1. Notice that
Cov|6,.6,iC] = CovIM,Y,, MY, [C]
= M;Cov[Y,, Y, ICIM,.
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But

Cov[ Y.

lj’Y/k[C] = COV[Oi +(Cy; — B + s
0,4+ (Cpp — B, + ﬂ/k[C]
= COV[”’);’,’» n/k]

0, Jj#k
T; 0y J=k.

Thus, Cov[Y,, Y, |C] = ¢,,1,, and the result follows by substitution. O

Let Z be distributed as a ¢ X 1-variate normal random variable with mean
vector v and variance-covariance matrix X. Let Q be a real (constant) ¢ X ¢
matrix of rank © < ¢, and let P be a real (constant) ¢ X 1 vector. The proof of
Theorem 5.1 is based on the following results:

(1) Under model (1), the joint distribution of Y given C is normal with mean
vector Gy and variance-covariance matrix % =1, ® X . (This is easily
verified using standard results.)

(2) (Box [1954], Theorem 2.1): The random variable (Z — vYQ(Z — v) is
distributed as ¥ ;A; x£(j) where x7(1), x7(2),..., x{(w) are iid. chi-
squared random variables with 1 degree of freedom, and Ay, Ay,..., A, are
the u nonzero eigenvalues of 2 Q.

(3) (Rao [1973], Theorem 3b.4(viii)): A necessary and sufficient condition for
P’'Z to be independent of (Z — vYQ(Z — v) is that ZQXP = 0.

Additionally, Theorem 8.8.6 of Graybill [1969] will be used repeatedly: If R
is an m,; X m, matrix, S an m,; X m, matrix, T an m, X m, matrix, and U
and m, X my matrix, then (R ® SYT ® U) = (RT) ® (SU).

Proor or THEOREM 5.1. From standard least-squares results

A

M1

1‘(\hn
: (12)

=
i
Il

Tr1

A
nrn

where H=1,, - G(G'G)"'G’ is symmetric and idempotent. But since the
regression decomposes into r individual regressions (Appendix A) and since
all the control variates are common,

H=-H, oI, (13)
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where H; = I, - X, (X X,) "'X, which is also symmetric and idempotent.
Notice that

(r=(n-1-172
r n _ _
= Z (';'hj“' Mt ;7‘_,‘*‘
i=1j=1

!

.)2

fi
I

I
T Mﬁ

L L (-3

since L7_;m;; = 0 by the properties of least square. Let F =1, ® 1/r1,1,, a
symmetric, idempotent matrix. Then

YL (fy-w) =ad, -Ba,, -Pa-4d@, -Pa. (14)
i=1j=1
Combining (12)-(14)
(r-1D(n-q- D= YHA,, - HHY

1
= Y’(Hl ®1, - (H,® I,)(In ® —1,1’,.)(111 oI, |Y
r

1
= Y’(Hl ®I, —H, ® 71,1’,)5{

=Y’

1 . .
H, ® (I, - —1,1’,))Y = Y'QY.
r

To find the distribution of Y'QY, we first notice that Y'QY = (Y —
Gv)YQ(Y — Gv), so that Theorem 2.1 of Box [1954] applies. Therefore we
need the eigenvalues of

Q=(1,9®%)

1 1
H, © (I, - ——1,1;)) =H, ® (EH(I, - —1,1’,)). (15)
r r

From Nelson [1990], H, has rank n — ¢ — 1; therefore, since H, is idempo-
tent it has n — ¢ ~ 1 nonzero eigenvalues all equal to 1 (Theorem 12.3.2,
Graybill [1969)]. Tedious algebra shows that 1/723% (I, — 1 /rl 1) is 1dem-
potent and has trace r — 1; therefore 1/722 a -1/r1,1 has r—1
nonzero eigenvalues all equal to 1 (Theorem 12. 6 12 Grayblll [1969]), and
X (I, - 1/r1,1) has r — 1 nonzero eigenvalues all equal to 72

Applymg Theorern 8.8.13 of Graybill [1969], the eigenvalues of H, (X (I
-1 /rl,l,)) are the product of all pairs of eigenvalues of H, and (X (I
1/r1,1))); that is, 7% with multiplicity (» — 1X(n — ¢ — 1) and 0 with multl-
plicity nr — (r — 1Xn — g — 1). Thus,

(r=D(n-q-17>~ TzX(%‘~1)(n4q*1)
from Box [1954, Theorem 2.1].
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To show that 6 and 72 are independent, we establish a stronger result,
namely, that ¥y = (G'G)"'G'Y = P'Y is independent of Y'QY.

From Rao ([1973], 3b.4(viii)), they are independent if (I, ® $.)QI, ® X )P
= 0. Notice that P’ = (G'G)'G' = X, X)"!X, ® I, = T, ® I, since the con-
trol variates are common across systems. Repeated application of Graybill’s
Theorem 8.8.6 [1969] gives

I,ezx) (I,® 2 )T; 1)

1
H, ® (I, - —1,1’,)
r

1
=(HT) ® (En(lr - ;1,1’,)27,).
But
H\T; = (I, - X,(X, X)X ) (XXX )7 =0
which completes the proof. O
ProoOF oF THEOREM 5.2. Nelson ([1990, Appendix B]) showed that
1 = -1
M, = —1, - C,(L,L,) 'L,
n
where C,.= C;1,/n and
L, =[(C;-C,),(C,-C.),...,(C,, - C.)].
Direct calculation gives
nM/M, =1+ nC,.(L,L) 'L,L,(L,L,)"'C,.

The proof follows by showing that the second term on the right-hand side
converges in probability to 0 by repeated applications of Slutsky’s theorem.
0O

PrOOF OF THEOREM 61. The E[#?] is obtained by standard arguments. To
compute E[7%], reorganize the ; by replication into m = (9, 15y, ..
Te1se- s Mns Naps---» M) Then Var[n] =3 =3 ® 1, and

i

(r =D - D7? =91, - A{I,, - By
where A=1/nl,®1,1,and B=1/r1,1, ® I, (Wang [1992]). Thus,

E[(r - D(n — D#?] = t2[(T,, — A)I,, - B)X]
+E[v]d,, — A){,, - B)E[q]
= tr[(I,, - A - B + AB)3 ]
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since E[q] = 0. Noting that AB = 1/nr1,1, ® 1,1, and working term by
term

tr[2] = ntr[En] = nrs
[/ 1 1 n
tr[AX] = tr (*I, ® 1n1’n)(2n ®L)|=—tr[X, ®1,1,]=—tr[Z]=rs
n n n
(1 1 n
tr[BE] = tr (-—1,1’, ® In)(E" eI )| =—tr[1, 1,3 ®1I,]=—tr[1,1,3% ]
r r r
. 1 ,
trlABX] = tr (———lrl’r ® lnl'n)(En ®L )| =—tr[1,1'2, ®1,1]
L nr nr

n ’
= ;tr[l,l,)ln].
Putting these terms together, and noticing that tr[1,1,%,] = rs + r(r — Do,
gives

n—1

r

El(r - (n-D7%1=(n - Drs — (rée +r(r — 1p)

=(n - D - DG - 9).
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