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Abstract: Consider a simulation experiment consisting of v independent vector replications
across k systems, where in any given replication one system is selected as the best performer
(i.e., it wins). Each system has an unknown constant probability of winning in any replica-
tion and the numbers of wins for the individual systems follow a multinomial distribution.
The classical multinomial selection procedure of Bechhofer, Elmaghraby, and Morse (Proce-
dure BEM) prescribes a minimum number of replications, denoted as v*, so that the probabil-
ity of correctly selecting the true best system (PCS) meets or exceeds a prespecified probabil-
ity. Assuming that larger is better, Procedure BEM selects as best the system having the
largest value of the performance measure in more replications than any other system. We
use these same v * replications across k systems to form (v* )* pseudoreplications that contain
one observation from each system, and develop Procedure AVC (All Vector Comparisons)
to achieve a higher PCS than with Procedure BEM. For specific small-sample cases and
via a large-sample approximation we show that the PCS with Procedure AVC exceeds the
PCS with Procedure BEM. We also show that with Procedure AVC we achieve a given
PCS with a smaller v than the v* required with Procedure BEM. © 1998 John Wiley &
Sons, Inc. Naval Research Logistics 45: 459-482, 1998
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1. INTRODUCTION

Suppose we have k = 2 independent populations, denoted 7y, 7,, . . ., 7. In a simulation
context each population is a simulated system. We consider the problem of selecting the
best of the k systems based on simulated results for all of the systems.

Let X;; represent the ith replication from system j of some performance measure. Each
system (7;, j = 1, 2, ..., k) has an unknown constant probability (p;,j = 1,2, ..., k) of
having the largest value of the performance measure. We define the best system as the
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system most likely to have the largest performance measure in any comparison across all
systems. Such a comparison corresponds to a multinomial trial, where one and only one
system can win in any given trial. Our objective is to find the system that is most likely to
be the best performer in a single trial among the systems, as opposed to identifying the
best average performer over the long run, with a minimum amount of data. This is known
as the multinomial selection problem (MSP).

Bechhofer and Sobel [3] introduced the use of multinomial selection procedures to find
the system most likely to produce the largest observation on a given vector-trial. Goldsman
[5] first suggested the more general use of this type of procedure to find the system most
likely to produce the ‘‘most desirable’” observation on a given vector-trial, where ‘‘most
desirable’’ can be almost any criterion of goodness. A classical solution procedure for the
MSP, Procedure BEM (Bechhofer, Elmaghraby, and Morse [1]), prescribes a minimum
number v* of independent vector replications across all systems so that the probability of
correctly selecting the true best system (PCS) meets or exceeds a prespecified probability.
Assuming that larger is better, BEM selects as best the system having the largest value of
the performance measure in more replications than any other.

MSP applications include selecting the best of a set of tactical or strategic military actions;
finding the design that performs best in a one-time catastrophic event, such as an earthquake;
selecting the production schedule most likely to result in completing all jobs on time;
selecting the investment portfolio most likely to provide the largest return; or selecting the
computer system with the highest probability of completing a series of tasks without failure.
Each of these applications involves the comparison of quantitative measures of performance
among competing systems as opposed to comparing qualitative measures. For the type of
MSP considered in this study, we require a quantitative measure of system performance
such that each system in each trial can be compared with the performance of other systems
across any or all of the remaining trials.

Let X; = (X,;, X5, ..., Xy) represent the ith replication across all & systems. Let ¥;; =
1if X;; > X, for € = 1,2, ..., k, but £ # j; and let ¥;; = O otherwise. In other words,
Y, = 1if Xj; is the largest observation in X;. In case of a tie for the largest value, we

randomly select one of the tied populations as the best.

Suppose that there are v independent replications across all systems, and let ¥; = 2}_,
Y;; represent the number of times system j wins out of these v replications. Let p; = Pr{X;,
> Xy, V€ # j} where 0 < p; < 1 and 2}_, p; = 1. Then /., ¥; = v and the k-variate
discrete random variable Y = (Y, Y,, ..., Y,) follows a multinomial distribution with
success probabilities p = (py, pa, ..., p). Therefore, the probability mass function for Y
with parameters v and p is

v!

k
PriY, =y, Y=y, ... Y=y =[] p}
j=1 Vit ;o

Due to convention and convenience when comparing simulated system responses, the
responses are typically grouped by replication, corresponding to a trial in a physical experi-
ment. Grouping independent system responses in this fashion is arbitrary, and, since our
simulated responses are quantitative, we can compare any observation from one system
with any observation from each of the remaining systems. This means that a single observa-
tion from system 1 can be grouped in a vector comparison with any one of the v observations
from system 2, and with any one of the v observations from system 3, and so on, up to and
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including any one of the v observations from system k. A total of v* vector comparisons
(trials) can be formed with v independent observations from the k systems. We incorporate
this setup in a new MSP procedure, which we call AVC, for All Vector Comparisons. By
performing only the v vector comparisons where the observations for each system are
grouped by replication, as is done with BEM, we disregard the information available from
the remaining v* — v comparisons.

Our results suggest a number of advantages of AVC over BEM. For specific small-
sample cases, we show that AVC has a larger PCS than BEM for a fixed v. We show this
analytically for small values of v and k, and also present simulation results for up to k =
10 systems and v = 50 vector replications. Looking at these results from a slightly different
perspective, we also demonstrate achievement of a desired PCS with a smaller value of v
when using AVC as compared to BEM. The first perspective emphasizes a more efficient
use of the available data to increase PCS. The second view points towards a more efficient
way to design a simulation experiment using the smallest value of v required to achieve a
desired PCS.

Unlike BEM, the PCS for AVC depends on the distributions of the simulation outputs,
not just on py, ps, ..., pr. However, we also show that the dependence is weak. This fact,
along with the difficulty of analytically evaluating the PCS of AVC for even small k and
v, leads us to a large-sample approximation (LSA) for the PCS using AVC. As v = o, any
distributional differences in PCS with AVC disappear. Therefore, our LSA is distribution-
independent, and we use this fact to estimate the PCS with AVC. Our LSA demonstrates
that asymptotically the PCS with AVC is larger than the PCS with BEM. Additionally, this
LSA shows that AVC can provide better discrimination between the systems at the same
level of confidence and with the same data.

The paper is organized as follows: We first provide a brief review of the MSP and the
classical approach to solving it. Then we describe our new procedure, AVC, and present
analytical results covering a variety of specific population distributions for the performance
measures. Our LSA is then presented by recasting PCS in terms of a point estimation
problem for the multinomial success probabilities, p;, j = 1, 2, ..., k. Empirical results
follow for specific distributions and include simulations designed to test the robustness of
our LSA.

