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We consider the problem of comparing a small number of stochastic systems via computer simulation when the basis for
comparison is the expected value of some system performance measure. To solve this problem we develop two-stage sampling
procedures that provide confidence intervals for the difference between the expected performance of each system and the best of
the others. These confidence intervals are valid under mild conditions, and the procedures allow the experimenter to specify the
desired precision in advance. Special cases of our results include standard indifference-zone selection procedures. The paper
includes guidelines for experiment design and an illustrative example.

e consider the problem of comparing a small num-

‘ber of stochastic systems via simulation. Al-
though our work involves one-way experiment designs
used in ANOVA, our goal is to find the system with the
largest expected performance, where u; for i = 1,
2, ..., k denotes the expected performance of system i.
We achieve this goal by using a class of multiple-
comparisons procedures known as multiple comparisons
with the best (MCB). We define MCB procedures as
those that provide joint confidence intervals for u, —
max;.; p; for i = 1, 2, ..., k. We will derive and
illustrate two-stage MCB procedures that are valid under
mild assumptions, thereby allowing MCB to be used
more readily in computer simulations. Although our re-
search focuses on computer simulation experiments, our
results are applicable in other settings.

Computer Simulation and Two-Stage Methods

We restrict our discussion to one popular output-analysis
method: batch means. To preview our procedures we
present a general description of the combined use of two-
stage methods and batch means in typical computer sim-
ulation experiments.

Schmeiser (1982) and others have considered the use
of batch means to transform stationary, but dependent,
simulation data into nearly independent and nearly nor-
mally distributed data. Batch means may also be used
with independent and identically distributed (i.i.d.) data,
because i.i.d. data comprise a special case of stationary,
dependent data. To use (nonoverlapping) batch means in
a two-stage, steady-state simulation, we first generate
long sequences of performance observations from each
system, i = 1, 2, ..., k. The sequences are then parti-
tioned into b ; batches of m; observations. The mean of
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each batch is computed. Under mild conditions the batch
means will be nearly independent and normally distrib-
uted, so we may use normal-theory methods. In par-
ticular, we may compute the sample variances of the
first-stage batch means and design a second-stage
sample to allow inferences with a prespecified precision.
We will derive MCB procedures of this form. Our proce-
dures extend a rich body of literature on two-stage
procedures for inference when variances are unknown
and unequal. Stein (1945) is the foundation paper; see
Bishop (1976) for an extensive survey.

Consider also that computer simulations often begin
with a pilot study, followed by a production run (see e.g.,
Goldsman, Nelson and Schmeiser 1991). Classical
design-of-experiment techniques are awkward to use in
this situation because the experimenter must select a par-
ticular variance for their design, and the design does not
guarantee inference at a prespecified precision. More-
over, classical designs typically require strong variance
assumptions, but simulators often know less about the
variance than they do about the expected performance.
The two-stage procedures in this paper work directly
with pilot results, require mild assumptions, and guaran-
tee inference at a prespecified precision.

Notation and Organization of the Paper

A detailed presentation of our procedures requires some
notation. Many of these terms are vectors, so we display
vectors in boldfaced type.

is a single observation of a performance measure;
is the number of systems to be ranked;

is a k x 1 vector of mean performance measures;
is an estimator of w;
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Y is the overall sample mean, the estimator of w
when batch means are used;

i is a subscript corresponding to a system, i = 1,
2, ..., k;

ng, is the first-stage sample size, in terms of basic

observations;

by, is the first-stage sample size, in terms of the

number of batches;

N; is the estimated number of basic observations
for the sum of the first-stage and second-stage
samples;

; is the estimated number of batches for the sum
of the first-stage and second-stage samples;

; 1s the number of observations in a batch, so Mo,
= by m;

S7(by,) is the estimator of the variance of the batch

means based on b, ; batches; we write S7 when
the number of batches is obvious.

m

The paper is organized into six sections: MCB prelim-
inaries, procedures, selecting batch-size in two-stage
MCB, example, and conclusions.

1. MCB PRELIMINARIES

Before we present our procedures for two-stage MCB
we present some general MCB results. MCB provides
simultaneous confidence intervals for the difference be-
tween the expected performance of each system and the
best of the other systems, u, — max;..u; for i = 1,
2, e ko o — max;..;u; > 0, then system i is the
best, for it is better than the best of the other systems. If
M; — max;., u; < 0, then system i is not the best,
because there is another better system. However, even if
Mi = max;.; u; < 0, if u; — max;.; p;, > —e, where € is
a positive number, then system i is within e of the best.
MCB confidence intervals for these parameters may
therefore conclusively identify the system with the larg-
est expected performance, conclusively eliminate some
systems from contention for being the best, or bound
how far each system is from being the best. Procedures
for finding and using these confidence intervals were first
published in Hsu (1981).

