Estimating the Probability That a Simulated
System Will Be the Best

J.O. Miller,! Barry L. Nelson,? Charles H. Reilly?

L Department of Operational Sciences, Air Force Institute of Technology,
Wright-Patterson AFB, Ohio 45433-7765

2Department of Industrial Engineering and Management Sciences, Northwestern
University, Evanston, Illinois 60208-3119

3Department of Industrial Engineering and Management Systems, University of
Central Florida, Orlando, Florida 32816-2450

Received July 2001; revised November 2001; accepted 26 November 2001

Abstract:  Consider a stochastic simulation experiment consisting of v independent vector repli-
cations consisting of an observation from each of k independent systems. Typical system com-
parisons are based on mean (long-run) performance. However, the probability that a system will
actually be the best is sometimes more relevant, and can provide a very different perspective than
the systems’ means. Empirically, we select one system as the best performer (i.e., it wins) on each
replication. Each system has an unknown constant probability of winning on any replication and
the numbers of wins for the individual systems follow a multinomial distribution. Procedures exist
for selecting the system with the largest probability of being the best. This paper addresses the
companion problem of estimating the probability that each system will be the best. The maximum
likelihood estimators (MLESs) of the multinomial cell probabilities for a set of v vector replica-
tions across k systems are well known. We use these same v vector replications to form v* unique
vectors (termed pseudo-replications) that contain one observation from each system and develop
estimators based on AVC (All Vector Comparisons). In other words, we compare every observa-
tion from each system with every combination of observations from the remaining systems and
note the best performer in each pseudo-replication. AVC provides lower variance estimators of the
probability that each system will be the best than the MLEs. We also derive confidence intervals
for the AVC point estimators, present a portion of an extensive empirical evaluation and provide a
realistic example. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 341-358, 2002; Published
online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10019
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1. INTRODUCTION

Suppose we have & > 2 independent populations, denoted 7y, 7o, . .., 7. In the stochastic
simulation context each “population” is a simulated system. We consider the problem of esti-
mating the probability that each system will be the best system in a single comparison (trial)
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for all of the systems. Often—but not always—the best performer in terms of mean or long-run
average performance will correspond to the system with the largest probability of being the best.
But maximizing the probability of being the best answers a fundamentally different question than
maximizing the long-run average performance does, and can provide a very different perspective
on system performance. We provide examples in this paper.

Let X; represent the ith replication of some performance measure from system 5. Note that
the X;; are independent both within and across systems. Each system has an unknown constant
probability, denoted p;, j = 1,2,.. ., k, of having the largest value of the performance measure
on any replication containing one observation from each system. Our performance measure is a
continuous random variable, so that a tie between systems occurs with probability 0. We define
the best system as the system most likely to have the largest performance measure (i.e., it wins)
in any comparison across all systems.! Such a comparison corresponds to a multinomial trial,
where one and only one system can win in any given trial; therefore, the numbers of wins for each
individual system in v independent trials follows a multinomial distribution. Our objective is to
provide estimates for the unknown multinomial success probabilities, p;, j = 1,2,..., k.

Closely related to the estimation of the p;’s is the problem of determining which of the systems
has the largest probability of being the best system. This is known as the multinomial selection
problem (MSP). Bechhofer and Sobel [2] introduced the use of multinomial selection procedures
to find the system most likely to produce the largest observation on a given vector-trial. Goldsman
[4] first suggested the more general use of this type of procedure to find the system most likely
to produce the “most desirable” observation on a given vector-trial, where “most desirable” can
be almost any criterion of goodness.

An MSP approach is appropriate when we are interested in selecting the system expected to
yield the highest benefit in a single trial, rather than the system with the largest average response
over a large number of trials. Simulation examples include selecting the best set of tactical or
strategic military actions to achieve maximum damage in a single strike; selecting the bridge
design most likely to require the least costly repairs after a one-time catastrophic event, such
as an earthquake; or selecting the computer system with the highest probability of running the
longest without failure. For the type of problem considered in this paper, we require a quantitative
measure of system performance so that each system in each trial can be compared with other
systems across any or all of the remaining trials.

When comparing systems, it is often argued that common random numbers (CRN) should
be used to evaluate the different systems under the same experimental conditions, where our
experimental conditions are the random variates used to determine various system reliabilities,
probabilities of target damage, etc. The use of CRN implies that the X;’s are no longer in-
dependent across systems in each replication. When estimating the difference in mean system
performance, CRN tends to reduce the variance of the difference by inducing a positive correlation
across the systems’ responses; it does this without changing the true mean response from each
system. On the other hand, if we estimate the probability that one system’s performance will be
better than the others’, then the value of this probability is altered by using CRN. In other words,
the MSP with and without CRN are actually different problems.

Miller and Bauer [10] showed the use of CRN in MSP may not change the identity of best
system—the system with the largest probability of having the best performance—even though
it does change the value of that probability. They also showed that the probability of correctly

LThroughout this paper we assume that a larger value of the performance measure is better, but neither the
analysis nor the results change if smaller performance is better.
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selecting the best system can increase or decrease with the use of CRN, implying that CRN may
help or hurt in the selection problem.