2. BACKGROUND

Bechhofer, Elmaghraby, and Morse [1] describe a single-stage procedure for selecting
the multinomial event (population or system) which has the largest success probability.
BEM requires the specification of P* (where 1/k < P* < 1), a minimum probability
of correctly identifying the population with the largest success probability (i.e., the best
population), and 6* (where 1 < §* < o), the minimum ratio of the largest success
probability to the second largest success probability that we want to be able to detect. The
procedure, as adapted to simulation, consists of the following steps:

PROCEDURE 1 BEM:

1. For given k and 6%, find the minimum value of v, denoted v*, that guarantees
that the PCS is at least P*,
2. Generate v* independent replications for each population.
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3. Compute ¥; = 22’; iia forJ =12,...,k.

4. LetY =Y, = - =Yy bethe ranked sample counts from step 3. Select
the population associated with the largest count, Y, as the best population.
In case of a tie for the largest count, randomly select one of the tied populations
as the best.

To determine the appropriate v* in step 1, let pyjy =< pray =< * * + = py denote the ranked
success probabilities for the & populations. Since only values of the ratio 8 = py,/pu-n
greater than or equal to #* are of interest, we are indifferent between the best and the next-
best population for values of § < 8%*. A procedure of this type is referred to as an indifference-
zone procedure. Select v* as the minimum number of independent vector observations
required to achieve a PCS greater than or equal to P* whenever § = 6*.

We define the least favorable configuration (LFC) of [p] = (py), Prays - - - » Prey) as the
configuration where PCS is a minimum over all configurations with 6 = 6* [4]. If we
obtain a PCS = P* with our selected v* under the LFC, then a PCS of at least P* can be
guaranteed for any configuration of [p] with 8 = 6*. Keston and Morse [7] prove that the
LFC for BEM is given by

P = Py = 10 T Pien T T

g*

" 1
P = g = D

Although we only need to consider the LFC for designing sampling plans, the PCS can be
calculated for any [p] with py; > pu—i; as follows.

Let 7;; be the population associated with py;; and let y; represent the number of wins
for m;;. Thus, the subscripts for the populations and the associated numbers of wins are
based on the ranking of the p;s. We refer to the PCS using BEM for a fixed k and v as
PCS™™. For any fixed k and v, PCS™™ can be expressed as

k

!
PCS™™([p]) = : Hp ul,
t( ) H =1 y[/ j=1 [/]
where the summation is over all vectors 'y = (¥}, Yi21» - - - » Yix)) Such that 25, y;, = v, yy,
=y (=12, ..., k—=1),and r(y)is a function of Yul» Yi21s - - - » Yk Tepresenting the

number of populations tied for the most wins [1].

3. ALL VECTOR COMPARISONS (AVC)

We propose a method to provide a PCS greater than or equal to PCS™™ (in at least some
cases) using the same replications X;, i = 1, 2, ..., v*. We use the BEM parameters k,
P*, and 6*, and we execute the first step of BEM to find a value of v*. However, rather
than comparing the ith replication for each system with the ith replications of the other
systems, consider instead a total of (v*)* pseudoreplications formed by associating each
X (j=1,2,...,k;i=1,2,...,v*), with all possible combinations of the remaining
X (€ =12,...,k;€+j,h=1,2,...,v*). Each such pseudoreplication contains one
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observation from each population. Note that the (v*)* pseudoreplications include the v*
independent replications from which the pseudoreplications are formed.
Define

v v v k
Zi=2 2 0 X I1 D(Xju, — Xea) (2)
a;=1 ar=1 ap=1 €#1;0%j
forj=1,2,..., kwith
1, c >0,
d)(c) = 09 c < O,
randomly assign 0 or 1, c = 0.

Thus, Z; represents the number of times out of (v*)* pseudoreplications that population 7;
wins (ties broken randomly) and 3., Z;, = (v*)*.
Our new procedure consists of the following steps:

PROCEDURE 2 AVC:

1. Given values for k, P*, and 6%, use step 1 of Procedure BEM to determine a
value for v*.

2. Generate v* independent replications for each population and construct the
additional (v*)* — v* pseudoreplications possible with one value from each
of the populations.

3. Compute Z; using Eq. (2).

4. LetZ,, = Zy = +++ = Zy, be the ranked sample counts from step 3. Select
the population associated with the largest count, Z,, as the best population.
In case of a tie for the largest count, randomly select one of the tied populations
as the best.

Suppose we modify step 1 of Procedure AVC to use the minimum v where PCS™ =
P* We demonstrate later that a smaller number of replications are required with AVC
relative to BEM to achieve P*. We provide such values of v in this paper.

PCS™° can be expressed as

ave 1
PCS™([p]) = 2. — Pr{Zy = zups s Zyy = 7}
. 1(2)
where the summation is over all vectors z = (2, Zj2}» - - - » Z)) Such that Tf_, z; = v¥,
g = zy,J = 1,2, ..., k— 1, and #(z) is a function of zy, 22y, . . ., Z representing

the number of populations tied for the most wins. Each z;;; represents the number of times
that 7;; wins out of the v* pseudoreplications. Unfortunately, Z does not follow a multinomial
distribution, so that we must refer to the distributions of the original observations, X;;, to
calculate PCS™*. Analytical and simulation results using a number of different population
distributions show that PCS™* depends weakly on the underlying distributions of the X;;.
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4. ANALYTICAL RESULTS

The following discussion illustrates a number of important properties of the AVC method.
First, we demonstrate the improvement possible with AVC for specific cases. We also show
a weak dependence in the AVC results on the underlying population distributions for the
X;;. Lastly, we demonstrate the difficulty in obtaining analytical results for even a small
number of populations and observations, and thus provide motivation for our large sample
approximation of PCS®* which is distribution independent.

Initially, we restrict our attention to continuous distributions for the X;,, which eliminates
the possibility of ties among the observations. We let 7, be the best population and assume
all the remaining populations, 7y, 72y, - . ., Tp-1), are identically distributed. This setup
gives us the LFC for BEM when py,/py-1; = 6% We also assume that all population
distributions belong to the same parametric family. We calculate PCS*° by conditioning
on the joint density of all the order statistics for the v independent replications from 7.

Consider a set of v vector replications across all populations. Combine all the observations
from all populations and rank them from smallest to largest. Refer to each observation by
its rank and consider permutations of these ranks. For any such permutation we can deter-
mine the value of Z;;; and calculate the probability of obtaining that arrangement of ranks.
We refer to such an arrangement as a rank order. Recall that Zy, represents the number
of times the best population, 7y, wins out of the v* pseudoreplications. For illustrative
purposes, let X represent an observation from 7, and let O represent an observation from
any of the remaining inferior populations.

