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Abstract

Multiple comparisons with the best (MCB) proce-
dures are a class of procedures that provide simulta-
neous confidence intervals for the difference between
each treatment mean and the best of the other treat-
ment means. We introduce four new procedures to
find MCB intervals under unequal variances. These
procedures exploit Welch’s approximate solution to
the Behrens-Fisher problem. Two of the proce-
dures can be shown to be conservative, and the
others are approximate-conservative. We present
computer simulation results that indicate the cir-
cumstances when each procedure is preferred.

1 Introduction

We consider the problem of comparing a small num-
ber of competitors. Although our work involves
one-way designs used in ANOVA, our goal is to
find the competitor with the largest expected per-
formance, y;, for i = 1,2,..., k. We achieve this
goal by using a class of multiple comparisons pro-
cedures known as Multiple Comparisons with the
Best (MCB). We define MCB procedures as pro-
cedures that provide joint confidence intervals for
pi — max;jz; py, for i = 1,2,... k. We will pro-
pose, illustrate, and experimentally study one-stage
MCB procedures that may be applied under mild
assumptions; specifically, we permit unequal vari-
ances across competitors, thereby allowing MCB to
be used more readily.

Describing MCB procedures requires some nota-
tion, which is defined next. Many of these terms are
vectors, so we display vectors in boldface type.

Y is a single observation.
i 18 a subscript corresponding to a competitor.
k is the number of competitors,t =1,2,...,k.

i = [p1, fa2, - .., pk) is the objective quantity, a k x

1 vector.
p is an estimator of .

Y is the overall sample mean, the estimator of p in
our procedures.
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Table 1: An extreme example

Plan Plan Current

A B Choice

mean 1.0 0.0 -1000
standard deviation 0.1 0.1 100

n; i1s the sample size from competitor 7.

v is the degrees of freedom.

o? is the variance from competitor i.

5? is the variance estimator from competitor i.
tyv 1s the g quantile of the univariate Student’s t
distribution with v degrees of freedom.

T ., M 1s the ¢ quantile of the multivariate ¢ dis-
gk, 5 . . 5 .
tribution of dimensions k with v degrees of free-
dom, and correlation matrix M.

Ty kv,p 1s the g quantile of the multivariate ¢ distri-
bution of dimension k with v degrees of free-
dom, and a correlation matrix having common
off diagonal elements, p.

The paper is organized around four sections:
MCB' preliminaries, procedures, experiments, and
conclusions.

We use normal-theory methods and compute one-
stage MCB intervals. Alternatively, we could follow
the recommendation of Matejcik and Nelson (1995)
and design a second stage sample to allow infer-
ences with a prespecified precision. Our procedures
extend a rich body of literature on inference when
variances are unequal and unknown. Welch (1947)
is an early paper; see Bishop (1976) for an extensive
survey.

When variances across competitors differ sub-
stantially, MCB procedures designed for equal vari-
ances can be made useless. Consider the problem
of experimentally determining the competitor with
the largest mean when the competitors have the pa-
rameters in Table 1. In situations of this nature
MCB for equal variances fails to determine the best
because the large variance of the “Current Choice”
masks the small variance of Plans A and B. This is
an extreme example, but where current choices are



woefully inadequate and responsible alternatives ex-
ist, similar stituations can occur.

We will present four procedures which solve our
problem. These procedures are applications of sta-
tistical methods for unequal variances specialized to
MCE.

2 MCB Preliminaries

Before we present our procedures for one-stage
MCB we present some general MCB results. When
samples are sufficiently large, MCB correctly selects
the competitor with the largest mean among & com-
petitors with probability 1 — . This eplimization
iz done by forming & joint confidence intervals for
i — maxjz; py, where ¢ and j designate popula-
tions, Lreatments, systemns, or competitors. Meth-
ods for finding and using these confidence intervals
were first published in Hsu (1981).

Our presentation is structured around a result,
which we call Hsu's lemma. Although Hsu did not
present. “Hsu’s lemma” in the form that we will
present it, his work provided the proof of the lemma

and the foundations of MCB.

Lemma 1 (Hsu’s multiple-bound lemma)

Let M1y < ) < < Bk be the ordered
perfermance paramelers of & compelitors, and led
fig1ys fgzye - o digry be any estimates of the parame-
ters. If for each i,

Pr{jii=jtj=(pi—p;) > —wi;, for all j & i} = 1-a,

(1)
then the following joint confidence tnfervals may be
formed ;

pi — max;z i € (D], D],
l‘“EP‘{ fori=12. k[ @

where
+
D;" = ('ﬂil,'l[ﬁi — i+ wi_;i]) .
b=
G={¢:Df >0},
and
] if G = {i}
bor = , ) ) - _
minsep [ji; — fi; — wji] otherwise
i

If we repluce the = an {1} with >, then (2) still
holds.

