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ESTIMATING ACCEPTANCE-SAMPLING PLANS FOR
DEPENDENT PRODUCTION PROCESSES

BARRY L. NELSON
Department of Industrial and Systems Engineering, The Ohio State University, Columbus, Ohio 43210

When acceptance sampling is used to judge the quality of an ongoing production process, the quality of successive items may
exhibit statistical dependence that is not accounted for in standard acceptance-sampling plans. Computing the probabilities re-
quired to design sampling plans for general dependent processes is often complex, and sometimes intractable. This paper presents
an efficient method for estimating single-sampling attribute plans for any production process model that can be simulated. Nu-

merical illustrations are given.

B Acceptance sampling is a widely used technique for
economically assessing the quality of a *‘lot’” of items.
In this paper we consider single-sampling attribute plans
of the form (n,c) for ‘‘Type B’’ (continuous) produc-
tion processes, where n is the number of items sampled
and ¢ < n is the acceptance number such that the lot
is declared acceptable if no more than ¢ defective items
are discovered in the sample. The values of n and ¢
are chosen to provide a prespecified ‘ ‘producer’s risk’’
and ‘‘consumer’s risk."’

In standard acceptance-sampling plans the risk cal-
culations are based on modeling the production process
as a sequence of independent and identically distributed
(i.i.d.) Bernoulli random variables (e.g., [11], [12]).
This model is plausible when the sample is drawn from
a well-mixed lot of finished items. However, if items
are sampled sequentially, either from an ongoing proc-
ess or from a lot that retains its production order, then
it is possible that the quality of successive items exhib-
its statistical dependence.

Bhat, Lal and Karunaratne [3] and Sampathkumar [9]
extended the standard model by treating the quality of
successive items as a two-state Markov chain. Their
results facilitate derivation of acceptance-sampling plans
for Markov-dependent processes. Sarkadi and Vincze
[10] performed a similar analysis under the assumption
that the quality of successive items can be modeled as
a two-state Pélya process; they showed that standard
plans applied to such a process lead to erroneous con-
clusions. Even for such simple process models the math-
ematical analysis is difficult.

In this paper we present a method for estimating
single-sampling attribute plans for any production proc-
ess that can be simulated. The method is computation-
ally and statistically efficient, allows the user to specify
the precision of the estimators in advance, and does not
depend on the underlying process model. We include
a numerical illustration that demonstrates the method
and the consequences of using standard acceptance-
sampling plans when the process is actually dependent.

Example

In this section we introduce an example to motivate
the estimation of acceptance-sampling plans for depend-
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ent processes. The example is not intended to represent
any particular production process or to be a recom-
mended approach for process control, but similar mod-
els have been used in actual process control problems
(e.g., [1], [2]) and in theoretical investigations (e.g.,
[6]). In alater section some numerical results are given
for this example.

Suppose that Z,, Z,,...,2Zy are the measurements of
some critical feature of successive items. The i-th item
i1s within tolerance, and thus is acceptable, if 7, < Z,
< 7y, where 7, and 7, are lower and upper tolerance
limits, respectively. If we use the mapping

{1 ifZI<TL0rzl>Tu

0 otherwise

then the process data are amenable to acceptance sam-
pling. Notice that actual measurements are not required,;
only a ‘‘go, no-go’’ assessment is needed, which might
make acceptance sampling economical.

Suppose that data collected from past measurements
indicates that, when the process is in control, the crit-
ical measurements of successive items are well modeled
by an ARMAC(1,1) process; that is

Z = p+ 2 )+t e ¢}

where p is the desired nominal measurement, ¢,, €,,...,ex
are i.i.d. N(0, o) random variables, |¢| < 1 and |6|
< 1. If the process has been running long enough so
that it is stationary, then (1) implies that the Z, are iden-
tically distributed N(u, 63) random variables, where o2
= o*(1 + 6% + 2¢0)/(1 — ¢*) [7]. However, the measure-
ments are dependent, with lag correlations
o = (LT 806 +0)
' 1 +6* +2¢0
or =9"0, h =23,...