This paper considers estimating the probability that each system will be the best; thus, it matters
which problem we intend to solve (with or without CRN). The analyst must decide whether or not
to use CRN based on whether it is logically appropriate, rather than whether or not it will reduce
variance. When the systems react to the same set of experimental conditions in the same ways, then
simulating them using CRN may be a faithful representation of the physical process. But when
the systems react in different ways to the experimental conditions, or cause those conditions to be
changed, then simulating them independently is logically correct. The new estimator introduced
in this paper is only appropriate when the systems are simulated independently (no CRN), so from
here on we assume independence across systems.

Let X; = (X1, Xai, - . ., Xki) represent the ith replication across all k systems. Let Yi=1
if X53 > Xy, for £ = 1,2,...,k, but £ # j; and let Y;; = 0 otherwise. In other words,
Y;i = 1if Xj; is the largest observation in X;. Suppose that there are v independent replications
across all systems, and let Y; = > 7, Y}, represent the number of times system j wins out of
these v replications. For simplicity assume that ties have probability 0, and let p; = Pr{X;; >
Xei,VE # 5}, where 0 < p; < 1 and Z?:I p; = 1. Then Z?zl Y; = v, and the k-variate
discrete random variable Y = (Y1,Y5,...,Y}) follows a multinomial distribution with v trials
and success probabilities p = (p1, p2, ..., k). The usual point estimators for the multinomial
success probabilities are the maximum likelihood estimators (MLEs) given by

Py =2 ()

forj=1,2,...,k.

Due to convention and convenience when comparing simulated system responses from inde-
pendent systems, the responses are typically grouped by replication, corresponding to a trial in
a physical experiment. Grouping system responses in this fashion is arbitrary (unless there is
some attempt to synchronize comparisons across systems, like the use of CRNs), and since our
simulated responses are quantitative, we can compare any observation from one system with any
observation from each of the remaining systems. This means that a single observation from sys-
tem 1 can be grouped into a vector comparison with any one of the v observations from system
2, and with any one of the v observations from system 3, and so on, up to and including any
one of the v observations from system k. Since there are v observations from system 1 as well,
this gives us a total of v* vector comparisons (trials) that can be formed with v independent
observations from each of the k systems. We incorporate this setup, which we call AVC for All
Vector Comparisons, to construct new point estimators for the p;’s. Our estimators turn out to be
k-sample U-statistics [13]. When we arbitrarily perform only the v vector comparisons implied
by the MLEs, we disregard the information available from the remaining v* — v comparisons.
AVC exploits this additional information.

In this paper we prove that the variance of the AVC estimator is no larger than the variance of
the MLE, and is typically much smaller. We use a specific example to demonstrate the magnitude
of the variance reduction that can be expected. We also derive the asymptotic variance of the AVC
estimator as an approximation to its true variance. An estimate of the asymptotic variance is used
to form confidence intervals that are shorter than their MLE counterparts.

The paper is organized as follows: We first motivate the need to look at performance measures
other than the mean, and then briefly review the MSP and introduce terminology used in our point-
estimation problem. This leads to a description of AVC. Properties and empirical evaluation of the
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AVC estimators follow, including the construction of confidence intervals. We conclude with an
example illustrating the use of these procedures in selecting the best performer among a number
of highly reliable computer systems.

2. MOTIVATION AND BACKGROUND

Comparisons based on mean or long-run average performance are so common that this choice of
performance measure is rarely questioned. Provided that long-run performance of a stable system
is what matters, comparisons based on the mean make sense. However, when risk is important,
or when one-shot performance matters, then measures such as the probability of being the best
are relevant.

In some situations the system with the best mean performance may not be the one that is most
likely to be the best. Goldsman [5] gives the following simple example: Let A and B be two
inventory policies. Profit from A is 1000 with probability 0.001 and 0 with probability 0.999.
However, profit from B is certain to be 0.999. In this situation the expected profit from A, which
is 1, is greater than the expected profit from B, which is 0.999. However, the Pr{Profit from B >
Profit from A} = 0.999, so that B is almost certain to give higher profit. In this case the system
with the best expected performance is not the same as the one that is most likely to be the best.
This example also illustrates that in our context we are not interested in the magnitude of the
difference in performance among competing systems in any given trial (replication).

Even when the best system as determined by mean performance or the probability of being
the best is the same, our perception of how much better one system is than another can be quite
different depending on which performance measure we choose. For example, suppose now that
the Profit from A is distributed N(11, 02), while the Profit from B is N(10, 1). Thus, A is 10%
better than B in terms of mean performance for all values of 2. Figure 1 shows the Pr{Profit
from A > Profit from B} as a function of ¢ for 0.1 < 0 < 100. Notice that Pr{Profit from A
> Profit from B} ranges from 0.83 (quite certain) to 0.54 (a bit better than a coin toss) depending
on the variance of the return from A. In this example knowledge of the probability of being the
best adds to our understanding of the relationship between A and B beyond what is provided by
their means.
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Figure 1. The probability that policy A has higher profit than policy B as a function of the variance of its
return.
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One thesis of this paper is that probability of being the best is a useful complement to mean
performance, and AVC provides a statistically efficient way to estimate it from the same data used
to estimate the mean.

Because of the close relationship between the MSP and the estimation of multinomial success
probabilities, we briefly introduce a classical solution procedure for the MSP and define some
terminology we will use throughout our discussion.