To simplify notation we define the event

. _ | pe - maxj ;€ (D7, D]
{LS“LJWII}_{ fgri:]_.ﬁ,...?k I

Hsw’s multiple-bound lemma 15 essentially proved
in Chang and Hsu (1992). Informally, this lemma
says that if we can do Multiple Comparizons with
a Control (MCC), then we can do MCB. More
precisely, the premise (1) is one-sided MCC (see
e.g. Hochberg and Tamhane (1987) p.33, where the
statistic j; — fij is Y; — f}-, and p; — p; is denoted
f#; —#;). The “bounds” w;; have a helpful graphical
interpretation. MOCB intervals are often presented
as whisker diagrams, so the wy; are interpreted as
“whisker lengths” in these diagrams. Accordingly,
Lhe wy; are measures of the precision, which help
define the length the MCB interval. All of our one-
stage procedures are based on Hsu's Multiple Bound
lemma.

3 MCB Procedures

We begin by introducing an MCB procedure in gen-
cral form. Next, we describe and justify five specific
procedures. The procedures differ only in the com-
putation of the whisker lengths, w;;. Finally, we dis-
russ how we can determine which procedure should
be recommended.

Frocedure 1 (General one-stage procedure)

1. Take  samples  from  each  competifor
{Yl.llll'lyl.ﬂz]l [Yi.la---:n.n:]n---n
(Yei,-- . Yen,). We assume the competitors

are independent.

2 Compute the following infermediafe statistics
for each competiter, i=1,.. . k.

1
?}Z—Z}’i_j

1 iy B
5% = Y — Y
i ”*'_ljzz;{ i i)

3. Compute the whisker lengths, wy;.
4. Finally, compute GS{‘E’,W}.

The usual homoscedastic MCB procedure fits the
general form above, and we shall refer to it as pro-
gedure 5T (for standard). For procedure 5T we
cotnpute the whisker lengths using

1 1\ 2
wig =110 RS (ﬂ_. + E)



where the empirical variance, 5%, and degrees of
freedom, 1, are the usual pooled variance estima-
tor and its degrees of freedom, and the correlation
matrix, R, has off-diagonal elements given by

12 172
{1) _ Ty g
Pee = (ﬂz + ﬂ{) (T!:f + ﬂi)

(£ E#i1<i 68 S k)

(see e.g., Hochberg and Tamhane 1987). Notice that
,am = 1/2 when sample sizes are equal.

Hsu’s multiple-bound lemmma tells us that if we
can do MCC, then we can do MCB, 5o we only nead
to find MCC procedures that work with unequal
variances in order to derive heteroscedastic MCB
procedures. Tamhane (1977) and Dunnett (1980])
provide tools for developing heteroscedastic MOCC
procedures.

Tamhane (1977) gives a conservative MCC
procedure based on Banerjee’s Inequality. He
also gives an approximate procedure using the
Welch {1947) moment-based approximation to the
Behrens-Fisher problem, which is derived in a simi-
lar manner, but uses Welch’s {1847} moment-based
approximation instead of Banerjee’s Inequality. Ap-
plying Heu's multiple bound lemma to these MCC
procedures gives us MCB procedures B (for Baner-
jer) and T2, respectively, which both fit our general
procedure.

Let f=1—(1—a)FT,

For procedure B,

: 5 2 ay 12
(t.é.ﬂ.i—lgz' . t.'.i.n;'—lsf)
wi; = + .

g ny;

Similarly for procedure T2,

1)z
st 5
w’.j -.: t&?sll._:‘ + — "

ny N

where

(82 /mi + SHiny)”
s S
[n?(n,-i] + n?{nj—lj]

Dunnett (1980) gives an approximate all-pairwise
procedure related to the T2 procedure. Dunnett
{1980) improves upon the all-pairwise procedure by
using Sidak’s Uncorrelated { Inequality instead of
Slepian’s Inequality. Hochberg and Tamhane {1987)
suggest that an MCC wversion of Dunnett’s proce-
dure may be better Lthan the approximate procedure

Pij =
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of Tamhane (1977). Applying Hsu’s multiple bound
lemma to this MCC procedure gives us MCB pro-
cedure T3, which fits our general procedure. For
procedure T3, & ; is the same as in T2, but