In this example we assume that ¢ and @ are fixed char-
acteristics of the production process, but deviations from
the nominal process mean, g, or the acceptable process

variance, 0%, can occur. For instance, an unacceptable
production process might be represented by

Z!=p' +d2Z —py+0e, +¢€ (5]

where p'+#p and/or.g’'+# o. Standard acceptance-
sampling plans apply if ¢ = § = 0.

;=

0740-817X/93/$3.00x.00 © 1993 “‘IIE”’ 11



17: 09 17 Decenber 2010

Downl oaded By: [Northwestern University] At:

Process Model

Let the production process be represented by the sto-
chastic process {X, X,...,Xv}, where N is the lot size.
The possible outcomes for each X, are 0, representing
an acceptable item, or 1, representing a defective or
unacceptable item; we make no other assumption about
the joint or marginal distributions of the process. Items
are inspected sequentially up to a maximum of n <
N items.

Let C, = £, X, be the cumulative number of defec-
tive items discovered through item i, for i=1,2,...,n.
To design single-sampling plans we need to know the
probability that the lot is rejected under plan (n, ¢), de-
noted v, .1 = Pr{C, = ¢+ 1}. However, for the pur-
pose of estimating +, .4, an alternative representation
is useful.

Define C, = 0 and let

_{1 ifCy =j—1land X, = 1
v 0 otherwise

fori=1,2,...,N and j=1,2,...,i. The random variable
D, indicates whether or not the i-th item inspected was
the j-th defective item discovered. Then T, = Lf.; Dy,
indicates whether or not the j-th defective item was dis-
covered on or before inspecting item i, for i=1,2,...,N
and j=1,2,...,i. It follows immediately that

Yner1 = Pr{Tocrs =1} =E[T, ] = 3 ElDc.i). (3)

tmc+ ]
Thus, to estimate v,.,; we can estimate E[T, .4,] or
E[D;. 1] for £ = ¢ +1,...,n. This turns out to be a use-
ful representation, and it facilitates proving the follow-
ing properiies of the {v,}:

Proposition 1: The rejection probabilities v, satisfy:
(a) Yi+l,j 2 Yy fO" i=1,2,...,N— 1 and j=1,2,...,i,’
and (b) v, ;-1 = yy fori=2,3,..., N and j=23,... 1.

Proof: Property (a) follows directly from (3) since

i+! i

Yistg =?-:,-E[D"] Z’Z_EE[Du] = .
To establish (b), recall that v, = Pr{T, = 1}. But
{Ty =1} <> {3¢:f < iand Dy = 1}
<> {C =j-1,X = 1}
= {dh:h<land C,.,=j—2,X,=1}
=2 {D);-1 = 1}
= 1}.

g {7:‘_}'_1 = ]}, which im-
s Pr{Ti ;- = 1} = vij1.
|

= {T,_j-

1
Thus, the event {7, = 1}
plies that v, = Pr{T, = 1}

These two properties are intuitively obvious: Prop-
erty (a) states that the probability of rejecting the lot

does not decrease if the sample size is increased while -

holding the acceptance number fixed; property (b) states
that the probability of rejecting the lot does not decrease

12

if the acceptance number is reduced while holding the
sample size fixed. Ravindran ez al., [8] proved an anal-
ogous result for the case of random sampling without
replacement from a lot of size N. In the next section
we develop a method for estimating -y, for all i and j
such that the estimates have these same properties.

To identify an acceptance-sampling plan (n,c) we
specify a producer’s risk, 0 < a < 1, which is asso-
ciated with acceptable performance of the production
process, and a consumer’s risk, 0 < 8 < 1, which is
associated with unacceptable performance of the pro-
duction process. In standard acceptance sampling plans
the acceptable and unacceptable production processes
are specified in terms of the parameter of the Bernoulli
process, p = Pr{X, = 1}; the smaller value of p is called
the Acceptable Quality Level (AQL) and the larger value
of p is called the Lot Tolerance Percent Defective
(LTPD). A more complex description will typically be
required to specify dependent processes (e.g., the cor-
relation between successive items is required in Bhat,
Lal and Karunaratne’s [3] Markov chain model). Thus,
we will refer to AQL and LTPD processes when esti-
mating sampling plans.

