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Variance Reduction in the Presence of 
Initial-Condition Bias 

BARRY L. NELSON 
Department of Industrial and Systems Engineering 

The Ohio State University 
Columbus, Ohio 43210 

Abstract: We consider the application of antithetic variates and control variates variance reduction techniques (VRTs) 
in the context of steady-state simulation experiments when initial-condition bias is present. We show that, by ap- 
propriately modifying the experiment design, incorporating a VRT can improve both point and interval-estimator 
performance. Guidelines for modifying the experiment design are given. 

This paper considers the problem of estimating, via sim- 
ulation, parameters of the limiting distribution of an ergodic 
stochastic process, which is sometimes called the “steady- 
state-simulation problem.” We assume that the simulator 
requires both a point and an interval estimate of one or more 
parameters of the process. If only a point estimate is required, 
then the appropriate experiment design is a single simulated 
realization of the process (see for instance, Cheng [2]). Inter- 
val estimation, however, is difficult in single realization de- 
signs. 

The steady-state-simulation problem is complicated by 
point-estimator bias, which is introduced by the choice of 
initial conditions. The initialandition-bias problem is a long- 
standing one in simulation design and analysis; see Gafar- 
inn, Ancker and Morisaku [S] and Wilson and Pritsker [23, 
241 for surveys. Unfortunately, there is no unique solution 
to the problem since there are many conflicting criteria. 

We investigate the consequences of incorporating a var- 
iance reduction technique (VRT) into the experiment design 
when initial-condition bias is present. We show that, under 
typical assumptions, the VRT can lead to improvement in 
all standard criteria. Thus, any choice of experiment design 
or analysis can be improved by incorporating a VRT. This 
work completes a preliminary investigation of the interac- 
tion of output analysis methods (OAMs) and VRTs which 
emphasizes developing theory and guidelines for simulation 
experiment design, rather than developing new VRTs or 
OAMs (Nelson [12, 13, 15, 161). 

We restrict attention to the replicationdeletion and the 
nonoverlapping-batch-means OAMs for deterministically in- 
itialized replications (see for instance, Law and Kelton [l l]), 
and either dependence induction or control variate VRTs 
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(see for instance, Nelson [14], Wilson [22]). Replication- 
deletion and batch means are the two OAMs most often used 
in practice. Dependence induction VRTs are the ones that 
practitioners use, and control variates is a VRT that (we 
think) should be used. 

The paper is organized as follows: In the next section the 
point and interval estimation problem is described, includ- 
ing the replication-deletion OAM. Then we define the an- 
tithetic variates and control variates VRTs, followed by the 
main results. The fifth section describes some special con- 
cerns when the simulation budget is fixed. The next section 
contains a numerical example, and the final section offers 
some recommendations and conclusions. 

Problem Description 

Let Y,, denote the simulation output from the]’’ rep- 
lication, for i = 1,2,. . . ,m and j = 1,2,. . . ,k. We assume 
that !$ E[Y,,] = e,, but, due to the effect of deterministically 
selecting the initial state of the stochastic process, E[ Y,,] # 
0, for finite i. Let I denote the initial conditions. 

A point estimator of 9, is 

in - 
Y,fm,d) = (m-d)-’ Y,, 

i - d + l  

which is called the truncated sample mean since the first 
d < rn outputs are given weight 0 (“deleted”) in hopes of 
reducing the effect of initial-condition bias. We are inter- 
ested in the following properties of x(m,d) as an estimator of 
e,: 
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which are the variance, the bias, and the mean squared er- 
ror, respectively, of the point estimator, conditioned on I 
(from here on we drop the condition I for notational con- 
venience). 

There are two common cases to consider: (A) When 8, 
= 8 for all j and the replications are identically distributed, 
and @) when Ow-, = 8, and the odd numbered replications 
are identically distributed, while 8, = O2 and the even num- 
bered replications are identically distributed, for j = 
1,2 ,..., kR, and we are interested in estimating 8 = 8, - 
&. We study case (A), but comment on case (€3) in the final 
section. 