Bechhofer, Elmaghraby, and Morse [1] describe a single-stage procedure, Procedure BEM, for
selecting the multinomial event (population or system) which has the largest success probability.
Procedure BEM requires the specification of P* (where 1/k < P* < 1), aminimum probability of
correctly identifying the population with the largest success probability subject to an indifference
zone constraint, and 8* > 1, the indifference zone constraint defined as the minimum ratio of
the largest success probability to the second largest success probability that we want to be able
to detect. The probability of correct selection (PCS) is a property of the procedure and provides
no information about the values of the p;’s. If we desire estimates of the p;’s, then the natural set
of estimators based on the same data as BEM are the MLEs given in (1). It is well known that

E[p;] = p; and

Var(p;) = i Pa) @

3. AVCESTIMATORS

We propose a new method to provide point estimators for the multinomial success probabil-
ities with smaller variances than the corresponding MLEs using the same replications X;,7 =
1,2,...,v. Rather than comparing the ith replication for each system with the ith replication
of the other systems, consider a total of v* pseudo-replications formed by associating each
Xy (= 1,2,...,kt = 1,2,...,v), with all possible combinations of the remaining Xg,
(=1,2,...,k; £+ j;h=1,2,...,v). Each such pseudo-replication contains one observation
from each system. Notice that the v* pseudo-replications include the v independent replications
from which the pseudo-replications are formed.

Assuming ties are not possible, define

v v v k
Zi=3 > 2 Il #(Xie, = Xea) ©

(11:1 (12‘—"1 a.k=1 f:l,e;éj

forj=1,2,...,k, with
1, a>0
@) = {

0, a<0.

Thus, Z; represents the number of times out of v* pseudo-replications that system j wins and
Z§=1 Z; = v*. Our new point estimator is then

p; = F, (4)

the fraction of wins out of v* pseudo-replications for system j. We refer to the estimator in (4)
as an AVC estimator, or to p = (P1,Pa, . .., Pk) collectively as our AVC estimator. Notice that
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if ties are possible, then a tie for the best must be broken by randomly selecting one of the tied
systems as being the best independently for each pseudo-replication. When ties can occur, a
simple representation of the number of wins such as (3) is not possible. Throughout the remainder
of the paper we restrict attention to the case in which the X;; are such that ties have probability 0.

For convenience in comparing our AVC estimators with the MLEs, we have used the same
number of observations for each of the k systems. However, a potential advantage of the AVC
estimators is the ability to easily define them for differing number of observations among the k
systems. Let v; represent the number of independent observations from system j, j = 1,2,..., k.
We then have

vy vg Uk k
=3 53 I ¢ - Xum) )

ar=1 as=1 ap=1 £=1;4#£5

with ¢(a) defined as above, so that E?zl Z; = Hle vg. Then our AVC point estimator becomes

B =2Z;/ H'gzl vg. For simplicity, we assume from here on that we have v replications from each
system.

The basic AVC selection procedure was introduced in [11] and applied to the MSP. In [11]
we show that many fewer vector replications are required to solve the MSP using an AVC-based
procedure, rather than procedure BEM, and we show how to determine the required number of
replications. We also define our AVC point estimator for the best system, show that it is a k-sample
U statistic, and use an asymptotic argument to compute and compare the probability of correct
selection with procedure BEM. In this paper we examine the performance of AVC-based point
estimators for all competing systems, derive confidence intervals for them and compare these
estimators with the MLEs obtained using BEM.

Once the data are collected, computing all of the AVC point and variance estimators is an
O(kv1n kv) calculation. This compares to an O(kv) calculation for the MLEs. Thus, obtaining
the AVC point estimators may not be worth the extra effort if the computing cost per additional
replication is trivial. However, in typical systems simulation problems the computation per repli-
cation is orders of magnitude more than the additions, multiplications and sorting required to
produce the AVC estimators, suggesting that the reduction in variance is not offset by the addi-
tional effort. An efficient algorithm for AVC calculation is given in the Appendix.

Clearly E[p;] = p;, but the Var(p;) is more complex to calculate than Var(p;). To find the
variances for the individual §;’s we will show that our AVC estimator is a k-sample U-statistic
and specialize a general expression for its variance.

Let F; denote the cumulative distribution function (cdf) of the random variable X ;;. From [13],
we say p is estimable of degree (1,1,...,1) forcdfs (F1, Fy, ..., Fg) of (X14, Xoi, ..., Xki), in
some family of distributions F, if (X1;, X, . . . , Xk, ) is the smallest sample size (one observation
from each system) for which there exists an unbiased estimator of p for every (Fy, Fy, ..., Fy) €
F. Formally stated

E(FL,...,Fk)[h(j)(Xllv v X)) =pj

for j =1,2,...,k, for a k-sample symmetric kernel 1(?)(-). In our case this kernel is
k
h(J)(Xli*,...,in*)Z H (,b(in*-—Xgi*), i*El,Q,...,Uk, (6)

e=1304j
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where ¢* represents the index of an arbitrary pseudo-replication. Thus, h() (X4, ..., Xpi») = 1
if the observation from the jth system is the largest in any vector comparison across all systems. A
k-sample U-statistic is the average value of such a kernel over all vectors of observations with one
observation from each system, which is precisely (3) divided by v*. Therefore, Pi,i=1,2,...,k
are each k-sample U-statistics, and we can use well-known results for U-statistics to calculate
their variances [9]. In Section 4.1. we prove that the variance of the AVC estimator is always
less than or equal to the variance of the MLEs. Unfortunately, the variance formula becomes
increasingly complex, and its value increasingly difficult to estimate, as k increases. In Section
5, we present a simpler asymptotic approximation to the variance of the AVC estimator which
forms the basis for confidence intervals.