As an example, suppose k = 3, v = 2. Then

Pr{Z@J - 8} = Pr{O(]) < 0(2) < 0(3) < 0(4) < X(]) < X(z)}, (3)
Pr{Z[3] = 6} = 4 Pr{O(l) < 0(2) < 0(3) < X(]) < 0(4) < X(z)}. (4)

These probability expressions, (3) and (4), do not identify which observation from which
inferior population each O represents. However, in evaluating these expressions we must
consider all permutations of the Os with respect to observation number and population, and
account for each unique combination of adjacent O’s. For probability statement (3), there
is only one combination of adjacent O’s from the 4! permutations of the O’s that is less
than both X s. In the rank order for probability statement (4 ), since any one of the O’s can
be associated with O4,, we have four distinct combinations (in terms of which set of O’s
are adjacent) that result in this one rank order. This is why the coefficient ‘4’ appears on
the right-hand side of Eq. (4). In general this coefficient is (}), where n = v(k — 1) is the
total number of observations from the inferior populations and r is the largest number of
these observations that are adjacent. Similar arguments can be used to derive expressions
for possible values of Z, for integers k, v = 2. For this example, there is only a single
rank order that results in each value of Z;, . As k or v get even moderately large, there will
be many rank orders that result in the same value for Zy ;. In addition, the rank order of
all the data may not uniquely determine the value of Z,,. Therefore, the calculation of the
probability of each value of Zj;, becomes extremely tedious with increasing k or v.
Restricting our attention to k = 2 populations, it is interesting to note that the vector
comparisons with AVC are analogous to the comparisons that form the Wilcoxon rank-
sum statistic [11]. Let W equal the sum of the ranks of the observations from the best
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Table 1. Analytical expressions for improvement of AVC over BEM.

k v Distribution APCS = PCS*¢ — PCSP™
Ap(p — N)
. -
2 2 Exponential O 1 0 £ 200+ )
. AB - A)
2 2 Continuous uniform® B >0
2 2 Bernoulli® }1 1+ 2pp, — Pr — PP — Po) > 0

N22(16N + 37hu + 16p2(u — N)

OGN + 202N + 32N + WO + 200N + gy
3A%B — A)
20B*
INPANE + 41N + 8ANE + A1) (u — N)

N + 32N + WL + 4N + 3N + 2w\ + w)?
TAB - A)
15B*

X ~exp(\), O ~ exp(p) with 0 < \ < p.
®X ~ U0, B), O ~ U0, A) with 0 < A < B.
¢ X ~ Ber(p,), O ~ Ber(p,) with p, > p,.

2 3 Exponential

2 3 Continuous uniform >0

3 2 Exponential

3 2 Continuous uniform >0

population. Then W is the Wilcoxon rank-sum statistic, and our Z;,; is the Mann—~Whitney
U-statistic. Therefore, W can be expressed as a function of our Z,; as

W=Zm+§(v+l).

In terms of W, AVC always makes a correct selection for W > E[W] (incorrect selection
for W < E[W]), where E[W] is the expected value of W under the assumption that the
two populations are identical in distribution. For our discussion, E[W] = (v/2)(2v + 1),
and W > E[W] is equivalent to Z,, > v*/2 (i.e., the best population wins in more than
half of the pseudoreplications).

If we specify a particular distribution family for our populations, then we can derive
formulas to compare PCS®° with PCS™™ for very small k and v. Table 1 presents results
for exponential, continuous uniform, and Bernoulli distributions.

Each expression in the APCS column of Table 1 includes a positive term involving the
difference of the respective parameters: (& — ), (B — A), or (p, — p,). These terms all
illustrate an improvement in PCS with AVC when X is the best population. When substituting
values for the parameters of the distributions shown to achieve a common value of 6, we
notice a weak distributional dependence in the PCS®* values. The magnitudes of these
differences are examined in detail in [10] and are also discussed in Section 6. The weak
distributional dependence of PCS**, along with the difficulty of computing PCS*** for small
k and v, motivates the following large-sample approximation (LSA).

5. LARGE-SAMPLE APPROXIMATION

The results presented so far for small k£ and v show that PCS™° is weakly distribution
dependent. By redefining PCS™™ and PCS™° in terms of point estimators for each of the
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individual system success probabilities, we arrive at distribution-free results as the sample
size goes to infinity.

5.1. Preliminaries
Using our previous notation, we have
p/' - Pr{X” > Xgl‘, Vf :/:]}

Let the distribution of Xj; depend upon the sample size, X;; ~ F{’. We construct the F"
such that the F{” converge to a common distribution, F, for all j as v approaches infinity,
but for finite v

l+(k~1)5’ io,
k \/;
Pr{X; > X, V€ # j|sample size v} = p,(v) = (5)
1 6
- — =, = 1.
P /
We can choose 6 > 0 so that (p,(v), p,(v), ..., pr(v)) is a LFC for any ‘‘reasonable’’

finite value of v; the configuration (5) is, for all practical purposes, a completely
general LFC.
Under (5) Population 1 is the best. Define

Y;(v) = number of wins for system j under BEM with sample size v,
Z,(v) = number of wins for system j under AVC with sample size v,

which gives us point estimators

Y.
pi(v) = i(v) ,

v

Z.
pw) = 2

v

Thus, our BEM estimators are denoted by p; and our AVC estimators by p;. Notice that
(ignoring the asymptotically vanishing probability of a tie) PCS™™ = Pr{p, > p,, Vj #
1} and PCS™ = Pr{p, > p;, Vj # 1}. Our approach is based on the fact that standardized
versions of p and p are asymptotically multivariate normal (MVN). However, when the
distributions are fixed with respect to v, then as the sample size increases, both PCS bem and
PCS** approach 1, masking the differences between the two procedures. To eliminate this
effect and isolate the improvement with AVC, we simultaneously let the ratio, p,(v)/p;(v)
(j # 1), approach 1 at the canonical rate of 1/ \/5 , as shown in (5).
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5.2. BEM Estimators

Consider the asymptotic behavior of PCS™™ as the number of vectors, v, goes to infinity.
Our approach is structured around a result of Lehmann [9] which we state below as a
lemma.

LEMMA 1 (ASYMPTOTIC DISTRIBUTION OF STANDARDIZED BEM ESTIMA-
TORS): Let Y (v) = (Y;(v), Y>(v), ..., Y.(v)) be distributed as a multinomial random
variable with parameters v and p(v) = (p(v), p2(v), ..., pr(v)), with p;(v) defined as in
Eq. (5). Let

Ai(U)=Z’;(—11)—‘E_——1)—/—]f, —1,2,....k
Then as v — @
( ) 4 MyN ( ) ~) H=h e )
At - 21 S1 1 E 1
GO C N IO )

PROOF: See Lehmann [9].