Temporarily dropping the subscript j denoting replications, 
we assume that the output stochastic process, {K; i = 
1,2,. . .) , can be represented as 

Y, = 8 + X, + bi (1) 

where {X,; i = 1,2,. . .} is a zero-mean, finite-variance, sto- 
chastic process converging in distribution to a random var- 
iable X, and {b,; i = 1,2, ...} is a deterministic sequence. 
We can formulate an analogous model for the continuous- 
time-parameter process {Y(t); t z 0); specifically, 

with corresponding assumptions about X(r) and b(t). 
Models (1) and (2) have appeared in the simulation liter- 

ature on initial-condition bias. Schruben [18] assumes that 
{X,) is stationary and phi mixing, but makes no assumption 
about {b,}. Schruben, Singh and Tierney [I91 set b, = -8u,, 
where u, is a quadratic in i that decreases to 0. Frequently, 
it is assumed that b, converges monotonically to 0; e.g., 
Kelton and Law [9]. Cheng [2] assumes that Ib(t)l is con- 
tinuous and monotonically decreasing. 

A special case of (1) that has been used to study the initial- 
condition-bias problem (Fishman [4], Turnquist and Suss- 
man [211, Kelton and Law [lo], and Snell and Schruben 
[20]), and will be used as an example below, is the auto- 
regressive order 1 (AR(1)) process. In the notation of (1) 

itive autocorrelations, typical of many queueing simulations). 
Notice that lbil is monotonically decreasing, but {X I }  is not 
stationary. 

Returning to the general process (1). let 

m - 
b(m,d) = (m-d)-' 6, . 

We assume that I6(m,d)l is a monotonically decreasing func- 
tion of m for fvted d < m. This assumption may not be 
satisfied by all simulation processes, but it will frequently 
be the case that there exists m,, such that 16(m,d)I is de- 
creasing for m > m; Glynn [6] establishes this property 
for finite-state Markov chains, for example. Implicit in the 
deletion method is the additional assumption that 16(m,d)l is a 
nonincreasing function of d for 0 5 d < m. If all the b, 
have the same sign, then these two assumptions imply that 

i=d+l i-  I 

That is, in absolute value, each b, is less than the average 
of the preceding terms, but greater than the average of the 
remaining terms. Sequences {b,} that go to zero monoton- 
ically, such as the AR( 1) bias process, satisfy this assump- 
tion. 

Finally, we assume that v(m,d) = Var[?(m,d)] = 
Var[x(m,d)] is an increasing function of d for fixed m. This 
is the cost of deletion in terms of pointestimator variance. 
The assumption will be satisfied by many processes with 
positive dependence, such as the AR(1). 

Returning to the estimation problem, suppose that the k 
replications are i.i.d. Let the point estimator of 0 be 

k - 
Y@,m,d) = k-' j - 1  x(m,d) , 

Then 

MSE[Y(k,m,d)] = BiasZ[~(k,m,d)] + Var[?(k,m,d)] 

= Z(m,d) + v(m,d)/k . (3) 
i - l  

XI =c@€i-i 
j- 0  

and 

bl = c#  

where {e,; i = 1,2, . . .I is an independent and identically 
distributed (i.i.d.), zero-mean, finite-variance, stochastic 
process, and 0 I r$ < 1 and c are constants that determine 
the dependence structure and bias in the process, respectively 
(we restrict attention to nonnegative Q which implies pos- 

Frequently, (3) is an increasing function of d, so that d = 
0 appears to be optimal. 

The standard interval estimator of 8 is the (1 -a)lOO% 
confidence interval ?(k,m,d) * H(k,m,d), where H(k,m,d) = 
fen@- l)S(k,m,d)/G is the confidence interval half width, 
t,,@- 1) is the 1 - aR quantile of the t distribution with 
k - 1 degrees of freedom, and S2(k,m,d) is the sample vari- 
ance of the {F(m,d)}. If, as we assume, the x(m,d)  
are normally distributed, then this interval achieves the nom- 
inal probability 1 -a of covering E[y(k,m,d)], but not 
of covering 8. Thus, another property of interest is 
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which is the probability that the interval covers 0. Under 
the assumption of i.i.d. normally distributed replications, 

where T is a random variable having a noncentral t distri- 
bution with k - 1 degrees of freedom and noncentrality pa- 
rameter 

Kelton and Law [lo] show that d > 0 may be desirable 
if probability of coverage is an important criterion. 

Variance Reduction 

In this section we describe antithetic variates (AV) and 
control .variates (CV) VRTs; the development follows Nel- 
son [12], to which the reader is referred for details. We call 
the standard point and interval estimators described above 
the "crude" estimators, and search for improved estimators. 