4. SMALL-SAMPLE PROPERTIES OF AVC ESTIMATORS

The following analytical study illustrates a number of important properties of our AVC es-
timator. First, we provide a general proof that the variance of our AVC estimator is no larger
than the variance of the MLE. We then illustrate the size of this variance reduction for a specific
small-sample case and discuss the weak dependence of this reduction on the underlying distribu-
tions of the X ;. Finally, we address the difficulty in obtaining analytical results for even a small
number of systems and observations, and thus provide motivation for our asymptotic variance
approximation.

4.1. Smaller Variance of the AVC Estimator

To show that AVC provides a point estimator with a smaller variance than the MLE, sup-
pose we have simulation results for k systems with v observations from each system, X;;,j =

ykyi=1,2,.

Let Fl, Fg, Fk represent the empirical cumulative distribution functions (edf) for each
system based on these data, and suppose we wish to estimate p;. From Eqs. (1) and (2) the MLE
is then p; = Y7 /v with variance Var(p1) = p1 (1 — p1)/v.

To arrive at our AVC estimator let

p1(F) = Pr{Xu; > Xjir, Vj#1E, By, .., By},

where ¢* represents the index of an arbitrary pseudo- replication, so that p; (F) is the probability
system 1 is the best when the data are distributed as Fl, Fg, .., . Under B Fy, ... Fy, each
pseudo-replication occurs with an equal probability of 1/v* Thus we can write

(the number of pseudo-replications where system 1 wins)

pl(F) = ok 3

implying that the numerator is Z; from (3). Therefore, an equivalent representation of our AVC
estimator is 7; = py ().
Using standard definitions for conditional expectation and variance [3], we know that

Var(p1) = Var[E(p|Fy, By, ..., Fy)] + E[Var(py|Fy, By, . .. Fy))
Var[pl(F)} + E[Var(ﬁlfFla F27 v )Fk)}
Varﬁﬁl] -+ E[Var(ﬁllFl, FQ, veay Fk)]
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Since E[Var(ﬁllﬁ’l, By oo, ﬁ’k)] > 0, we have shown that Var(p;) < Var(p). In the following
section we quantify the size of this reduction in estimator variance for a specific case.

4.2. Example

Without Joss of generality, let m;, be the best system. We will assume that all the remaining
systems, 71, g, . . ., Tr—1 are identically distributed, and let X represent an observation from 7y,
and W represent an observation from any of the inferior systems.

Consider X ~ exp(A)and W ~ exp(p)andlet A < p, where A > Oand p > 0 are exponential
rates. This particular example was suggested by Goldsman [7]. For k = 2 and v = 2, we have
p2 = Pr{X > W} = p/(A+ p) and p; = Pr{X < W} = A/(A + p). From (2) we have
Var(ps) = —Q(T’\Jr"u—)g In a similar fashion using the derivation in [9] we have

.3 A2 + 3\ + u?)
VP2 = 1 B O 2Ot "

To illustrate the variance reduction achieved by the AVC estimator, we display the ratio of
Var(fia) / Var(p2) plotted against § = py /p; in Figure 2. We give results for exponential systems
with k = 2 and v = 2 as described above, and also include results for continuous uniform systems
from [9] to illustrate the weak dependence of the variance reduction on the distribution of the
Xj;. A ratio less than | indicates a variance reduction with AVC. The reduction in variance is on
the order of roughly 20% over a range of 6 between 1 and 4. This covers most of the practical
range of # included in standard tables for BEM and used by experimenters. Clearly, as 6 increases,
both estimators approach 1 and the associated variances approach 0. Asymptotic results in [9]
show that the variance reduction will be roughly (k — 1)/(2k — 1) x 100% when the number of
replications v is large, implying that as much as a 50% variance reduction can be achieved for the
cost of a different calculation of the point estimator.

The weak dependence of the variance reduction on the underlying distribution led us to consider
the asymptotic approximation for the variance of an AVC estimator that is presented below.

1 T T T T
09 | -
Ratio 0.8 F -
Uniform —
Exponential —
0.7 F -
0.6 1 1 1 1
1 3 5 7 9

Figure 2. Ratio of Var(p2)/Var(2) for exponential and uniform systems with k = 2, v = 2.
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5. LARGE-SAMPLE PROPERTIES OF AVC ESTIMATORS

The results presented so far (and others in [9]) for small k and v show that the variance of the
AVC estimator appears to be weakly distribution dependent; it is also tedious to compute. Here
we derive the asymptotic variance of the AVC point estimator, which is much easier to estimate.

Recall that p; = Pr{X,; > Xy, V€ # j}. Define

Y;(v) = number of wins for system j under MLE for fixed v,

Z;(v) = number of wins for system j under AVC for fixed v,

which gives us MLE and AVC point estimators p;(v) = Y;(v)/v and p;(v) = Z;(v)/v*. Notice
that these are the same estimators we defined in (1) and (4), respectively, except that we have
explicitly included the dependence on v. Our approach is based on the fact that standardized
versions of p and p are asymptotically normal.