Lemma 1 is critical to proving the following theorem which we later use to equate
asymptotic PCS™™ with asymptotic PCS™*,

THEOREM 1 (ASYMPTOTIC PCS™™): Let Y (v) = (Y,(v), Y>(v), ..., Y (v)) be
distributed as a multinomial random variable with parameters v and p(v) = (p, (v), p2(v),
., pe(v)), with p;(v) defined as in Eq. (5). Then

- ' kb
PCS™" = lim Pr{Y,(v) > Yj(v)} = Pr{ max Q< -=—1¢, (6)

e=2, ...k v2/1k

y—oe

where

1 1/2 - 12
Q> 0 2 1 - 172
i | ~MVN N IO . : . (7
Q 0 /2 172 - 1

PROOF: See the Appendix.
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5.3. AVC Estimators

Consider the asymptotic behavior of PCS™* as the number of vectors, v, goes to infinity.
Our approach is structured around a result of Lehmann [8] and Randles and Wolfe [11].
We state this result below as Lemma 2, where some of the notation has been simplified to
match the context of our problem.

We first show that our AVC estimator is a k-sample U-statistic for the parameter p =

(p1, P2, ..., Pi), the system success probabilities. From [11], we say p is estimable of
degree (1, 1, ..., 1) for distributions (F,, F,, ..., F}) of (Xy;, X5, ..., X;;) in some
family of distributions 7, if (X,;, X5, . . ., X);) is the smallest sample size (one observation

from each system) for which there exists an unbiased estimator of p for every (F,, F,, . . .,
F}) € # Formally stated

E(F;,H.,Fk)[h“)(Xlla LX) =p

forj=1,2,...,k, for a k-sample symmetric kernel 2”(+). In our case this kernel is
k
R = T ¢(Xi — Xu). (8)
€=1;¢=j

Thus, 7" = 1 if the observation from the jth system is the largest in any vector comparison
across all systems. A k-sample U-statistic is the average value of such a kernel over all
vectors of observations with one observation from each system, which is precisely (2)
divided by v*. Therefore, pi.j=12, , k, are each k-sample U-statistics.

LEMMA 2 (ASYMPTOTIC DISTRIBUTION OF AVC ESTIMATORS): Let py, pa,

. » Dr be k-sample U-statistics, with p; corresponding to a parameter p; of degree (1, 1,

, 1) and symmetric kernel h’(+), for j = 1, 2, ..., k. Let N = kv, where v is the
sample size from each of k populations. Then the joint limiting distribution of

‘/—1\—/(171 - p) " 0
: = MVN L ZE = o)
‘/N(ﬁk - D) 0
as v — oo, where
Lol
o @b = Z ;C J(“»”) (9)

j=1 N
for \; = limy-.. v/N = 1/k. The quantities £ are given by
j = Cov[H{", H3'] = E[H{"HY'] = pups,
where
HE = B(X102 Xonys -+ 2 Xy

b ;
H,('z) = hm(xlﬁ‘, Xz;az, ey Xkﬁk)7
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and the sets (ay, ap, ..., a;, ..., o) and (By, B2, ..., B;, ..., Bi) have only the jth
element in common, the elements in each set represent positive integers, and a, b €
{1, ..., k}. See the Appendix for more details on calculating the covariance terms.

PROOF: See Lehmann [8].

Proceeding in much the same manner as we did in moving from Lemma 1 to Theorem
I, we can define PCS™ as a probability statement involving a function of k and the
maximum of (k — 1) random variables created by subtracting one of the standardized p;s
from each of the remaining standardized p;s, i = j. These random variables are the Q,,
QOs, ..., O in the following theorem.

THEOREM 2 (ASYMPTOTIC PCS™°): Let p;, ps, ..., Pr be k-sample U-statistics,
with p; corresponding to a parameter p; of degree (1, 1, ..., 1) and symmetric kernel
RP(4), forj=1,2,...,k.Let N = kv and p(v) = (p,(v), p2(v), . . ., pe(v)), with p;(v)
defined as in Eq. (5). Then under our model with F{"’ = F as v — =

PE)S"WC = lim Pr{p,(v) > pi(v)} = Pr{ max @, < L} , (10)

€=2... .k V2/(2k — 1)

Yo

where (Q», ..., Q) has the same MVN distribution as that given by (7).

PROOF: See the Appendix.

5.4. Combining BEM and AVC Results

- —

Recall PCS** and PCS ™™ represent the asymptotic PCS for AVC and BEM, respectively,
under the setup described in Subsections 5.3 and 5.2. Combining the results from Egs. (6)
and (10), we have

- —¥
PCS ave = PCS bem
since

k6 ave k(s bem

k-1 V2

for k = 2 with 6™° = §™™. Thus we have equal asymptotic PCS, that is,

— -
PCS™ = pCSbem (11)
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if and only if

k6 ave k5 bem

BRIk —1) ik

Solving for 6™ we have

&M = 8" ™k/(2k — 1) . (12)

We use 6°™ and 6™™ (6™ and 6*°) to represent the difference py; — pp-1; or the ratio
P/ Pu—1y, respectively, associated with BEM (AVC) calculations. The relationship between
6™ and 6™ is used to define a relationship between 6 and ™" which also guarantees
(11). This allows us to use BEM calculations to approximate AVC results.

Consider the following illustration. We have a problem with a specified (6%, k, P*),
where we want to find the minimum sample size required with AVC. To approximate the
required sample size, v, for AVC we will set

vaVC(eavc — 9*’ k, P*) — Ubem(ebem, k, P*), (13)

where v and v™™ denote the v required for AVC or BEM, respectively, and ™™ is such
that (11) holds.
We can make this approximation since

Pcsbem(vbem(gbem, k, P*)) = P*,

and from (11) we have

— —
PCS‘AVC(H&VC, k) — Pcsbem(ebcm’ k),
which leads us to
PCSaVC(Ubem(Hbcm’ k, P%:)) ~ P*

Using Algorithm 2.1 of [10], our LSA for §*° defines the asymptotically equivalent §*"

to be
Lt (k= 1) ’9 -1 2k — 1
9 + k— 1 k

gbem — . . (14)
- 0% — 1 2k — 1
0™ + k-1 k

It will always be the case that §*™ > §*° when §*° = #*. Thus approximation (14) allows
use of standard BEM calculations or tables for estimating the number of vectors required
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Table 2. Asymptotically equivalent 6 values

using LSA.
6nvc ebem
k 9* (Obem — 9;{:) (9;\vc — 94«)
2 1.2 1.1604 1.2506
2.0 1.7479 2.3798
3 1.2 1.1526 1.2633
2.0 1.7205 2.4297
4 1.2 1.1494 1.2689
2.0 1.7124 2.4390
5 1.2 1.1476 1.2720
2.0 1.7092 2.4400
10 1.2 1.1443 1.2778
2.0 1.7061 2.4326

to achieve P* using AVC. We illustrate the use of this approximation in constructing
Table 9.