Antithetic Variates (AV) 
AV induces - dependence between pairs of replications, 

{Tw-,, Yw), j = 1,2 ,..., w2, leaving different pairs inde- 
pendent (we drop the argument (m,d) from for conven- 
ience). To define the AV experiment, let $ = @*, + 
Y w ) c  for j = 1,2 ,..., kn. Let be the sample mean of 
the U,, which is the AV point estimator and is algebraically 
equivalent to 7. The AV interval estimator is ? f Hay, 
where Ha, = fan(kL2 - 1)jm is the half width of the in- 
terval, and 

- 

is the sample variance of the {Y;> .  Let e = ~ o r r [ ~ ~ , ,  yw] 
be the induced correlation between antithetic pairs of rep- 
lications. Then the Var[fi and Var[m are different; Var[YJl 
Var[q = (1 + e) ,  which is called the variance reduction 
ratio. When e < 0, ?has smaller variance than 7. Since 
AV does not affect the bias of the point estimator, Y has 
smaller MSE as well 

However, superior performance of the AV interval estima- 
tor relative to the crude interval estimator is not guaranteed. 
When no bias is present, the performance of the interval 

estimator depends on the number of replications, k ,  the vdue 
of the achieved negative correlation, e, and the confidence 
level a (Nelson [13]). In the presence of initial-condition 
bias, the probability that the interval covers B is 

ilk,m,d) = Pr(lTW2 - 1, &km,d))l I tOnW - 1)) 

where '1 

We compare 8 to fl for large and small k in a later section. 

Control Variates (CV) 
and a q x 1-vector 

of random variables with known expectation, but that are 
also observable in each replication. Let the output from the 
j th  replication be the column vector - @,, C,%,. . . ,C,J ', where 
' denotes transpose. Let c = {c, ,. . . , C,) ' be the sample mean 
of the control variates, and let p = E[a. Then the control 
variate point estimator is 

CV exploit the dependence between 

- -  
Y = Y - i @ - p )  

where a' is an estimate of the q x 1-vector control multiplier 
(Wilson [22]).  If the @,, C,,,. .. ,C,,) are i.i.d. (q+ 1)-variate 
normal vectors, then the variance reduction ratio is 

where R2 is the square of the multiple correlation coefficient 
of P on c. The MSE of is 

)(1 - Ra)v(m,d)/k. ( 5 )  MSE[fi = g'(m,d) + (- k- q- 2  k- 2  

Thus, has smaller variance and MSE than y if R' > 
g/(k-2). The value of R2 depends on q and the particular 
control variates chosen. The factor (k - 2) / (k-  q - 2) is non- 
decreasing in q, while 1 - R3 is nonincreasbg in q. 

f H,, where H, = 
tmn(k-q- 1)s is the half width of the interval; the calcula- 
tion of s is discussed in Wilson [22]. In the presence of bias 
in x, but not c, the probability that the interval estimator 
covers 0 is 

The CV interval estimator is 

where 
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Proof: Let (This is a consequence of the distribution of y, which can 
be found in 1161.) We compare 6 to 8 for large and small 
k in the next section. 

Probability of Coverage 

When S(k,m,d) # 0, the probability that the crude inter- 
val covers 0 is less than the nominal value 1 - ct, and cov- 
erage is monotonically decreasing in 161. Deletion improves 
coverage, but at the expense of increased variance. In this 
section we examine the coverage of the crude, AV and CV 
intervals. If k ,  m and dare  the same for all three estimators 
and k is large, then the AV and CV intervals have lower 
probability of coverage than the crude interval. However, 
the coverage of the AV and CV intervals can match or sur- 
pass the crude .interval and stilI maintain reduced MSE 
through additional deletion. When k is small, the AV and 
CV intervals may actualiy have larger probability of COY- 

erage than the crude interval without resorting to further 
deletion. 

Large-Sam ple Coverage 
For the discussion that follows we consider P(k,m,d) - 

the ratio of the bias squared to the variance of the point es- 
timator - without loss of generality since degradation in 
coverage is symmetric in 6. We also fix k and m,  so that 
d is the only controllable factor. 

When k is large, equal coverage for all three interval es- 
timators requires that 

6’(k,m,d) = &(k,m,d) = &(k,rn,d) (6) 

(see $e Appendix). However, if e < 0 and R1 > q/(k-2) ,  
then 6 and 8 are greater than 6 in absolute value. To attain 
equal coverage when k is large, (6) implies that we must 
find d’ and d”  such that 

G’(k,m,d‘) = ( 1  + e)b’(k,rn,d) (7) 

and 

k- 2 
k - q - 2  

P(k,rn,d‘’) = (-)(1 - R2)6’(k,m,d). 