When the production process is performing at the ac-
ceptable level we want the probability of rejecting or
stopping the process under plan (n, c), denoted ~72%,,
to be no larger than «. On the other hand, when the proc-
ess is performing at the unacceptable level we want the
probability of rejecting the process, denoted %53, to
be at least | — 3. In the sections that follow we show
how to estimate acceptance-sampling plans that attain
these requirements.

Estimating Sampling Plans

We assume that m i.i.d. replications of the entire proc-
ess {X;,X;,...,Xv} can be simulated, and we attach an
additional subscript k to X;, C, and Dy, to denote obser-
vations on the k-th replication for k=1,2,...,m; e.g.,
X, denotes the quality of the i-th item produced on the
k-th replication. Let

Yy =EDUk

k=1

Sy =EYU

t=j

and

fori=1,2,...,Nand j=1,2,...,i, so that Y, is the num-
ber of replications on which the j-th defective item was
the i-th item inspected and S is the number of repli-
cations on which the j-th defective item occurred on
or before the i-th item inspected.

Clearly, ¥;, = Y,/m is an unbiased estimator of E[D,],
and S, = S,/m is an unbiased estimator of -y, with var-
iance y,(1 —y,)/m. In addition, the estimators {S,}
share the same properties as the {vy,}.

Theorem 1: With probability 1, the estimated rejec-
tion probabilities S, satisfy: (a) Si.\; = Sy for i=

IE Transactions, November 1993
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1,2,...N—1and j=12,...,i; and () S.;-, = Sy for
i=2,3,...,Nand j=2,... i.

Proof: Property (a) follows directly from the defini-
tion of §; since

1+lJ _EY’I = EYU =

To establish (b), nonce that mS(, = E,_, Yy = Tiy
L% Dy = Ei E,., Dy;. For fixed replication k, at
most one of Dy, Dj.y p,...,Dys is equal to 1 (since the
J-th defective can occur only once). Suppose Dy = 1.
Then

{Duh = 1} — {C-I,k =j=1,Xu = 1}
=> {3h:j-1 s h < tand
Ch—lk =j_2 Xu""l}

= {D,,,_,— 1}

= IE.D” * = EDm
==
Since this is true for all k, the result follows by sum-
ming both sides of the last inequality over k and divid-
ing by m. O

The method of estimation suggested by these results
is computationally efficient: For a given production
process model, all of the {y,} can be estimated from
one simulation experiment consisting of m replications.
Direct estimation would require N(N + 1)/2 simulation
experiments.

In the following subsection we show that standard
performance measures for acceptance-sampling plans
can also be estimated from the same simulation data.
The number of replications needed for a specified pre-
cision can be determined in advance, as will be shown
in later sections, that also describe efficient ways to col-
lect the simulation data and search for the (n,¢) com-
bination that provides the desired producer’s risk and
consumer’s risk, respectively.

Performance of Sampling Plans

Three performance measures of a sampling plan are
the average sample number (ASN), the average total
inspection (ATI) and the average outgoing quality
(A0Q). These three measures are easily estimated from
the data ¥, and S,;. For illustration, we consider two
strategies:

1. Sampling is terminated immediately if the (¢ + 1)-st
defective is discovered in the first n items, in which
case the production process is stopped (no more items
are produced). This is sometimes called semicurtailed
inspection. We assume that all defective items are
discarded.

2. Rejected lots are 100% inspected and all defective
items, including those found in the first n, are re-
placed with acceptable items. This is sometimes
called rectifying inspection.