We can modify the approximation in (14) to estimate an equivalent #*° when 6" =
*. Tt will always be the case that §*° < 6™ when "™ = 0*. This form of the approximation
has little practical use. However, it does reflect another benefit of AVC in terms of a smaller
#, indicating the ability of AVC to discriminate smaller differences between the best and
the next best system with the same value of v as BEM for 6*. This advantage becomes
important in a case where we need to detect as small a difference as possible with a fixed
number of vector replications.

We provide conversions using both of these approximations for some common values
of 6* in Table 2 and present simulation results testing the robustness of the approximations
in Section 7.

6. EMPIRICAL RESULTS

In order to allow easy comparison with available BEM results, we select population
distributions for our simulations that allow us to control the value of *. These distributions
are the exponential, continuous uniform, and the Bernoulli presented in Section 4. In addi-
tion, to consider a less peaked continuous distribution without the restricted range of the
continuous uniform, we look at a set of gamma distributions with a shape parameter of 3.

As in our analytical results, we consider population distributions that belong to the same
parametric family. We arbitrarily designate 7, as the best population and the remaining
populations are identically distributed. Let X, represent a random observation from =;, j =
1,2, ..., k. We have

Pr{ Best Population Wins} = Pr{X; > max(X,, ..., Xu)}.
We then define

_ Pr{X, > max(X,, ..., Xp)}
(1 = Pr{X, > max(Xs, ..., Xo D/ (k= 1)~

By setting # = 6*, we can then fix one or more parameters for one of the distributions and
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Table 3. Computed parameter values for given distribution in LFC.

Continuous
k 0 Exponential® Gamma® uniform® Bernoulli?
2 1.2 1.2000 1.1021 1.1000 0.4091
2 2.0 2.0000 1.4442 1.5000 0.1667
3 1.2 1.1589 1.0855 1.0667 0.4208
3 2.0 1.7808 1.3751 1.3333 0.2192
4 1.2 1.1368 1.0760 1.0500 0.4250
4 2.0 1.6632 1.3340 1.2500 0.2426
5 1.2 1.1227 1.0698 1.0400 0.4264
5 2.0 1.5885 1.3061 1.2000 0.2545

* Values are for p with N = 1.

® Values are for ,’s scale parameter, with scale parameter of 1 for all remaining populations and
shape parameter of 3 for all populations.

¢ Values are for B with A = 1.

4 Values are for p, with p, = 0.5.

solve for the remaining parameter to carry out our simulations at a given #*. Table 3 lists
parameters for § = 1.2 and § = 2.0 with k = 2, 3, 4, 5 for each of our four distributions.
Our simulation consists of the following steps.

1. Model all systems using the same distribution family, with system 1 arbitrarily
the best, and all remaining systems identically distributed such that § = 6*,
Initialize SUM™™ and SUM®* to 0 and set v = 2.

2. Generate a set of v random vector replications, where each replication contains
one observation for each of the k systems.

3. For BEM, group the observations across systems by vector replication and
count up the number of wins for each system. These are our ¥}, j = 1,2, ..., k.

4. For AVC, form the v* pseudoreplications from the v vector replications and
count the number of wins for each system. These are our Z;, j = 1, 2, . . ., k.

5. If Y, (BEM count associated with the best system) is larger than ¥;, j = 2, 3,
..., k, increase SUM™™ by 1. If Y, ties for the largest count with ¢ other
systems, £ = 1,2, ..., k — 1, increase SUM"™ by 1/(¢+ + 1). If ¥, < Y, for
any j,j = 2,3,...,k, do not increase SUM "™,

6. If Z; (AVC count associated with the best system) is larger than Z;, j = 2, 3,

., k, increase SUM™* by 1. If Z, ties for the largest count with 7 other
systems, r = 1, 2, ..., k — 1, increase SUM™ by 1/(¢t + 1). If Z, < Z,, for
any j,j = 2,3, ..., k, do not increase SUM™°,

7. Repeat steps 2—6 for M macroreplications. Compute PCS™™ = SUM™™/M and
PCS™ = SUM™/M.

8. Increase v and repeat steps 2—7.

Taking parameter values from Table 3, we estimated PCS ™™ and PCS** using the simula-
tion described above for k = 2, 3, 4, 5 populations out to v = 50 vectors for each of the
three continuous distributions at # = 1.2 and 2.0. Due to limited computer time, Bernoulli
distributions were only simulated for £ = 2 and 3 populations at § = 1.2. All simulation
results are for M = 100,000 macroreplications using a separate random number stream for
each population, but common random numbers across distributions. Standard errors for the
PCS values are on the order of 0.0015. More complete results are available in [10].
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Table 4. PCS results for k£ = 2 populations with § = 1.2.

PCSaVC

v PCSPem Exponential Uniform Gamma Bernoulli

2 0.5430 0.5532 0.5579 0.5532 0.5565

6 0.5835 0.5950 0.5990 0.5940 0.6148
10 0.6099 0.6232 0.6261 0.6238 0.6513
14 0.6290 0.6463 0.6470 0.6460 0.6781
18 0.6462 0.6638 0.6653 0.6662 0.7034
22 0.6624 0.6812 0.6822 0.6813 0.7223
26 0.6757 0.6950 0.6976 0.6957 0.7407
30 0.6882 0.7078 0.7104 0.7088 0.7576
34 0.6987 0.7206 0.7228 0.7200 0.7716
38 0.7094 0.7324 0.7346 0.7314 0.7853
42 0.7198 0.7427 0.7460 0.7429 0.7955
46 0.7279 0.7528 0.7549 0.7529 0.8073
50 0.7362 0.7614 0.7638 0.7612 0.8179

Table 4 lists results for each of our distributions out to v = 50 vectors for k = 2 populations
at § = 1.2. The PCS™™ column is from simulations using exponential populations. The
difference in the PCS™* values among the continuous distributions is generally found in
the third decimal place. However, we see a more significant difference between the Bernoulli
PCS®* and any of the continuous PCS** values. Figure 1 demonstrates the distributional
dependence of PCS** for exponential and Bernoulli populations. We also notice significant
improvement in Table 4 with PCS™° over PCS™™ for all of the distributions. Figure 2
illustrates the improvement with PCS®* over PCS™™ for k = 2—5 exponential populations.
Looking closely at Figure 2, the spread between PCS** and PCS ™™ appears to be increasing
slightly as k increases. This is most readily apparent when comparing the & = 2 results to
the £ = 3 results. It is also apparent from both Figures 1 and 2 that the spread between the
PCS™* and PCS™™ values widens as v increases. However, we know that as v approaches
infinity both PCS™* and PCS™™ approach 1, so that this spread will eventually disappear.