That is, the bias squared to variance ratio of the AV and 
CV estimators must be reduced, through additional deletion, 
by an amount equal to the variance reduction ratio. Under 
our assumptions, P(k,m,d) is a decreasing function of d .  
This lends to the following result: 

Proposition 1: Consider the crude experiment with de- 
sign k,  m, and d when (2 )  describes the simulation output 
process. Suppose that b(?) and v(t.d) are continuous func- 
tions oft,  and each replication is of length 7. If there exists 
a d’ (d”) such that (7) ((8)) is satisfied, then the AV (CV) 
point estimator has smaller MSE under design k,  m, d ’  (d”) 
then the crude estimator under design k, m and d. 

d‘  = inf{-yf [d,r):  62(k,m,y) = ( l+e)6’(k,m,d)},  

if it exists. Then 

since (E(rn,d)l is nonincreasing in d. Thus, 

Var[?(k,m,d‘)] = ( 1  + e)Var[ly(k,m,d‘)] 5 Var[T(k,rn,d)] 

so that p(k,m,d’) has smaller MSE. A completely analogous 
argument proves the result for CV. 

In the case of output process (l), it may not be possible 
to obtain precisely equal coverage because d is discrete. How- 
ever, if m is large then the difference will be negligible. 
If no d’ exists that satisfies (7), then (1 + Q ) v ( ~ , T - E )  < 
v(7,d) for all e > 0 in model (2), or (1 + e)v(m,m- 1) < 
v(m,d) in model (1); this situation seems unlikely when 7 

and m are large enough to be reasonable. A similar condi- 
tion applies for d ” .  

Small-Sample Coverage 
When the number of replications, k ,  is small, the differ- 

ing degrees of freedom associated with each interval estima- 
tor (crude, AV and CV) play a role. This case is important, 
because a design that specifies a small number of long rep- 
lications may be desirable when the budget is fixed (see 
Fixed-Budget Design below) to ensure the validity of the 
interval estimation procedure (i.e., that is approximately 
normally distributed) and to further guard against initial- 
condition bias. It turns out that the confidence interval pro- 
cedure provides some protection against initialcondition bias 
when k is small, but there is a cost in terms of the length 
of the interval. 

The key to our results is the following calculation: Let 
0 < 9 < 1 - cy be the degradation in probability of cov- 
erage due to initial-condition bias. Then we can (numeri- 
cally) find 6, g, and 6 such that 

(see the Appendix). That is, we can find bias squared to 
variance ratios such that the. crude, AV, and CV interval 
estimators all have coverage equal to 1 - ct - 7. If all three 
estimators employ the same design k ,  m and d ,  then the AV 
and CV interval estimators will have equal or better cov- 
erage than the crude interval if 
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and 

(1 - R’) h (6/6)’ , k - 2  
k - 4 - 2  

respectively. These bounds result from the fact that 5 = 
6’/(1 + e) and 8’ = ((k-q-2)/(k-2))h3/(1 - R’). Thus, 
if k, m and d are the same for all three estimators, then 1 
+ Q = (6/& and ( 1  -R2)(k-2)/(k-q-2) = (6/8)’. Since 
coverage decreases if 1 + e or 1 - R’ decreases, these 
ratios are lower bounds on the variance reduction such that 
no degradation in coverage occurs versus the crude estimator. 

Figure 1 shows (Mi)’ and (6/@ as functions of k for a 
= r) = .05 (Le., a 95% confidence interval with 5 %  deg- 
radation). When k is small, point estimator variance can be 
reduced without degrading coverage relative to the crude 
estimator. However, as k increases these ratios go to 1, as 
implied by the large-sample result above. Thus, the large- 
sample result is conservative in the sense that reducing the 
bias squared to variance ratio (through additional deletion) 
by an amount equal to the point estimator variance reduc- 
tion ratio insures equal or superior coverage for all k. The 
curves in Figure 1 are not particularly sensitive to changes 
in a and r) in the interval [.01, .1]. 

UnfortunateIy, when k is quite small the crude interval 
may beat the AV or CV interval in other ways. Figure 2 
shows the function y(k) (lower curve) such that 1 + e s 
y(k) implies E[H,,J s E[HJ for a = .05 (Nelson [13]); 
i.e., the expected half width of the AV interval is shorter 
than the expected half width of the crude interval. Super- 
imposed on Figure 2 is from Figure 1. Recall that 
1 + e 2 (M)’ is required for equal coverage. Unfortu- 
nately, the regions of equal coverage and shorter expected 
length do not intersect, meaning that the protection from 
initial condition bias with small k is at the expense of larger 
interval length. The conclusion is that moderate k and ad- 
ditional deletion are usually required for the AV and CV 
estimators to outperform the crude estimator. 