1f2
52 52
Wi = Tioa k=16, 0 (—' +-L

Ty Ty

Finally, Matejcik and Nelson (1995) give a one-
stage MCB procedure (MN) of the form of our gen-
eral procedure. Procedure MN is related to a two-
stage heteroscedastic selection procedure (Hinott
1975). Both Hinott's (1978) procedure and proce-
dure MN are derived by applying Slepian’s Inequal-
ity to a standardized difference of the overall system
means. For procedure MM,

Wi zh.mu{ 5 i}
if 1 ﬁlﬁ 1

where h; is the solution to

o k—1 . h
Iy [T
= ¥

iF

fn=1(y)dy = 1 = a,

B(x) iz the standard normal distribution function,
and f,{x) is the Chi-squared density function with
¢ degrees of freedorm.

We must now decide which of these procedures
to recommend. For MCOC, the simulation results in
Tamhane (1977) indicate that procedure T2 should
perform adequately, and procedure B is needlessly
congervative.  Also, Dunnett (1980) notes (by an
analytic observation) that T3 provides tighter in-
tervals than T2, However, we have no comparisons
for MCB of procedure MN to the others. Procedure
5T is known to be generally conservative, so it may
be able function adequately under some unequal-
variance situations. Further, we should consider
how well the unequal variance procedures perform
under equal variances, Our next section uses gim-
ulation experiments to address these issues of per-
formance of the procedures,

4 Experiments

We measured the results of our experiments by
estimating three probabilities: the probability of
coverage (), the probability of declaring correctly
(i), and the probability of correct and useful {C
& If) inference. By “coverage” we mean that the



Table 2: A test of an extreme example

2500 macro replications, n =3,k =3
= (1,0, =1000),
g1 =ap =01, oz = 100

o = .05
Procedure 0% C &k NR W%
ST 59.96 0.00 0.00
B a7.04 9704 100.00
T2 Q6,00 0600 100.00
T3 a5 .80 05.80 100,00
MN 98.52 0R.40  99.88

MCB confidence intervals cover pp — maXie; gy,
i =12 .,k By “declaring correctly” we mean
that the lower bound of pry — max; ey gy 18 zero.
By “correct and useful” inference we mean that the
procedure both declares correctly and covers the pa-
rameters. Later, we included @; @ is computed by
first computing the average of the whisker lengths
within each macro replication, then computing the
average of those averages over all the replications. If
we have no problems with coverage, the procedure
with the shortest whisker length is the best.

We will first experimentally justify the need for
our methods by demonstrating our claim in the In-
troduction (see Table 1 and related discussion) that
use of procedure ST is imprudent in some situa-
tions. Our test simulated 2500 macro replications
of an MCB computation for a case where n = 3 ob-
servations were taken from each of the & = 3 three
competitors. All the observations were random vari-
ates generated to be independent and normally dis-
tributed with the parameters indicated in Tables 1
and 2. Table 2 summarizes the experiment’s pa-
rameters and results. (Please notice that Table 2
reports four digits for each estimated probability,
thus a reader may caleulate exactly how many of
the macro experiments met the criteria: C, I, and
€ & I . This violates the common practice of report-
ing significant digits, but allows us to provide our
raw data to readers without including additional ta-
bles. We continue with this practice throughout the
tables.)

Clearly, procedure ST does net provide the nom-
inal coverage for this extreme example, but all the
other procedures do. Mare glaringly, we notice
that procedure ST never declares correctly, but all
the other procedures do declare correctly with high
probability. So we have found procedure ST less
useful dealing with this extreme example of unequal
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Table 3: Usual MCB is exact, k=68, n=10

2500 macro replications, o = 0.05
p=(1.897367,0,0,0,0,0),

=1, Vi
Proc, 0% CL&lf% W% |
ST | 94.28 B09.52 9048 | 1.02
B 47.00 T2.80 T3.12 | 1.24
T2 | 95.60  B1.20 8220 | 1.13
T3 05.52 g1.32 82.36 | 1.13
MN 48.00 61.12 61.20 | 1.35

variances, and we have found that each of our other
procedures perform well.

As we anticipated, procedure T3 performs better
than procedure T2, and T2 performs better than
procedure B, We have no references testing proce-
dure MN with the others. Because procedure MN
involves Slepian’s inequality and a whisker length
based on the greatest of a pair of variances, which is
generally inferior to the approaches of other proce-
dures, we expect that procedure MN will be worst.