5.1. Asymptotic Variance of MLE and AVC Estimators

Consider the asymptotic behavior of the MLEs. It is well known that as v — oo

Vo(d; — p;) & N(O,p;(1 - p;)). ®)

Thus, the asymptotic variance of p; is p; (1 — p;).

Similarly, consider the asymptotic behavior of our AVC estimator as v goes to infinity. Let
N = kv. We will use the following theorem due to Lehmann [8, p. 964], with some of the
notation simplified for our context.

THEOREM 1: Let p, = Ug(X11,...,X10;--; Xk1,. .-, Xko) be a k-sample U-statistic
based on symmetric kernal A(*) for the parameter p, of degree (1,1,...,1). Iflimy_, o0 (v/N) =
Ai,0 <A< Lfori=1,...,k and if E[{A(®)(X11,..., X1)}?] < oo, then v/ N (f, — pa) has
a limiting normal distribution as N — oo with mean 0 and variance

k
2 £0,...,0,1,0,...,0
oL =), TR ©)

i=1
(where we define £y, 0,1,0,...,0 below) provided that 02 > 0.

Proof: See Lehmann [8].

We now give an expression for &, .. 0,1,0,...,0. Following Randles and Wolfe [13, pp. 105—
106], let 7 be an integer such that 1 < ¢ < k and define Hi(la) = h(“)(Xlau, ooy Xkay, ) and
HS) = h®(Xyp,,,. .., Xpe,) Where oy = 1 if § = 4, and ojy # B1 if j # i. Then define
the covariance terms

(()(,1.’.(.1,)0,1,0,...,0 = COV[Hi(;I)>Hi(2a)]
= EHHS -2, (10)

where the only 1 in the subscript of 3‘)‘_*_?,’0,1’0,“_,0 is in the ith position and a € {1,2,...,k}.

In this notation a represents the system whose parameter we are estimating, and 7 represents the
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only system with a common observation in H, ff ) and H, f;’“ ), Using our kernel from (6), we have
fora =1

E[H((lcll) Hi‘;)] = Pr {Xaaa > I?:;({Xga“nge}} (11
and for a # 4
(a) (a)y _ Xa.oza > X’LamXa,aa > maxl;éa,i{XZag};
E[Hz‘l Hz‘z ] - PI‘{ Xaﬁ,, > Xiainaﬁa > maxf;ﬁa,i{XZﬁe} ) (12)

where ap # ;. This leaves us with just two covariance expressions for each system

L@ (1) = Cov[HY, B (13)
and
£9(2) = Cov[H, HY), a#i. (14)

Substituting (13) and (14) into (9), we obtain

sz =k Céj)(l) + Zﬁgﬂ')(g) , j=1,2,...,k (15)
i#]

Therefore, from Theorem 1 we have
Yoy D .
N(pj_pj):)?N(an-?)a .7:1)2:“~7k (16)

as N — oo, where N = kv and 0]2 is defined in (15).

In comparing 032 with the asymptotic MLE variance in (8), we notice that the MLE expression
is defined as v — oo while the AVC expression is defined as N = kv — cc. In order to compare
these asymptotic variances with the exact variance of Jy, for any k, we divide the asymptotic
variance in (8) by v and the asymptotic variance in (15) by N to give

o1
Vara(p;) = ~pi(1 = pj), (17)
1 . .
Vara(;) ~ - £ +3 P . (18)
i#5

Notice that the asymptotic MLE variance from (17) is equal to the true MLE variance. The
asymptotic AVC variance from (18), however, is an approximation.

Figure 3 plots v-Var 4(D2), v-Var 4 (P2 ), and v times the exact variance found in (7) against v
for k = 2 exponential systems with § = 1.2. This figure illustrates some important facts about
the relationship among the variances of our estimators. First, notice that the AVC variance is



Miller, Nelson, and Reilly: Probability a Simulated System Will Be Best 351
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v Vara(p1) —o—
v Var(py) —t—
v-Vary(py) ——
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0.15 1 ! 1 | 1 1 i 1 |

Figure 3. v-Var(p2), v-Var(p2) and v-Var 4(2) for k = 2 exponential systems with § = 1.2.

smaller than the MLE variance. Also notice how quickly the exact AVC variance approaches the
AVC asymptotic approximation. At v = 15, the difference is only about 3%. This indicates that
the asymptotic approximation for the AVC variance is quite good at relatively small values of v
(v > 15) for 6 = 1.2. Calculations for larger values of 0 at v = 15 show the difference between
the exact and approximate AVC variance still about 3% for § = 2.0 and increasing to a difference
of roughly 4% at & = 3.0. This shows that the Var4(ps2) provides a better approximation to
Var(p2) when the difference between systems is smaller.

In the following section we describe our methodology for extracting an estimate of (18) from
a simulation and using this estimate to calculate confidence intervals for the p;s.