November 1993, IIE Transactions

Let Ny be the number of items inspected until a de-
cision is reached about the lot. For both semicurtailed
and rectifying inspection, y

ASN = E[N,y] = Y, ¢Pr{decision on item £}

t=c+1

= i fPr{DI,H-l = l} + n(l_‘Yn.c+l)'

fac+]

Since ¥y, is an unbiased estimator of Pr{Dy.., = 1}
and §,.., is an unbiased estimator of v,..;, an un-
biased cstimator of ASN is

ASN = E ech-{-l + n(l nc+l)

t=c+l

E[ch+l+n 1__ Ech+l

m t=c+1 L )
1 n
=n—— E (n_e)Yl.cH-
m ..

Using similar reasoning and considerable algebra we
can show that an estimator of the variance of the num-
ber sampled Var[Nyl, is

Var[ASN] = - E (n =87 Yeu

t=c+1
L3 n-or..
tmet}

For rectifying inspection it is relevant to estimate the
ATI. Let N, be the total number of items inspected from
a lot. Then

ATI = E[N]]) = Nyser + n(1 = Ynes)
for which the obvious estimator is
ATI = N5, cui + n(1=S,.40)
=n+(N- n)gn,c+l .
The corresponding estimator of VAR[N,] is
Var[ATI] = (V—=n)5, .1 (1 = Speen).

The AOQ is a measure of the quality of the items
actually shipped. Let N, be the number of defective
items remaining in each lot after inspection, and let Ni
be the number of items actually shipped, so that AOQ
= E[Np)/E[Ns]. If Ris the event that the lot is rejected
and 4% is the complementary event, then

EINo] = E[Np| Bly,e1 + EINo| R ~ vyes1)

= E[NDI%(l - ‘Yn.c+l)

since there are no defectives in rejected lots under either
strategy. We can estimate E[N,|Z%] by

—_— ¥ LT Y
E[anfﬂl = %

which is the average number of defectives observed after
item n. Then

n:nol Ejnl YU

E[ND] = (] _gn.c+|)

13
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is an estimator of E[Ny].
In the case of rectifying inspection, E[Ns] = N. On
the other hand, for semicurtailed inspection
[

E[NJ] =§(N—!)Pr{c, =8
+ 3 €-c— DPr{Dyen = 1}.

{fme+]
Define s,.o = mand S,,',H.] = (. Then S'd - Sn,j+l is the
number of replications with exactly j defective items
in the first n items for j=1,2,...,n. Thus, an unbiased
estimator of E[N;] is

z?—O(N - [)(Su! - n,l+1) + E;-u l(t" c— l)yl,cﬂ
p .

Notice that, given the data Y, and S, the ASN, ATI
and AOQ can be estimated for any sampling plan (n, ¢).
However, to estimate the operating characteristic, AOQ,
ATI or ASN curves as a function of the parameters of
the underlying process a simulation experiment must
be performed for each point desired on the curves.

B[Ns) =

Simulation Design

To estimate an acceptance-sampling plan with spec-
ified consumer’s risk and producer’s risk, two simula-
tions are performed corresponding to the acceptable and
unacceptable production processes, yielding two sets of
estimators {$§2*} and {S;™"}, respectively. Our goal,
loosely stated, is to find (1, ¢) such that E[S4%},] = o and
E[S:T35] = 1 — B (sce a later section on searching for
a plan for a precise definition). If the appropriate pair
(n, ¢) were known, then Var[$3%] = a(l — a)/m and
Var[S:T38] = (1 — 8)/m. Since we specify « and 8 in
advance, we can use this knowledge to choose the num-
ber of replications, m, required to achieve a prespec-
ified precision.