Fixed-Budget Designs 

In any practical problem there is a limit on the budget 
for a simulation study. Somewhat artificially, we model this 
limit as a constraint, n,  on the total number of outputs ob- 
served. The design problem then becomes choosing how 
to “spend” these n outputs. One strategy is to make k rep- 
lications of length m = n/k, deleting d Erom each one; this 
is the fixed-budget analog of the replication-deletion OAM 
above. Kelton and Law [lo], Kelton [7], and Turnquist and 
Sussman [21] have studied the problem of choosing k and d. 

When either AV or CV VRTs are applied in conjunction 
with the replication-deletion OAM, the results in the pre- 
vious section hold: Whatever design is chosen, it can be 
improved by incorporating AV or CV with additional de- 

- 
0 

0 20 40 60 80 100 120 

k 

Figure 1. From top t! bottom, the functions (b& for q = 1,2, ..., 5 
and the function (616)’. 

I I I I I 

80 100 120 0 20 40 60 

k 

Figure 2. From top to bottom, the functions (ti/@ and dk). 

letion. The example below illustrates the effect of a fixed 
budget on the replicationdeletion O M ;  see also Nelson 

A second strategy is to make a single replication, deleting 
d outputs only once. The nonoverlapping-batch-means OAM 
is one method for constructing an interval estimate from 
a single replication. The basic properties of the batch means 
interval estimator are described in Schmeiser [17]. 

The impact of AV and CV VRTs on the batch means OAM 
when the output process is covariance stationary is derived 
in Nelson [13, 161; stationarity implies that initial-condition 
bias has been eliminated. In the presence of bias, some of 

~ 5 1 .  

344 IIE Transactions, December 1990 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
o
r
t
h
w
e
s
t
e
r
n
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
7
:
1
0
 
1
7
 
D
e
c
e
m
b
e
r
 
2
0
1
0



the results must be modified. In the remainder of this sec- 
tion we outline some properties of the batch-means OAM 
when bias is present, leaving the details of applying AV and 
CV to the references. 

Let (Y,, Y,,. . . , Y.} represent the output from a single rep- 
lication, and assume that model (1) pertains. Define theJth 
batch mean to be 

- h + d  
Y,(k,d;n) = m-' Y, 

i=d+(m-Ili+l 

for j = 1,2 ,... , k, where m = (n -d)/k. The idea behind 
batch means is to choose k small enough (m large enough) 
so that the batch means are approximately i.i.d. normally 
distributed. We suppose that there exists a k* n- d such 
that these assumptions hold for all k 5 k* (Schmeiser [17]). 
The batch means play the role of the replication means when 
constructing an interval estimate or applying a VRT. 

Under model (1) 

where %(k,d;n) and E,(k.d;n) are the corresponding batch 
means of the { X i }  and {b,} processes, respectively. The as- 
sumptions above regarding the batch means will hold if the 
{X,(k,d;n); j = 1.2 ,..., k }  are i.i.d. normally distributed 
for k s k*. 

Let 

& 

?fl,n,d) = k ' z T ( k , d ; n )  
j -  I 

and 

be the sample mean and variance, respectively, of the batch 
means; notice that the sample mean is independent of k. The 
interval estimator is P(1 ,n,d) f tan&- l)S(k,d;n)@. For 
model (1) 

E[y(l,n,d)] = 0 + 6(n,d) . 

If we also assume that X, is a covariance stationary process, 
then if k s k* 

2 Var[?(l,n,d)] = v(n,d) 

where 

and 

k 

sifk,d;n) = (k- l ) - ' Z  fiJJ(k,d;n) - 6(n,d))' . 
j - I  

The point-estimator bias is independent of the number of 
batches, k ,  but the variance-estimator bias is not, even when 
the assumption of independent batch means is satisfied. 
Varianceestimator bias is not a concern in replication de- 
signs. The following result indicates that, for well-behaved 
bias processes, d(k,d;n)/k is a decreasing function of k. 