Our presentation is structured around two results,
which we call Hsu’s lemmas. Although Hsu did not
present ““Hsu’s lemmas”” in the form that we will present
them, his work provided the proofs of the lemmas and
the foundations of MCB. MCB intervals are constrained,
SO it is convenient to use the notation x* = max(x, 0)
and —x~ = min(0, x).

Lemma 1. (Hsu’s single-bound lemma) Let Koy S K
< 00 S u be the (unknown) ordered performance pa-

rameters of k systems, and let f1(y), {2y, ++- » Qg be
any estimators of the parameters. If
Pr{d gy — frg) — (o — 1)

>-w, i=1,2,...,k-1}=1-a, (1)

then

1-a<Pr{u; - max pu,

Sl-(hi —max 4; -w)",

(b = max fi; + w) "], for all i}. (2)
If we replace the = in (1) with =, then (2) still holds.

To simplify notation we define the event
{CS(a W)} ={u, —max
El-(hi—max f; -w)",
(i — max 4; + w) "] for all i},

where CS is short for ““correct selection,’” a term used in
ranking and selection to mean correctly choosing the
best system.

Hsu’s single-bound lemma has essentially the same
proof as the balanced case of MCB in Hochberg and
Tamhane (1987, p. 151). The letter w is chosen because
the bound in (1) is a whisker length in a whisker plot
of the MCB intervals. Informally, this lemma says that if
we can find a single bound w for all the differences with
the best, then we can do MCB. We will see that this
implies that solving a selection of the best problem in
ranking and selection will allow us to do MCB.

Lemma 2. (Hsu’s multiple-bound lemma) Let ey S
M2y S " S uy, be the (unknown) ordered performance
parameters of k systems. Let T; be a point estimator of
the parameter w; — w,. If for each i individually

Pr{T,j—(,u,—uj)> _wij: for all j¢l}=1_a, (3)
then we can make the joint probability statement

1—a < Pr{u; — max w; €[D7, D], for all i}, (4)
e

where

D= (rjn;ln [Ty +wyD",
G={€:DJ >0}

and ‘

Df={0 ' _if‘g={.z’}
= (minjey, j;[—T; —w; 1)~ otherwise.

If we replace the = in (3) with =, then (4) still holds."
To simplify notation we define the event

{CS(T, W)} = {u; - max p; €[D;, D], for all i},

where T = {T;;i,j =1,2, ..., k,i = j}andw = {w
L, j=1,2,...,k i =]}

Hsu’s multiple-bound lemma is proved in Chang and
Hsu (1992). Informally, this lemma says that if we can do
multiple comparisons with a control (MCC) with each
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system as the control, then we can do MCB. More pre-
cisely, (3) is the probability statement required for one-
sided MCC with system i as the control (u; — w;, for all
Jj # i). The ““bounds” w and w,; have a helpful graphical
interpretation. MCB intervals are often presented as
whisker diagrams, so w and w;; are interpreted as ““whisker
lengths” in these diagrams. Accordingly, w and w; are
measures of the precision, which help define the lengths of
the MCB intervals. Procedures based on the multiple-
bound lemma can be sharper than those based on the
single-bound lemma because the length of each whisker w;
can be specified individually, rather than requiring a single
whisker w to apply to all MCC differences.

2. PROCEDURES

We begin by introducing a means MCB procedure in a
general form. Next, we prove its validity. We also
present a corollary that allows even more flexibility in
the procedure. Following this introduction we develop
two useful special cases: balanced first-stage sample with
a constant whisker length w, and a general single-stage-
sample form.

Procedure 1. Two-Stage Means MCB

STEP 1. Specify the target whisker length w*, and
error rate . (Comment: The target whisker length w* is
analogous to the indifference zone in indifference-zone
selection.)

STEP 2. Take an initial stationary sample Y; ;, Y5, ...,
Y, »,, Of size ny,; from system i, i = 1,2, ..., k.

STEP 3. Compute the batch means Y, ; so that they are
approximately independent and normally distributed:
- 1 f’g,:
Y, =— Y;
Toomy p=(j—m;+1 o

i=1,2,...,k

j=1, 2, “es ’bO,i'

(Comment: We may skip Step 3 for system i if Y; ;,
Yi,no,i are approximately independent and normally dis-
tributed. When we skip this step for system 7, we assign
m;=1,by; =ngpand¥,; =Y, forj=1,2,...,

by.;-)

STEP 4. Compute these intermediate statistics for each
sample:

bo,i
Yi(bO,i): 2 Y,,
bo,; j=1
1 bo,i _ _
St = > (Y i-Yibo)? i=1,2,..., k.
bg’,’_lj=l

STEP 5. Compute the first-stage whisker lengths w;

W;'j =hi max {

iS5 }
Vbo, Vb
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(Comment: Here 4, is the solution to Rinott’s (1978) inte-
gral equation, which is also (6) in the Appendix.)