6. VARIANCE ESTIMATORS AND CONFIDENCE INTERVALS

We seek a confidence interval based on the AVC point estimator that is analogous to the
asymptotically valid normal-theory confidence interval for the MLE given by

i £ Z1as2\/ Vara(py), (19)

where Var 4 (p;) = pj(1—pP;)/vand Z;_,/, denotes the 1 — /2 quantile of the standard normal
distribution. Thus, we propose an interval of the form

i £ Z1as2\/ Vara(p)), (20)

where Var A(P;) is an estimator of (18). This variance estimator is formed by directly estimating
each of the covariance terms (13) and (14). We estimate these covariance terms by first counting
the pairs of vectors that meet the conditions from either (11) or (12), and then dividing by the
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total number of vector pairs with a common element from one system. The final step involves
subtracting the square of the estimate for p, as shown in (10).

Specifically, we estimate E[ HJ({ ) Hj%)] by

[H(’ H]('%)} v——l TE(r _ 1VE—1 ZI{ Je >maX{Xw“Xwe}}

where 7 is the indicgtor function, and the sum is over all indices such that oy # (. Similarly, we
estimate B[HY) HY] fori # j by

- i i Kiys Xja,; > maxes; i{Xsa, };
E H(J) H(J) JC¢3 > Aiays jog L#£3,% g )
s 2= (v— 1 vk (v — 1)k-1 Z X > Xiais Xjg; > maxez;i{Xeg, }

And finally, we estimate p; by 5;. Estimating all the ;s and their associated variances using the
efficient algorithm in the Appendix is an O(kv In kv) calculation. Notice, however, that Var A(B5)
could be used to provide a conservative confidence interval for the AVC estimators if avoiding
this variance calculation is desirable.

The proof that the AVC confidence intervals are asymptotically valid as v goes to infinity
requires proving that the variance estimator Var 4(P;) is consistent using a standard, but very
tedious, argument presented in [9]. In the next section we provide empirical results to evaluate
the variance estimator and associated confidence interval at realistic sample sizes.

7. EMPIRICAL STUDY

For our empirical study we focus on the variance reduction achieved by AVC, and the per-
formance of the approximate AVC variance estimator and confidence interval, all relative to the
performance of the MLE. All results are computed for py, = py) (the largest p;) using exponential
system distributions as described in Section 4.2. This is a small portion of an extensive empirical
study that is presented in [9].

We performed M = 10,000 macrorephcatlons of kv observations each, for £ = 2,3 and
v = 20, 50, 100 and 200. Let p;¢, Dje, Var 4 (Pj)e.and Var (D5 )¢ represent the point and variance
estimates from the £th macroreplication.

Since the sample variance is an unbiased estimator of the true variance, we estimate the true
variance of the AVC estimator by the sample variance across the macroreplications, specifically

T M = _ = M
Vars(p;) = 57— doee1(B; — Dje)?, where p; = & S"eZy Dje- We also calculate averages
of the variance estimates across macroreplications as Var4(f;) = “1\12 Zej\il Var 4(p;)e and

Vara(p;) = 7 Zé\il Var 4 (P;)e. We then estimate the relative bias of our AVC variance esti-
mator by

Var 4 (p;) — \ars(ﬁj)
Vars (;)

RelativeBias (Vé;rA (7)) =

and the variance reduction by Vars(p)/Var 4 (pk ).

Table 1 presents the variance results for each method for & = 2,3 systems and a number of
different values of v. We find a significant negative bias in our AVC variance estimator at v = 20
for all k. Atv = 50 this bias drops to about 6% for k = 2 and less than 10% for k = 3. Moving up
to v = 100, the bias for both & = 2 and 3 drops below 7%. At v = 200 the bias effectively goes
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Table 1. AVC and MLE variance for py.

Relative Bias
k 6 v Vars(Px)  Vara(Pe) Var 4 (pr) (Vara(pr))  Vars(pe)/Var 4(pr)
2 12 20 .0086 0074 0118 —.1395 7288
1.2 50 .0034 .0032 .0049 —.0588 6939
12 100 0017 0016 0025 —.0588 .6800
12 200 .0008 .0008 0012 .0000 6667
220 20 0076 .0065 0105 —.1447 7238
2.0 50 .0030 0028 .0044 —.0667 6818
20 100 .0015 0014 0022 — 0667 6818
20 200 .0007 .0007 0011 .0000 6364
3012 20 0075 .0061 0111 —.1867 6757
1.2 50 .0030 0027 .0046 —.1000 6522
12 100 .0015 0014 .0023 —.0667 6522
1.2 200 0007 .0007 0012 .0000 .5833
320 20 .0085 .0069 0119 —.1882 7143
2.0 50 .0034 .0031 0049 —.0882 6939
20 100 0017 0016 .0025 —.0588 L6800
20 200 .0008 .0008 0012 .0000 6667

to zero for all k. These results indicate that we may underestimate Var(fy,) by using Var 4 (Pr)
for v < 50. The last column of Table 1 shows the ratio @S(ﬁk) /Var 4(py) to illustrate the
variance reduction with the AVC estimator. Focusing on the results for v = 200 at * = 1.2, we
see roughly a 33% reduction at k = 2 and roughly a 42% reduction at k = 3.

Table 2. AVC and MLE 95% confidence intervals for pg.