Suppose E(S22;,] = a exactly. Then an appropriate
(1 — 6)100% confidence interval for @, when m is large,

is
542t 4+ zin Va(l —~a)/m

where 7z, is the 1 — /2 quantile of the standard nor-
mal distribution. To be confident, at level 1 — §, of hav-
ing 4 digits of accuracy for estimating o we need

ZrVa(l —a)im < % x 10

which implies m > z3a(l — a)(4 X 10*¢). In most es-
timation problems such a calculation is not possible be-
cause « is unknown. To account for both simulations
we take

m=|z,(4 x 107} X max{a(l—a),8(1 -8} +1

which guarantees that, for the appropriate (1, c) com-
bination, the estimators $4+%, and S;737 of 42, and

LTro achieve the desired precision. Of course, this is an
indirect control on precision since we do not know the
appropriate (n, ¢), but the structure of the {S,} estab-
lished in Theorem 1 guarantees that the ordering of the

14

{S,} will be the same as the {v,}. Thus, a search of
the {S,} should find the desired plan.

Simulation Implementation

The elements Y, can be organized into a lower tri-
angular array, Y, as shown in Figure 1. The simulation
begins with all cells in the array initialized to O, and
as the simulation progresses through m replications of
N items each, a 1 is added to the ij-th cell whenever
the i-th item inspected is the j-th defective item. Thus,
the array Y can be created directly without ever actu-
ally recording the D,. For a lot of size N, NN + 1)/2
cells are needed. Of course, the data can be stored in
a single-dimension array with subscript £ by using the
mapping £=i(i — 1)/2 +j.

The lower triangular array S with elements Sy is
formed by summing the j-th column of Y from row j
through row i (see Figure 1). There is no need to ac-
tually divide by m to form Y, and S, since the search
for §22%, and S:T%2 can be accomplished by comparing
§4et to ma and S5 to m(1 — B). This allows all of the
data from the simulation to be stored as integers.

Searching for a Plan '
Formally, the estimation problem is to determine (n, ¢)
such that

Y%, < aand viT% = 1-8. )

Although there may be no plan that satisfies (4), more
often there are several. In this section we discuss alter-
native criteria and describe how to search the arrays
St = {5494} and S = {§;7"} to find the best plan.

If we are not concerned with strictly satisfying the in-
equalities in (4), then we may only require that E[S72},]
=~ o and E[S:T28] = 1 — §; thus choosing (n, ¢) to min-
imize the loss function

j=C4|
123. N

Figure 1. Y = {Y,}. Organization of simulation data

E Transaciions, November 1993



17: 09 17 Decenber 2010

Downl oaded By: [Northwestern University] At:

n,c) = |529 —a| + S22 —(1-9)

might be a reasonable criterion. Finding the combina-
tion that minimizes (n, ¢) requires searching through
all of the possible n and ¢ combinations. We call the
plan that minimizes n, ¢) the minimum-loss sampling
plan. .

Suppose that satisfying (4) is important. Since we must
substitute estimates 3, for the true y,,, we should account
for the precision of our estimators. One approach is
to search for (n,c) combinations that satisfy

S42t < a—zpa(l —a)/m )
SRR = 1— B+ \/B(1 —B)/m (6)

which guarantees, when m is large, that each inequality
holds at confidence level 1 — & (replacing 6 by 6/2 in
(5) and (6) insures that the joint statement holds at level
1 — 6 by the Bonferroni inequality). We say that a plan
that satisfies (5) is a feasible, and a plan that satisfies
(6) is B feasible. For simplicity, we assume that « and
1 —2A have been adjusted by the amounts specified
above, but continue to refer to them as o and 1 — 8.

Define the a-feasible set & = {(i,]):S4?" < o,i=
1,2,....,N; j=1,2,...,i}. Some properties of .« follow
immediately from Theorem 1:

Corollary 1:

1. There exists an € such that S42° = ming ey S3°F.

2. If(i,)) EALthen (h,O) E Lforh = i,i-1,...,jand
0= j,j+1,..0

3. If(i.j) € Athen (h,d) €Edforh=ii+1,... .Nand
b=jj—1,...,1.

Property 1 implies that the smallest S{2* is along the
diagonal of §*2*; thus, if no diagonal element is « fea-
sible then no element is a feasible. Properties 2 and
3 imply that .« is a region like the one in Figure 2.