These results clearly show an improvement in PCS with AVC for all values of k and v
considered, and also illustrate the weak dependence of PCS™* on the underlying population
distributions.

7. ROBUSTNESS OF LSA

To check the accuracy of our LSA, we performed a simulation study. The study covered
a set of values for P* (0.75, 0.90, and 0.95) and 6* (1.2 and 2.0) with exponential,
continuous uniform and gamma distributions for k = 2, 3, 4, 5 populations and Bernoulli
distributions for k = 2, 3. For the exponential and continuous uniform distributions, results
are also presented for k = 10 at §* = 2.0. Results are not available for all distributions at
6* = 1.2 for k > 2. This is due to the significant amount of computing time required to
obtain these results because of the much larger number of vector replications required than
for 8* = 2.0. We have included all results available for #* = 1.2 in Tables 5 and 7. Results
for * = 2.0 are shown in Tables 6 and 8.

We first consider the approximation in (13) and perform the following steps.

1. Select a k and 6* and set *'° = @*. This indicates that we are interested in
calculating AVC results at 6%,
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Figure 1. PCS™ for exponential and Bernoulli populations: k = 2, § = 1.2.

2. Solve for ™™ using (14).

3. The calculated value of 8™ will not be in a standard BEM table. Use FORTRAN
code developed by Goldsman [6] to find v™™ (6™, k, P*) for P* = 0.75, 0.90,
0.95. Denote these values as v™™(.75), v**™(.90), and v™™(.95), respectively.

PCS

Figure 2. PCS for exponential populations, 8 = 1.2.




Table 5. PCS achieved for 6°° = 6* = 1.2 using LSA.
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k gber Distribution P* =0.75 P* =090 P* =095

2 1.2506 Exponential 0.7502 (0.0014) 0.9012 (0.0009) 0.9510 (0.0007)
Gamma 0.7481 (0.0014) 0.8994 (0.0010) 0.9493 (0.0007)
Uniform 0.7499 (0.0014) 0.9010 (0.0009) 0.9506 (0.0007)
Bernoulli 0.7856 (0.0013) 0.9318 (0.0008) 0.9723 (0.0005)

3 1.2633 Exponential 0.7470 (0.0014) 0.8997 (0.0009) 0.9490 (0.0007)
Gamma 0.7446 (0.0014) 0.8994 (0.0010) 0.9482 (0.0007)
Uniform 0.7474 (0.0014) 0.8989 (0.0010) 0.9481 (0.0007)

4 1.2689 Exponential 0.7469 (0.0014) 0.8964 (0.0010) 0.9485 (0.0007)
Gamma 0.7462 (0.0014) 0.8984 (0.0010) 0.9489 (0.0007)
Uniform 0.7469 (0.0014) 0.8948 (0.0010) 0.9467 (0.0007)

using the v

bem

PCS™<(v*™(.75); (6™, k)) ~ 0.75,

PCS™(v™™(.90); (8™, k)) ~ 0.90,

PCS™(v™™(.95); (8™, k)) ~ 0.95.

4. Perform simulation runs to estimate PCS™* values at k and 8™ = #* when
values from step 3. We are looking for the following:

Values estimated in step 4 above are reported in Tables 5 and 6. If our LSA is good, all
PCS™ values in Tables 5 and 6 should be close to the P* listed at the top of the column
in which they appear. The table values include the estimated PCS™* value and the associated
standard error in parentheses. All simulation runs use the models described in Section 6
and are based on M = 100,000 macroreplications for the three values of v found in step 3
above.

To illustrate how this approximation works for a numerical example, say we want to find

Table 6. PCS achieved for ¢ = 6* = 2.0 using LSA.

k ghem Distribution P* =075 P* =090 P* =095

2 2.3798 Exponential 0.7614 (0.0013) 0.8914 (0.0010) 0.9450 (0.0007)
Gamma 0.7608 (0.0013) 0.8924 (0.0010) 0.9456 (0.0007)
Uniform 0.7625 (0.0013) 0.8889 (0.0010) 0.9426 (0.0007)
Bernoulli 0.7673 (0.0013) 0.9380 (0.0008) 0.9773 (0.0005)

3 2.4297 Exponential 0.7390 (0.0014) 0.8909 (0.0010) 0.9426 (0.0007)
Gamma 0.7380 (0.0014) 0.8910 (0.0010) 0.9440 (0.0007)
Uniform 0.7391 (0.0014) 0.8873 (0.0010) 0.9391 (0.0007)
Bernoulli 0.7833 (0.0013) 0.9279 (0.0008) 0.9687 (0.0007)

4 2.4390 Exponential 0.7461 (0.0014) 0.8911 (0.0010) 0.9464 (0.0007)
Gamma 0.7457 (0.0014) 0.8929 (0.0010) 0.9391 (0.0008)
Uniform 0.7446 (0.0014) 0.8858 (0.0010) 0.9409 (0.0007)

5 2.4400 Exponential 0.7485 (0.0014) 0.8910 (0.0010) 0.9443 (0.0007)
Gamma 0.7473 (0.0014) 0.8940 (0.0010) 0.9454 (0.0007)
Uniform 0.7454 (0.0014) 0.8824 (0.0010) 0.9372 (0.0007)
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Table 7. PCS achieved for 6™ = 6* = 1.2 using LSA.
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k o™ Distribution P* =0.75 P* =0.90 P* =095

2 1.1604 Exponential 0.7486 (0.0014) 0.8998 (0.0009) 0.9500 (0.0007)
Gamma 0.7493 (0.0014) 0.9008 (0.0009) 0.9495 (0.0007)
Uniform 0.7505 (0.0013) 0.9011 (0.0009) 0.9500 (0.0007)

3 1.1526 Exponential 0.7514 (0.0014) 0.8991 (0.0010) 0.9500 (0.0007)
Gamma 0.7502 (0.0014) 0.8997 (0.0010) 0.9500 (0.0007)
Uniform 0.7510 (0.0013) 0.8983 (0.0009) 0.9493 (0.0007)

4 1.1494 Exponential 0.7504 (0.0014) 0.8998 (0.0010) 0.9501 (0.0007)
Gamma 0.7520 (0.0014) 0.9002 (6.0009) 0.9509 (0.0007)
Uniform 0.7499 (0.0014) 0.8975 (0.0010) 0.9489 (0.0007)

v (0™ = 1.2, k = 3, P* = 0.90). Using (14), we obtain §*™ = 1.2633, and using
FORTRAN code developed by Goldsman [6], we find v*™ (8™ = 1.2633, k = 3, P* =
0.90) = 264. To show how good an approximation this provides for our specified v**°, we
simulate M = 100,000 macroreplications each containing 264 vector replications using #**

= 1.2 with exponential populations, and obtain PCS™ = 0.8997 with a standard error of
0.0009. So here our LSA is very good. These results are included in Table 5, where we
see that the results for all the distributions achieve the desired P* to the second decimal
place in almost all cases. In fact, we note that the Bernoulli results are significantly larger
than P* in many cases. The cases where we see more of a departure from P* are for
smaller values of P* where v is typically less than 30. For a few cases, the estimated PCS
values fall more than two standard errors below P*, but these differences are practically

insignificant.