AVC MLE
k o* v Percentage coverage ~ Average width ~ Percentage coverage Average width
2 1.2 20 92 .34 92 42
12 50 .94 22 .93 27
1.2 100 94 .16 .94 .19
1.2 200 .95 d1 94 .14
2 20 20 91 31 92 40
2.0 50 .94 21 .95 26
2.0 100 .94 15 .96 18
20 200 95 .10 95 13
3 1.2 20 90 31 94 41
1.2 50 93 .20 94 27
1.2 100 94 .15 95 .19
1.2 200 .95 .10 94 13
3 2.0 20 91 32 96 43
2.0 50 93 22 93 27
2.0 100 94 .16 94 .20
2.0 200 .95 A1 95 .14
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Table 3. MLE and AVC individual 95% confidence intervals for airline reservation problem.

v MLE MLE width AVC AVC width  AVC reduction
p1 667  [0.35869, 0.43291] 0.07422 [0.36188, 0.42046] 0.05858 21%
P2 667  [0.29561, 0.36705] 0.07144 [0.30495, 0.36047] 0.05552 22%
3 667  [0.23906, 0.30667] 0.06761 [0.25080, 0.30145] 0.05065 25%
p1 1101 [0.35815, 0.41569] 0.05754 [0.35847, 0.40375] 0.04527 21%
p2 1101 [0.30371, 0.35932] 0.05561 [0.31321, 0.35649] 0.04328 22%
ps 1101 [0.25499, 0.30813] 0.05313 [0.26401, 0.30406] 0.04004 25%

To compare confidence intervals, we constructed 95% confidence intervals for py, from each
macroreplication using (19) and (20). We then counted how many of the M intervals formed with
each method captured p; and computed the average confidence interval width. Looking at the
95% confidence interval results in Table 2, we see undercoverage and relatively large intervals for
v < 50 for both MLE and AVC. This indicates that the normal approximation is not particularly
good for either method at small values of v. At v = 100 both MLE and AVC coverages jump up
to 94% or 95% in nearly all cases, with MLE coverage slightly better than the AVC coverage.
However, at v = 200 the AVC coverage slightly exceeds the MLE coverage, with both methods
achieving 95% coverage in almost all cases. In all cases the average AVC interval width shows a
20-25% reduction over the average MLE interval width.

8. A COMPUTER SYSTEM DESIGN PROBLEM

To illustrate the MSP approach to selecting the best system, and the AVC estimators of the
probability that each system will be the best, we use a modification of the airline-reservation
system example used by Goldsman, Nelson, and Schmeiser [6] to illustrate finding the system
with the best mean performance.? The example consists of k = 3 different airline-reservation
systems where the single measure of performance is the time to failure, TTF, so that larger is
better. Each system works if either of two computers work. Rare computer failures and short
repair times typically result in a large TTF for each system. The differences in the three systems
result from varying parameters affecting the time-to-failure and time-to-repair distributions. From
experience we know that the average TTFs are roughly 100,000 minutes (about 70 days) for all
three systems. We are interested in which airline reservation system is most likely to have the
longest TTF; in other words, which system is most likely to go the longest without a failure. Thus,
p; is the probability that system j has the longest TTF, for j = 1,2, 3.

Suppose that we want to design our experiment so that we are 95% certain of finding the system
with the largest p; when 8 = pj3/pfg) > 1.15; that is, we want to find the system with the largest
probability of having the longest TTF when that probability is at least 15% larger than the second
largest probability. Using FORTRAN code provided by Goldsman [7], we find that v = 1101
vector observations are required to guarantee a PCS of 95% (P* = 0.95) using procedure BEM.
Based on the large-sample approximation in [11], only v = 667 vector observations are required
by AVC to provide the same PCS. Of course, in a real application we would only take 667 vector

20ur modification consists of dropping system 2 from the original example, a system which was shown to
be clearly inferior.
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Table 4. MLE and AVC simultaneous 95% confidence intervals for airline reservation problem.

v MLE MLE width AVC AVC width  AVC reduction
p1 667 [0.35017, 0.44143] 0.09127 [0.35515, 0.42718] 0.07203 21%
P2 667  [0.28741, 0.37526] 0.08785 [0.29857, 0.36685] 0.06828 22%
p3 667  [0.23130, 0.31443] 0.08313 [0.24498, 0.30726] 0.06228 25%
p1 1101 [0.35155, 0.42230] 0.07075 [0.35328, 0.40895] 0.05567 21%
pa 1101 [0.29732,0.36571] 0.06839 [0.30824, 0.36146] 0.05322 22%
ps 1101  [0.24890, 0.31423] 0.06533 [0.25942, 0.30865] 0.04923 25%

observations and use AVC, but to illustrate the benefits of AVC we also perform the larger number
of replications here.?

For either sample size, and using either estimator p; or p;, system 1 has the largest sample
probability of being the best, and would therefore be selected. Using the results in this paper, we
can also provide confidence intervals for the p;s. Confidence intervals for each p; give the decision
maker a clear quantitative measure of uncertainty in these estimates and present this information
in a manner to identify the statistical and/or practical difference in the probabilities of competing
systems to provide the best performance. Tables 3 and 4 give individual and simultaneous 95%
confidence intervals, respectively, for both sample sizes, where the simultaneous intervals were
constructed by applying Bonferroni’s inequality with an equal coverage probability 1 — /3 =
1—0.05/3 ~ 0.98 for each individual interval (implying an overall coverage probability greater
than or equal to 0.95). At over 600 vector observations the normal approximation should be
adequate for both types of intervals.