Let & = {(,):(,HNE AL and (i,j—1) € A or
(i + 1,)) € A}. We call Fthe a-feasible frontier, since
(i,)) € Fimplies elements in S42L to the right and above
element (i,)) are in 7, but elements to the left and be-
low (i,j) are not in .. Sampling plans that are optimal
for many natural criteria are in .

Consider & and A\ &, For all (i,)) € A\ &, there
exists (i’,j) € & such that $49* = S4°L. Similarly, for
all (i,j) € A\ &, there exists (i',j) € & such that
Sk7PP = SHTPP, These properties are immediate con-
sequences of Theorem 1. _

Thus, the o-feasible plans with largest $42* are in &.
Also, the largest Si™” s corresponding to a-feasible
plans are in &, implying that if there are plans that are
both « and § feasible, then there will be at least one
such plan in &

Suppose that we are interested in minimizing the sam-
ple size n such that the sampling plan (n, ¢) is both a
and B feasible. Since the plans in & have the largest

November 1993, IIE Transactions

j=c+1

123 N

1
2
3

o

feasible

i=nh ?a_

N

Figure 2. S9r = {S; 2L}, Feasible set for estimator search

SL7Pp 5 such that the corresponding S%°° is feasible, this
plan can be found in &, if it exists. We call this plan
the minimum-n sampling plan. Notice that the plan may
not be unique in ¢, but it is the minimum-n plan that
also minimizes ¢, which is sometimes considered de-
sirable [4], [5].

Another possible criterion is to minimize a — S42*
over all « and B-feasible plans; that is, find the feasible
plan that comes nearest to the specified producer’s risk.
Since the plans in % have the largest feasible S42L, this
plan can be found in &, if it exists. We call this plan
the nearest-a sampling plan.

To find either the minimum-n or nearest-« plan we
trace out & in 8§25, checking 87" for feasibility, and
saving the best current plan along the way. The search
requires at most 2N comparisons.

We have emphasized searching based on the matrix
$492¢ and the producer’s risk a. In a similar manner we
could start with the B-feasible set and search for the
nearest 1 — § plan. Other possible criteria might require
looking at the intersection of the « and B-feasible sets.

Numerical Results

In this section we present some numerical results for
the ARMA(]1,1) example introduced earlier. All pro-
gramming was done in Fortran on a Vax 750 computer
(the programs are available from the author on request).
To verify the programs, experimental results were com-
pared to results for Markov chain examples in [3].

We assume that the measurement process (1) is sta-
tionary (in ‘‘steady state’'). To simulate a stationary
ARMA(1,1) process the initial vector (Zo, €)' is sam-
pled from the bivariate normal distribution with mean
vector (g,0)’ and variance-covariance matrix

15
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The dependence in the process is a function of the
parameters ¢ and 6. The experiments used the cases
shown in Table 1, which include: i.i.d. measurements,
for which standard acceptance-sampling plans are ap-
propriate (case 1); measurements that are correlated only
with the preceding measurement (case 2); and measure-
ments that exhibit diminishing correlation for items
farther apart in sequence (cases 3, 4 and 5). In all cases
the correlations are nonnegative—which seems intui-
tively to be the most natural situation—and the cases
are ordered according to increasing dependence.

The long-run fraction of defective items, p, depends
on the process mean, u, and the process variance, o3.
We constructed cases in which the long-run fraction
of defective items was 0.01 for the acceptable or AQL
process and 0.10 for the unacceptable or LTPD proc-

ess; sec Table 2. However, in the first example the deg-
radation in quality is due to a shift in the process mean,
while in the second example an increase in the process
variance degrades product quality.

For all of the experiments the producer’s risk was
fixed at o« = 0.10, the consumer’s risk at § = 0.10,
and the lot size at N = 300. The number of replications,
m, was determined to provide 2 digits of accuracy with
99% confidence, implying m = 23,889 replications for
these examples.