We also notice that v™™ (#*™ = 1.2, k = 3, P* = 0.90) = 437 [2]. Comparing this
with our approximate v*** (§*° = 1.2, k = 3, P* = 0.90) = 264, we see a nearly 40%
reduction in the number of replications required with AVC.

Table 8. PCS achieved for 6™ = §* = 2.0 using LSA.

k g Distribution P* =0.75 P* =0.90 P* =0.95
2 1.7479 Exponential 0.7692 (0.0013) 0.9021 (0.0009) 0.9471 (0.0007)
Gamma 0.7702 (0.0013) 0.9037 (0.0009) 0.9477 (0.0007)
Uniform 0.7703 (0.0013) 0.9013 (0.0009) 0.9453 (0.0007)
Bernoulli 0.7950 (0.0013) 0.9373 (0.0008) 0.9726 (0.0005)
3 1.7205 Exponential 0.7471 (0.0014) 0.8971 (0.0010) 0.9460 (0.0007)
Gamma 0.7456 (0.0013) 0.8975 (0.0009) 0.9464 (0.0007)
Uniform 0.7459 (0.0014) 0.8933 (0.0010) 0.9432 (0.0007)
Bernoulli 0.7911 (0.0013) 0.9332 (0.0008) 0.9701 (0.0005)
4 1.7124 Exponential 0.7419 (0.0014) 0.8944 (0.0010) 0.9461 (0.0007)
Gamma 0.7418 (0.0014) 0.8956 (0.0010) 0.9464 (0.0007)
Uniform 0.7403 (0.0014) 0.8888 (0.0010) 0.9414 (0.0007)
5 1.7092 Exponential 0.7458 (0.0014) 0.8950 (0.0010) 0.9474 (0.0007)
Gamma 0.7452 (0.0014) 0.8976 (0.0010) 0.9478 (0.0007)
Uniform 0.7412 (0.0014) 0.8881 (0.0010) 0.9410 (0.0007)
10 1.7061 Exponential 0.7576 (0.0014) 0.9024 (0.0009) 0.9516 (0.0007)
Uniform 0.7476 (0.0014) 0.8891 (0.0009) 0.9411 (0.0007)
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Table 9. Minimum number of vectors to achieve P* for AVC (BEM).

k o* P* =075 P* =0.90 P* =0.95

2 1.01 12171 (18371) : :
1.05 509 (765) 1839 (2759) 3027 (4545)
1.10 133 (201) 483 (723) 793 (1191)
1.20 37 (55) 133 (199) 217 (327)
2.00 305 9 (15) 15 (23)

3 1.05 1544 (2565) 3741 (6211) 5526 (9165)
1.10 401 (666) 972 (1615) 1436 (2385)
1.20 108 (181) 264 (437) 388 (645)
2.00 7 (12) 17 (29) 25 (42)

4 1.20 187 (326) 398 (692) 565 (979)
2.00 12 (20) 25 (43) 36 (61)

5 1.20 271 (486) 541 (964) 748 (1331)
2.00 17 (29) 33 (58) 46 (81)

* Numbers not available due to large computation time.

To be complete we consider modifying the approximation in (14) by setting §*™ = §*
and solving for 6*°. We then perform a similar set of simulation runs to obtain estimated
PCS™¢ values at k and #*" using the appropriate values of v™™. Results of these runs are
reported in Tables 7 and 8. As with the previous form of our LSA, we are looking for
estimated PCS™* values that are close to the P* listed at the top of the column in which
they appear. These results show that the LSA is good in this direction as well.

The benefit from this form of the LSA is reflected by 6§*° < #*. This indicates that AVC
can provide better discrimination between the systems at the same level of confidence and
with the same data.

8. CONCLUSIONS

When trying to pick the best system out of k systems, there are many instances when
this selection should be based on one-time performance rather than long-run average perfor-
mance. Multinomial selection procedures provide a framework for defining such a problem,
and Procedure BEM is the classical approach for solving it. Procedure AVC is an alternative
approach designed to obtain a higher PCS by performing all possible comparisons across
all systems for a given set of system performance data. Construction of Procedure AVC
closely follows that of BEM, allowing researchers to easily move from a standard approach
to our new approach.

From the simulation design point of view, AVC can also be used to our advantage by
allowing us to plan a smaller number of replications to achieve a desired PCS, P*, Table
9 presents comparisons of the minimum number of independent replications needed to
achieve a given P* for AVC and BEM. The AVC values are obtained using our LSA in
(14) with §*° = * to find §>™ and then running an exact code for PCS™™ provided by
Goldsman [6] at § = §™™. Values for BEM are taken from [2] or obtained using Goldsman’s
code [6] for unavailable values of ™™ = @§* As k increases, we see a more dramatic
reduction in the number of vector observations needed with AVC to achieve the same P*.
The reduction in v goes from roughly 34% at k = 2 up to 44% at k = 5. So the advantages
of AVC over BEM appear greater for more challenging MSPs.
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APPENDIX: PROOFS

PROOF OF THEOREM 1: From Lemma 1 we have the MVN distribution of (A,(v), ..., Ax(v)). Since 4, (v)
—Aj(v) = A;(v) + 2, Aj(v) (i # 1), we take the difference of MVN random variables and obtain

112 e 12
A =A@, ko 12 1 e 172

; VA N B V7% (15)
Adv) = Ai(v) ko 12 12 e 1

N
Assuming population 1 is the best, in terms of PCS™™, we can state

Yi(v) —vlk _ Yw) = vlk

v v

>

N
PCS™™ = lim Pr{Y,(v) > ¥(v), Vj # 1} = lim Pr{ V) 1}

o0

= 1lim Pr{A,(v) — A, (v) <0, Vj+ 1} =Pr{W,<0,j=2,3,...,k}, (16)

v

where (W,, W5, ..., W) ~ (15). If we add k6 to each W, to obtain a random vector with a mean of zero, then
from (16), we have

— W, + k6 kb k6
PCS"E‘“:Pr{ J <—,':2,...,k}:Pr{Q-<———,‘=2,...,k},
e k! N YT

where (Q,, ..., 0;) has the same MVN distribution as that given by (7). ]

PROOF OF THEOREM 2: In the following proof, we first develop the asymptotic covariance matrix for a
vector of standardized AVC point estimators using individual U-statistic covariance terms. Much of the proof
involves defining these covariance terms, of which there are four distinct cases. We then use the resulting covariance
matrix to derive the required expression for the asymptotic PCS**°.