Proposition 2: For any sequence of constants b, , b,, . . . , 
b,,, si(k,d;n)/k I s:(n,d;n)/n if and only if 

Remark: The term on the right-hand side is the average 
variance within a batch. The proposition states that batch- 
ing decreases the bias only if the average variance within 
the batches exceeds the total variance of the sequence before 
batching. This condition will not hold for well-behaved bias 
processes (br = cqY, for example); that is, the average var- 
iance within the batches is typically much less than the total 
variance in the sequence. The result applies i fn  is replaced 
by k, < n,  and k is replaced by k, = k,/ml,  for some in- 
teger m, that divides k,, showing that typically the bias con- 
tinues to increase as k decreases. 
Proof: Without loss of generality, we prove the result 

for d = 0. For convenience, we drop the dependence of 
the quantities on d and n . Using the standard sum of squares 
decomposition 

i- I j -  I 

Thus, 

\ i -1  

The condition for d@)/k I s:(n)/n is immediate after col- 
lecting terms. 

Thus, a larger number of batches (smaller batch size) typ- 
ically means smaller bias in the variance estimator. How- 
ever, there may be some benefit from the bias, since it inflates 
the variance estimate, widening the interval estimate, and 
Compensating for the degradation in coverage due to point- 
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estimator bias. Quantifying exactly how much compensation 
occurs seems quite complex. And, of course, we want to 
maintain k s k*. 

When AV or CV is applied, probability of coverage de- 
clines since the VRT shrinks the interval around a biased 
point estimator. If we delete d' > d to improve coverage, 
then we assume that the remaining outputs are batched so 
that m' = (n - d')/k is the batch size. A potential problem 
occurs if the additional deletion causes the independence 
assumption to be violated. In the final section we find that 
the additional deletion required is small, so that the prop- 
erties of the batch means should not be significantly altered. 
Thus, we continue to assume that the batch means are in- 
dependent. 

Under our assumptions, g2(n,dr)  I za(n,d) and v(n,d') 
> v(n,d), the same effects as in the replication case, so cov- 
erage should improve similarly. We expect that s:(k,d';n) 
5 si(k,d;n), since we are discarding more extreme terms 
near the beginning of the bias process; thus the variance 
estimator is also less biased. 

Examples 

When a design exists for which the AV and CV interval 
estimators have probability of coverage as large as the crude 
interval, we have shown that the corresponding point esti- 
mators retain the advantage of smaller MSE under that de- 
sign. However, this result gives no insight into the actual 
value of the MSE after additional deletion. As an illustra- 
tion, consider the AR(1) process described above and the 
AV point and interval estimator. We choose the AR(1) proc- 
ess as an example because all of the quantities of interest 
can be directly calculated (see the Appendix). 

A more traditional formulation of the AR(1) process is 

Y, = 8 + 4(Y,-l-8) + ti, i = 1,2 ,..., m 

where Y, is the ith output in a simulated replication. We 
represent the choice of initial condition by yo, which is a 
constant and the same for all replicatiovs. Kelton and Law 
[lo] provide expressions for the variance, bias and MSE 
of P(k,m,d). From these results we can show that 

(9) 

where c = (yo - f l ) d n $  is the difference between 
yo and 8 in units of the steady-state (m- OD)  standard de- 
viation of yi, and 4 = Var[e,]. For a given k,  m and d ,  we 
find d'such that g(k,m,d') = G(k,m,d) by direct search. We 
choose d to be the asymptotically (m- m) optimal trunca- 
tion point in terms of minimum MSE for the crude estima- 
tor (Snell and Schruben [20]) 

1 - 4 2  d = 0 ,  i f ? <-  
@ 

(this expression for d corrects a typographical error in h e l l  
and Schruben). Thus, we begin with the best design for the 
crude estimator and improve it using variance reduction. 

We examine the effect of dependence in the output proc- 
ess by varying 4 from 0 (independent) to .99 (hlghly pos- 
itively dependent). Let e = - .5 be the value of the negative 
correlation induced by AV, which is optimistic in practical 
problems. However, e = - .5 provides a good illustration 
since the smaller e is the more additional deletion is required. 
We reserve "AV" for the application of antithetic variates 
without additional deletion; and AV + for antithetic variates 
with d' 2 d deleted to obtain probability of coverage equal 
to the crude estimator. 

For k = 10 replications of length m = 128 outputs per 
replication, Figure 3 shows the MSE, expected half width, 
and probability of coverage for the crude, AV, and AV+ 
point and interval estimators when c = 1. As expected, all 
measures for all estimators are progressively degraded as 
6 increases. The important observation is that AV+ has 
only slightly larger MSE and expected half width than AV, 
yet has probability of coverage equal or superior to the crude 
estimator. 