Results for the shifted mean and increased variance
examples are given in Tables 3 and 4, respectively. For
each case of process dependence in Table 1, the
minimum-»n, nearest-a, and minimum-loss plans were
estimated and they are displayed in that order. The es-
timated rejection probability for the AQL and LTPD
processes are also displayed, as are the AOQ and ASN
estimates for the AQL process assuming semicurtailed
inspection.

The most outstanding feature of the results is that the
value of n increases with increasing process dependence

ARMA(.1) P X Tabled1b 4 Struct for the minimum-» and minimum-loss plans. The effect
(1,1) Parameters and Dependence Structure becomes even more pronounced when the dependence
Case ¢ 8 o on h = 23,.. is increased further. For example, the parameter settings
1 0 0 0 0 6 = 0.25 and ¢ = 0.75 or 0.9 yield minimum-» plans
2 0 0.25 0.24 0 (114,3) or (277,8), respectively, for the shifted mean
3 | 025 o - 0.25 0.25(0.25)""! example, and (98,3) or (199,6), respectively, for the
4 0.25 0.25 0.45 0.45(0.25)*" increased variance example. For the nearest-« plans the
5 0.50 0.25 0.64 0.64(0.50)*"? AOQ tends to be smaller since they reject the AQL
Table 2. Process Parameters and Long-Run Fraction Defective
Quality " 0% TL Ty P
AQL 10 1 7.4242 12.5758 0.01
LTPD 11.2940 1 7.4242 12.5758 0.10
AQL 10 0.03778 9.5 10.5 0.01
LTPD 10 ‘ 0.09240 95 105 0.10
Table 3. Resulis for Shifted Mean Example (Minimum-n, Nearest-a, and Minimum-Loss Plans)
Case n c Sh2%4 Siea AOQ ASN
1 39 1 0.058 09814 0.0087 38.25
171 3 0.095 1.000 0.0042 167.04
38 1 0.055 0.905 0.0087 37.30
2 41 1 0.068 0.808 0.0086 40.02
236 4 0.094 1.000 0.0021 231.08
40 1 0.065 0.900 0.0087 39.08
3 42 1 0.072 0.907 0.0086 40.93
50 1 0.095 0.948 0.0083 48.27
‘ 41 1 0.068 0.900 0.0086 40.00
| 4 46 1 0.091 0910 0.0086 4435
296 5 0.095 1.000 0.0001 289.70
45 1 0.089 0.904 0.0084 43.44
5 7 2 0.063 0.907 0.0076 69.38
209 4 0.095 0.999 0.0029 203.27
‘ 54 1 0.131 0.899 0.0081 . 50.94
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process with probability as close as possible (but less
than or equal to) a.

To illustrate the consequences of using standard
acceptance-sampling plans that assume independent item
quality when in fact the process is dependent, we es-
timated the rejection probabilities for the case 1 plans
if they were used with the case 2 through 5 processes.
The results are given in Tables 5 and 6. For the
minimum-n and minimum-loss plans the rejection prob-
abilities for the LTPD processes are often less than the
desired 0.90, and significantly less for the highly de-
pendent cases 4 and 5. This means that lots of unac-
ceptable quality are too likely to be accepted. For the
nearest-a plan, the rejection probability often exceeds
the desired 0.10 for the AQL processes, meaning that
lots of acceptable quality are too likely to be rejected.
Again, the problem is more pronounced in the highly
dependent cases.

Discussion

This paper describes an efficient method for estimat-
ing single-sampling attribute plans for any production
process that can be simulated. The estimation method
could also be applied to actual data records collected
from the production process of interest, if a Jarge enough
sample is available.

The type of sampling plan described here is probably
most naturally used to judge the quality of an ongoing
production process. In that context there may be no con-
cept of a lot, and N can be interpreted as the maximum
sample size, n, that might be considered.