The widths of the AVC intervals are shorter than the MLE intervals, from 21-25% shorter
when the two estimators are based on the same sample size. Notice that the individual confidence
intervals (Table 3) based on the MLEs have overlapping endpoints at both sample sizes, while
the individual intervals based on AVC do not overlap. For the Bonferroni simultaneous intervals
(Table 4) both the MLE and AVC intervals have overlapping endpoints, but the AVC intervals
are more nearly disjoint and would clearly become disjoint at a much smaller sample size than
required for the MLE intervals. Thus, AVC can provide conclusive ranking of the systems with
less data than MLE.

9. CONCLUSIONS

We have presented an efficient method for comparing performance among competing simulated
systems when the probability of being the best is a more appropriate measure than long-run average
performance. Our results prove the variance of the AVC estimator is no larger than the variance of
the MLE and we demonstrate the magnitude of the reduction in variance for a specific example.
We expand results presented in [11] to derive the asymptotic variance of the AVC estimator.
This AVC asymptotic variance is shown to be significantly smaller than the equivalent MLE
asymptotic variance directly, and through the construction of confidence intervals for a realistic
example. These results illustrate how AVC makes more efficient use of the data already available
to provide a more precise set of estimators for the multinomial success probabilities.

3For the smaller sample size we simply used the first 667 vectors from the larger sample.
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APPENDIX

In this appendix we present formulas for the AVC point and variance estimators that are suitable for implementation
in computer algorithms. The formulas, which are appropriate when the output of interest is such that ties are not possible,
are presented without proof; the proofs are tedious and available from the authors on request.

Let X;; be the ith observation from system j, fori = 1,2,...,vand j = 1,2,..., k. As above, we assume that
bigger is better. Define

Ngi(3) =#{a:1 < a<vand Xy < Xj5}
fori=1,2,...,v,5,£=1,2,...,k but £ # j. In other words, Ng;(4) is the number of observations from system ¢
that are beaten by X j;.

Our AVC point and variance estimators can be written as

v

h=1 £#j
and
Var 4 (pn)
1 v
T oL (y — 1)R—1 Z H Nij(R)(Nej(h) — 1)
h=1 t#j
v—1 v

k_

Y IS5 s TT Mstmovgn -] § -5
i#j Lh=1 m=h+1 £5£4,5

1 k
= G e B0 o
These estimators can be computed in O(kvIn kv) time using the algorithm presented below. The algorithm is based
on sorting all kv observations X ;; fogether, but maintaining an indicator for which system generated each observation.
Appropriate sorting algorithms include Heapsort or Quicksort [12]. After sorting the data, only one pass through it is
required to compute all k point and variance estimates.
Key to developing this efficient algorithm is the fact that B; and C; can be written as

v

By =Y S ] Mesthy p S T sy = 1)

h=1 |t t#j
and .
Gi=y >[I Wesmy =+ 54 > T Westm)
h=1 \ i#j £s#i,j m=h+1 ]

where yT = max{0, y}. The proof involves nothing more than tedious algebra.

Let X be a kv x 1 vector of all the data, sorted from largest to smallest, and let I be a kv x 1 vector such that I(£) = j
if X(£) is an observation from system j. As the main loop of the algorithm progress from smallest to largest observation
in X, the variable e; counts the number of observations from system j that have been encountered thus far; therefore, at
any index 7 in the main loop, e; gives the number of observations from system j that are beaten by (smaller than) X(r),
which is an observation from system I(r). Also, at every index 7 we update the product

AZHeg

=1

A
= H eg = H Nex(ry(v — exgry +1).
) eA£I(r)

The quantity A~ maintains a similar product of Ny () (v ~ ey + 1) — 1 terms. These products are essentially all
that we require to compute A;, B; and Cj.

so that




Miller, Nelson, and Reilly: Probability a Simulated System Will Be Best 357

Algorithm AVC Calc

1. sort the kv x 2 array W = [X, I] from largest to smallest by X
2.setej =A; =B;=C;=D; =0forj=1,2,...,k
setS=0andA=A" =1
3. forr = kvtolby —1do
M exqry = exr) +1
i) if e1(r) > 1 then

A=AXx E—e—l(—ﬂ—i

] 1(r)

ifegpy =2then § =S +1
endif

(iii) if eg(y > 2 then
A= L L
A=A Xlel(r)_2 1
§=5-aum TanT
endif
(iv) if e; > O for all j then
Dy(ry = Ax(ry
Ay = A1ty + 5
endif
(v) ifej > 1forall 7 # I(r) then
By = Byry +
endif
(vi) ife; > 1forall jyeyr) > Land #{£: £ # I(r),ep = 1} < 1then

Cr(r) = Crry + o=t X (8 = 52=1) X Daeoy
elseif e; > 1 forall j,eg,y = Land #{€: £ # I(r),e; = 1} < 1then
CI(") = CI(T‘) + A7 xS x DI("‘)
endif
loop
4. forj = 1tokdo

N S
€1(r) max{l,er(;y—1}

by = ok
Var4(p;) = serropye=t {B) + 2G5} - 573
loop

REMARK: Algorithm AVC Calc is written for ease of exposition rather than for direct implementation. In partic-
ular, the tests in steps 3(iv), 3(v), and 3(vi) can be implemented in such a way that only one comparison, rather than k
comparisons, are required to determine if the condition is satisfied.
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