Define 3( N), the covariance matrix computed for (Féw, F& ., F), as
INp (V)
3(N) = Var
INpu(N)

Let p;(N) = Ey[p;(N)], the expected value at sample size N = kv [here p,(N) and p;( N) are equivalent to
p;(v) and p;(v), respectively, with v replaced with kv]. Lehmann [8] shows that Lemma 2 holds even if the
distributions of the data depend upon the sample size provided

3X(N)— X%,
where X is nonsingular as N = . We assume

IN(P(N) = pa(N))
Var H -3

IN((N) = pe(N))

for any reasonable set of F{"’. We define X as |lo ‘|| in (9).
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To proceed, we need to consider the covariance terms defined in Lemma 2:

gt = E[HIYHY] ~ BIH{YIE[H)

= E[HYHY] — 1/k*
since

I, i X, > Xe, VC#a,
Hip =
0, otherwise,

1, if Xy, > Xeg, Y+ b,
Hb = ’
2
0, otherwise.

Using our kernel from (8), we can express

k

k
E[HYHE = E[ IT ¢Xao, = Xi) ¥ I1 ¢(Xea, — ch)] .

i=1i%a £=1,L#a

We can then write this as a probability statement combining the two indices to come up with

E[HYHE] = Pr{ X, > max{Xe,, Xeg, ) }-
£#a

This particular case is easy to illustrate, and we extend this development for other expected value terms in less
detail.

There are a number of different cases we need to consider for the covariance terms, £{“*. In this notation, a
represents the population with the largest value in H{; b represents the population with the largest value in
H%; and i represents the one population that has the same observation in both vectors (pseudoreplications). We
can enumerate the different cases for the covariance terms based on the values of a, b, and i. We have the

following four cases:

ca=bo=i; £,
La=b=i; Y,
La# b+ i oD,
ca#+b,a=iorb =i " or &,

BWND —

Asymptotically X; ~ F Vj which allows us to construct distribution-free expressions for £{** since each X
has the same probability of being the largest value in a single vector. For case 1 we have

(i, a 1
£ = Pr{Xaa, > I?ST{X(@[,X@}} Ehkyesriaet (17)

This follows since we have 2(k — 1) + 1 independent and identically distributed random variables and we want

the probability that a particular one is the largest. In our context this means we want the probability that a single

observation from population a is a winner in two separate vectors containing no other common observations.
Case 2 is more difficult to approach. We have

Koo, > Xiays Xaa, > MaXpwqi{ Xew, }3 1
gl = pr ———
; 5
Xap, = Xiays Xap, > MaXpaqi { Xeg, )
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where the common observation in each of the two vectors is not the largest, and both observations from population
a are the largest in their respective vectors. The ordering of the random variables from this pair of vectors must
look like the following:

Xia, > {hof the Xeo } > Xy, > {(k = 2) — h of the X, (k — 2) of the X¢5,, and X, }
or interchanging X,., and X,
Xap, > {hof the X¢5,} > X0, > {(k — 2) — h of the Xeg,» (k — 2) of the Xg,,, and Xia, } 5
where h = 0, 1, ..., k — 2. For each subset of size & there are
Mk—=2)y=h+(k—-2)+1)

equally likely orderings, and there are
(k - 2)
h

ways to select an k. With a total of (2k — 1)! possible orderings, we then have

k=2
22( >hl((k—2)~h+(k72)+l)!
=0 h 1 2 1
Ega,u): —— (18)
(2k -~ 1)! kK k(2k—1) k?
We proceed in a similar fashion for case 3
Xea, > Xia;» Xaw, > MaX¢sai { Xea, 15 1 5 1
5541,/7) = Pr -== g(ia‘a) = — (19)
Kip, > Xia;» Xog, > mMaXepp; { Xeg, } k k(2k = 1)k

since all random variables are identically distributed and there is no distinction between X5, and X4 .
For case 4 we have

£ = Pri{Xu, > max{Xe, }; Xog, > Xoayo Xpp, > max{Xes,}} —
{#ab

3.
£#a k

As we did for £ previously, we need to identify all possible arrangements of the random variables from two
vectors that meet the above conditions. The following orderings work:

Xig, > {h of the Xep } > Xpo, > {(k — 2) — I of the X5, (k — 1) of the Xy, }.
Then proceeding as we did for £’ we obtain for a # b

1 1

(ab) _ glab) _
& & K2k - 1) K

(20)
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Given covariance expressions from (17) and (18), we find the diagonal terms of ¢ “"* from (9) as

k
o0 = kT € = MES + (k — DE] = L @
- 2k — 1
With the covariance expressions from (19) and (20) we can find the off-diagonal terms of ¢ “"* from (9) as
-1
(a.,b) =l f‘tt.b) + (a,by + (a,b) = . 22
o C[f 3 eghﬁe } %1 (22)
Combining the terms in (22) with those in (21), we let n = 1/(k — 1), and we have
1 —n - -np
k-1 -n 1 - —n
Y= 23
<2k - 1) SRS (23)
- -7 - 1
From [8] we know that
NN = (11k = 6/Vw)) 0
: = MVN N IR I (24)
INGB(N) = (17k = 814v)) 0

N
Assuming population 1 is the best, in terms of PCS*° we have

N
PCS™¢ = lim Pr{p,(N) > pi(N), Vj # 1} = lim Pr{YN(5(N) — 1/k)
o

N—oo

~IN(@(N) = 1/k) < 0, Vj + 1} = Pr{W, < 0, Vj # 1},

where

W, —klks

~ MVN :
ks

—
=
=4

Wi

Using our variance and covariance terms from (23), the diagonal terms of = are

g @ 4 g by poab) o 2k ,
2k — 1

and the off-diagonal terms are

k

g @b _ plal) _ (b 4 (D .
2k —1
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Combining these terms we have

1 /2« 1/2
_ 2k 172 1 e 172
T2k -1 P
/2 1/2 - 1
Then
s .
pcsﬂvczpr{ Wf+k\/£6 < ks ,j=2,.“,1<}=Pr{Q,<————-————-—k(S ,j=2,.‘.,k},
V2k1(2k — 1) V2k/(2k — 1) T2k - 1)
where (Q,, ..., ;) has the same MVN distribution as that given by (7). O
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