Next we fix the budget at n outputs divided into k repli- 
cations of length m = n/k, with d outputs deleted from each 
replication. Specifically, let I$ = .9, e = - . 5 ,  and n = 
15000. Figures 4(ac) and 5(a-c) show the MSE, expected 
half width, and probability of coverage as a function of k 
for the crude, AV and AV+ point and interval estimators. 

w 
u) 
5 

r) 

8 

r 
9 
0 

8 
0.0 0.2 0.4 0.6 0.8 1 .o 

phi 

Figure 3a. Fork = 10, rn - 128 and c - 1: From top to bottom, 
the MSE of the crude, AV +, and AV point estimators in units of 
the steady-state variance. 
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s c  I I I I 
0 

0.0 0.2 0.4 0.6 0.8 1 .o 
phi 

Figure 3b. For k = 10, rn = 128 and c = 1: From top to bottom, 
the expected half width of the crude, AV + , and AV interval estima- 
,tors in units of the steady-state standard deviation. 

t 

I I I I 

0.0 0.2 0.4 0.6 0.8 1 .o 
phi 

Figure 3c. For k = 10, rn = 128 and c = 1: From top to bottom, 
the probability of coverage for a = .05 of the AV + , crude, and AV 
interval estimators. 

From Snell and Schruben [20], the asymptotically optimal 
truncation point is d = 0 when c = 1,  and d = 3 when 
c = 3, and we determined that d' = 4 and 7, respectively. 

When c is small (Figure 4a), MSE is fairly constant for 
all values of k and the additional deletion has little effect 
on the AV estimator. When c is large (Figure 5a), MSE 
increases as k increases, and the bias is so large that AV+ 

s c  I I I I I I 

0 20 40 60 80 100 120 

k 

Figure 4a. For t$ = .9, e = - .5 and c = 1: From top to bottom, 
the MSE of the crude, AV + , and AV point estimators in units of 
the steady-state variance. 

0 

& '  I I I I I 

0 20 40 60 80 100 120 

k 

Figure 4b. For t$ = .9, Q = - .5 and c - 1: From top to bottom, 
the expected half width of the crude, AV+ , and AV interval estima- 
tors in units of the steady-state standard deviation; AV + and AV 
are indistinguishable. 

actually has smaller MSE than AV when the replications 
are very short. For small k,  E[HJ > E [ a ,  but as k in- 
creases the AV interval has shorter expected length, and 
the additional deletion has little effect. Finally, the proba- 
bility of coverage for the AV-t interval is superior for all 
values of k ,  as guaranteed by our choice of d'. 
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9 f I 

\ \ \  I 

8 
0 20 40 60 80 100 120 

k 

Figure 4c. For I$ 0 .9, p = -.5 and c = 1: From top to bottom, 
the probability of coverage for a o .05 of the AV + , crude, and AV 
interval estimators. 

0 20 40 60 80 100 120 

k 

Figure 5a. For 4 I .9, p = - .5 and c = 3: From top to bottom, 
the MSE of the crude, AV, and AV+ point estimators in units of 
the steady-state variance; crude and AV are indistinguishable. 

Conclusions and Recommendations 

The results above show that AV and CV VRTs can im- 
prove the performance of point and interval estimators in 
the presence of bias. However, the improvement requires 
additional deletion, leaving the difficult question of how much 
additional deletion. We propose the following approximation: 

I t -  I r---J 8 0 20 40 60 80 100 120 

k 

Figure 5b. For 6 = .9. p = - .5 and c = 3: From top to bottom, 
the expected half width of the crude, AV+ , and AV interval esti- 
mators in units of the steady-state standard deviation; AV+ and 
AV are Indistinguishable. 

80 100 120 0 20 40 60 

k 

Figure 5c. For 4 = .9, p = - .5  and c = 3: From top to bottom, 
the probability of coverage for a = .05 of the AV +, crude, and AV 
intervat estimators. 

We assume that for i > d, b, = c4' for some constants 
c and 0 '< I#I < 1; that is, the bias coverges to zero geo- 
metrically fast. We approximate v(m,d) by o'/(m-d), where 

d = limm Var[x(m,d)]. 
m- 01 

Then 

348 IIE Transactions, December 1990 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
o
r
t
h
w
e
s
t
e
r
n
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
7
:
1
0
 
1
7
 
D
e
c
e
m
b
e
r
 
2
0
1
0



Equation (10) impliesthat tS@,m,d+A) = vP(k,m,d), where 
0 < v < 1 is the variance reduction ratio, when A satisfies 

Letting m go to infinity on both sides of (I 1) and solving 
for A yields 

This result is independent of m and d ,  and will be a reason- 
able approximation when rn is large, and much larger than 
d; it applies to either single or multiple replication designs. 