4.1 Equal Variance Experiments

We consider that procedure MN may be particu-
larly suspect under equal variances, and we know
that procedure ST should perform well under equal
variances. Our studies included experiments with
k= 345610 competitors; 1 — o = 0.90,0,95,0.99
confidence levels; n = 3,10,20,30 observations; g =
(4//n,0) & (6//n0);os =1fori=1,... k and
we used 2500 macro replication of each situation.
Table 3 is typical of our results. More extensive
results are available in Matejeik (1992).

Procedures B, T2, T3, and MN are all conser-
vative, Owerall, procedure MN was always inferior
to the other procedures for the choices of p and oy
where the probability of coverage of procedure 5T
is known to be l-o. Moreover, T2 and T3 appear
to be competitive to ST with regard to coverage,
declaring correctly, being correct and useful, and
whisker length. However, we have tested only one
case with unequal variances, the extreme example.

4.2 Unequal Variance Experiments

We have not done extensive tests of unequal
variance cases such as those in Dunnett (1980),
Tamhane (1979), or Bishop (1976). OQOur proce-
durez B and MN can be shown to be conservative,
so there is no need to demonstrate experimentally



that they are conservative. Our procedures T2 and
T3 are both approximale-conservative procedures
in the sense defined by Dunnett (1980); they are
formed using conservative probability inequalities
and use Welch’s (1947) moment-based approxima-
tion for unequal variances. The all-pairwise pro-
cedures analogous to our T2 and T3 procedures,
also approximate-conservative procedures, were ox-
tensively tested by Dunnett (1980) and Tamhane
(1979). Dunnett (1980) did not find any situation
where these procedures failed to be conservative.
Tamhane (1979) observed a few situations where
the all-pairwise analog to T2 appeared to be lib-
eral, but these were disputed by the more sophis-
ticated tests of Dunnett (1980). Based on these
experimentz, Hochberg and Tambane (15987 p, 183)
suggest procedures identical to the computation of
wy; in our procedures T2 and T3 for the MCC prob-
lem (1), which is in the premise of Hsu's multiple-
bound lemma {lemma 1). Further, our T2 and
T3 MCB procedures will generally be more conser-
vative than the related MOC procedures, because
MCB procedures based on Hsu's multiple-bound
lemma (lemma 1) are generally more conservative
than the related MOCC procedures. For these rea-
sons we anticipated that extensive tests would show
our procedures T2 and T3 to be conservative. How-
ever, our experiments showed T2 and T3 to be lib-
eral in some cases.

We consider extensive tests of T2 and T3 are of
value to describe the limitations of approximate-
conservative procedures. However, we have not yet
performed an extensive study. But, we have studied
some cases of unequal variances for normal distri-
butions. These cases are chosen to illustrate that
our procedures would be preferred to procedure 5T
under reasonable cases of unequal variances, and to
test some conditions that may make procedures T2
and T3 liberal. QOur studies included experiments
with & = 3,4,10 competitors; 1 — o = 0.90,0.95,0.99
confidence levels; p = (a,0)(a was chosen to give
Pr Cllf reasonable values); and we used 2500 macro
replication of each situation. We were not able to
test procedure MN in situations where the number
of ohservations across competitors was not constant.
Table 4 is one of our more curious results, More ex-
tensive results are available in Matejeik (1992).

Procedure ST is not generally conservative for un-
equal variances, so we must recommend other pro-
cedures for unequal variances. Procedure T3 was

often the top performer, and was closely followed
by procedure T2. Although, at times T2 and T3
are sometimes liberal. Procedure B was less con-
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Table 4: k=4, n=(13,11,9,7)
2500 macro replications, o = (.05,
p'=(3.5082,0,0,0)

oi=1c2=4,a3=7 =10

Proc. C% CkU% W% 1
8T 93.40 H0.52 8Bl.h6 | 2.085
B 0540 49.24 50,24 | 2.850
T2 94 36 5l44 5300 | 2.6890
T3 94.40 50.96 h2.52 | 2.603

servative than procedure MN, but both procedures
B and MN can be shown to be eonscrvative. For
this case of moderately unequal variances each of
the procedures performed fairly well.

5 Conclusions

The experiments and discussion of the previous sec-
tion allow us to recommend procedures. Under
equal variances procedure 5T is a clearly best, but
not by much over T3. For unequal variances pro-
cedure T3 is the top performer and our recornmen-
dation. However, for some cases with unbalanced
sample sizes procedures 12 and T3 are liberal. If
software for T3 is not available or if repeated com-
putations are needed such as in design of experi-
ments, then procedure T2 is a good substitute. Pro-
cedure MN is not comparable with the other one-
stage procedures, but it may be valuable in settings
when both one-stage and two-stage procedures are
frequently used.
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