Extensions to other sampling strategies are possible.
For example, modifying the method to estimate sam-
pling plans that inspect every T-th item in sequence,
rather than every item, is trivial. In addition, plans can
be estimated that provide a specified AOQ or ASN since

Table 4. Results for Increased Variance Example (Minimum-n, Nearest-«, and Minimum-Loss Plans)

Case n c Sa%, SEEA AOQ ASN

1 39 1 0.059 0.912 0.0088 38.24
107 2 0.095 0.999 0.0064 104.04

38 1 0.056 0.904 0.0088 37.29

2 40 1 0.066 0.911 0.0088 39.07
234 4 0.094 1.000 0.0021 229.10

39 1 0.064 0.904 0.0088 38.14

3 40 1 0.067 0.908 0.0087 39.05
167 3 0.095 1.000 0.0043 163.00

39 1 0.064 0.901 0.0088 38.11

4 42 1 0.082 0.906 0.0086 40.67
294 5 0.095 1.000 0.0002 287.70

41 1 0.079 0.900 0.0087- 39.75

5 63 2 0.052 0.907 0.0079 61.80
89 2 0.095 0.978 0.0070 85.95

47 1 0.110 0.901 0.0085 44,74

Cases 2-5 (Minimum-n, Nearest-c, and Minimum-Loss Plans)

Table 5. Estimated Rejection Probabilities if the Standard Plans are Used for the Shifted Mean Example,

Plan Case 2 Case 3 Case 4 Case 5
: c | Sa% | Sheh | Saghn | Sweh | Sage | Sacw | Sadhi | Swen
39 1 0.063 0.892 0.063 0.884 0.072 0.859 0.087 0.795
171 3 0.098 1.000 0.098 1.000 0.109 1.000 0.131 0.997
38 1 0.060 0.884 0.060 0.875 0.069 0.849 0.084 0.785

Cases 2-5 (Minimum-n, Nearest-«, and Minimum-Loss Plans)

Table 8. Estimated Rejection Probabilities if the Standard Plans are Used for the Increaseq Variance Example,

Plan Case 2 Case 3 Case 4 Case 5
; c | S | Sirn | Sagn | Sien | 5w | Saon | Safa | Sin
39 1 0.064 0.904 0.064 0.901 0.073 0.884 0.088 0.842
107 2 0.101 0.999 0.101 0.999 0.110 0.997 0.128 0.993
38 1 0.060 0.896 0.061 0.894 0.070 0.876 0.085 0.832
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these measures can be estimated for any plan. The es-
timation of multistage sampling plans is currently be-
ing investigated.

An inherent limitation of acceptance-sampling plans
for dependent processes is that the plans cannot be ta-
bled. An application-specific process model must be de-
veloped for each situation in which the plans will be
used. However, with computer collection of process
data and appropriate statistical analysis software (to fit
ARMA models, for example), the approach suggested
here becomes practical: Given a process model,
application-specific plans can be estimated quickly and
automatically by a generic simulation program. The ex-
tra modeling effort is offset by the danger inherent in
using tabled plans in situations for which they were not
designed.

This paper does not address the problem of develop-
ing and fitting process models to describe dependent
production processes, however, which seems like an
important area for further research. ARMA models are
a rich class of noncausal models, and software for fit-
ting such models is available in many commercial sta-
tistical analysis packages. When the physical mechanism
causing defective items is understood (e.g., tool wear),
process models that are based on the physical process
might be candidates. And, since all process models are
approximations, the sensitivity of the estimated sampling
plans to errors in the model form or parameters (¢ and
6 in the ARMA(1,1) process model) should be inves-
tigated as part of the simulation experimentation.

If a production process is known to exhibit statistical
dependence, then it is legitimate to ask if acceptance-
sampling plans that reduce the process data to counts
make the most efficient use of process data. The answer
is centainly no. However, given the exiensive use of
acceptance-sampling plans in practice, due partly to their
simplicity, a direct extension to dependent processes
is a practical first step toward a more general method-
ology for dependent production processes.
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