In practical .problems v can be estimated by the ratio of 
the estimated variances of the crude and.VRT point estima- 
tors. Both AV and CV VRTs allow the variance of the crude 
estimator to be estimated without performing a second ex- 
periment. The parameter q5 can either be estimated by ap- 
proximating the output process by an AR( 1) process, or can 
be chosen close to 1 to be conservative. Table 1 shows the 
additional deletion increment A for different values of Y and 
4. These values can be used as a guide, and they indicate 
that little additional deletion is needed unless the variance 
reduction ratio is quite small and/or the dependence in the 
output process is very strong. 

We have emphasized obtaining coverage equal to the crude 
interval estimator. However, it is sometimes possible to 
achieve improved coverage and smaller MSE by incorpo- 
rating a VRT, as shown in the examples. Nelson [15] de- 
scribes a modification of AV, called antithetic-variate 
splitting (AVS), for use in replicationdeletion designs. AVS 
“splits” k/s replications at the point of truncation (yk) into 
s 2 2 dependent subreplications. AVS can reduce point- 
estimator variance below classical AV, and it reduces bias 
by using the savings (Ad/$ deleted rather than kd) to make 
longer replications. Thus, the AVS estimator may have cov- 
erage superior to the crude estimator even without additional 

Table 1. Additional Deletion Increment A 

4 
Y 0.20 0.50 0.80 0.90 0.99 

0.90 0 0 0 1 5 
0.80 0 0 1 1 11 
0.70 0 0 1 2 18 
0.60 0 0 1 2 25 
0.50 0 1 2 3 34 
0.40 0 1 2 4 46 
0.30 0 1 3 6 60 
0.20 1 1 4 8 80 
0.10 1 2 5 11 115 

deletion. 
We have only considered deterministically initialized rep- 

lications, since that is the most common approach. How- 
ever, procedures that randomly select initial conditions in 
a way that reduces bias have been proposed (Deligonu1 [3], 
Kelton [8]). VRTs might also be incorporated into these de- 
signs. 

Although only mentioned briefly, an important problem 
is estimating the difference between the parameters of two 
stochastic processes (case (B) in Background above). Nel- 
son [13] describes the impact of the common-random-num- 
bers VRT on single and multiple replication designs in the 
absence of initial-condition bias. Modification of these re- 
sults to account for the presence of bias would follow the 
same lines as the development for AV here, and the con- 
clusions would be similar. 
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Appendix 

Results are derived and calculations explained in this sec- 
tion. 

Large-Sample Coverage 

goes to 0, since 
As the number of replications, k, goes to infinity, B(k,m,d) 

4f 6’(m,d) lim P(k,m,d) = lim 
k- m k-- u(m,d) 

is infinite. Thus, the crude, AV, and CV intervals all have 
probability of coverage 0, asymptotically, which is not a 
useful result. However, suppose instead that G(k,m,d) re- 
mains constant as k increases. Then , 

(Bickel and Doksum l:l]), where N(u, b) denotes a normal 
distribution with mean a and variance b, and D denotes con- 
vergence in distribution. An analogous result holds for non- 
centrality parameters &k,m,d) and 8(k,m,d). This shows that, 
for k large, probability statements about noncentral-t ran- 
dom variables become statements about normal random var- 
iables with mean equal to the noncentrality parameter and 
unit variance. Thus, equal probability of coverage requires 
equal noncentrality parameters. 

bution, IMSL routine MDTN to evaluate the cumulative dis- 
tribution function of the noncentral t distribution, and a 
bisection search to find 6 , 6 ,  and s’ satisfying the probability 
statements. An absolute error tolerance of .000001 was spec- 
ified. 

AR(1) Example 
From Kelton and Law [lo] 

and 

Substituting these results into the definitions yields 6(k,m,d) 
and MSE[F(k,m,d)]. Also from Kelton and Law, 

where I’ is the gamma function. The probability of cover- 
age, P(k,m,d), was calculated using the lMSL routine MDTN 
to evaluate the noncentral-t cumulative distribution function. 
Results for AV are immediate by modifying the variance 
and degrees of freedom. 
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Small-Sample Coverage 
The values of 6, $, and s’ for different k were found using 

IMSL routine MDSTI to provide quantiles of the t distri- 
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