STEP 6. If {wj; i, j =1, 2,..., k, i # jJ} are
sufficiently narrow in the judgment of the experimenter,
no second-stage sample is taken. If no second-stage sam-
ple is taken, then assign w; = wy;, Y = Yi(by,), and go
to Step 11. If a second-stage sample is to be taken then
go to Step 7.

STEP 7. Compute the final whisker lengths, w; = min
(w*, wi).

STEP 8. Compute the total sample size, N = (N;,
Ny, ..., N,), where N, = m,B; and

B;
= max {bg;, fS,z max (h,-/wij)z], (S,z max (hj/wj,-)ﬂ}.
}#l };‘—'l

STEP 9. Take N; — ng; additional observations,
Ying 415 oo » Yin, fromsystemi, i = 1,2, ..., k.

STEP 10. Compute the overall means,

1 Ni 1 Ni
)7[=_ Y"‘ =-~(n ?[(b i)+ Yi,')'
Ni jgl “ Ni o * j=nEU,.‘+1 !

STEP 11. Compute comparison estimates, T, ; = Y; —
Y.
J

STEP 12. Construct MCB intervals using {CS(T, w)}.

Theorem 1. If the batch means Y, ; of Procedure 1 are
independent and normally distributed with finite mean
and variance, then PriCS(T, w)} 2 1 — «.

Proof. The proof is in the Appendix.

We may generalize Procedure 1 by replacing Steps 6
and 7 with Steps 6’ and 7':

STEP 6'. Independent of the first-stage means,
Yi(bo,), select the set of the systems II, for which a
second-stage sample will be taken.

STEP 7'. Compute the final whisker lengths w,; as

y ~{min(w*,w;j) ifi, je[]
i Wi otherwise.

The following corollary is a consequence of the proof of
Theorem 1.

Corollary 1. (Partial Stopping Rules) Under the assump-
tions of Theorem 1, if we replace Steps 6 and 7 of
Procedure 1 with Steps 6' and 7' then for this modified
procedure Pr{CS(T, w)} 2 1 — a.

Step 6’ allows many useful and practical experimenter
interventions. However, modifications not stochastically
independent of first-stage means are not justified. Our
proof of Theorem 1 uses the property of independence
across systems, so if we choose II using a method that
depends on first-stage means, then we no longer have
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independence across systems and our proof fails. How-
ever, we may choose not to include system i in IT (and
thereby not sample it in the second stage) for the follow-
ing practical reasons:

e System i is no longer available for testing.

e The cost of using system i is too high.

e Administrative decisions prevent further consideration
of system i.

e The w* was vaguely specified, and although w* < w i
or w* < w/, for some values of j, all wi; and w}; are
sufficiently small to avoid further sampling of system .
Notice that the whisker lengths w; must be evaluated
based in their absolute size. Comparing these whisker
lengths across systems would violate our independence
assumptions.

e A system parameter unrelated to the objective obser-
vation Y discourages use of system i.

e Objectionable transient behaviors in a steady-state ex-
periment discourage use of system ;.

We now list two useful special cases of Procedure 1.
The first one may also be proved directly using Hsu’s
single-bound lemma and Rinott. The second may be
proved by letting IT in Corollary 1 be the empty set.

Procedure 2. Two-Stage Means MCB With
Common w and b,

STEP 1. Specify w and «.

STEP 2. Take an initial stationary sample Y; 1,
Yo oons Yin,, of size ny; from system i, such that
by = ng/m;and by, 2 2fori =1,2, ..., k.

STEP 3. Compute the batch means and intermediate
statistics for each sample as in Procedure 1, Steps 3 and
4.

STEP 4. Compute the total sample size N = (N,
N,, ..., N), where N, = m;B, and

B; = max {by, [(h/w)*S}.

(Comment: Here 4 is the solution to a special case of the
integral in Procedure 1. A table for 4 is available in
Wilcox (1984).)

STEP 5. Take N, — ny, additional observations,
Yi,nﬂ,,.+1a <o, Yy, from system i, i = 1, 2, ..., k.
STEP 6. Compute the overall means Y, as in Procedure

1, Step 10.
STEP 7. Construct MCB intervals using {CS(Y, w)}.

Procedure 3. Two-Stage Means MCB Stopping
After First Stage

STEP 1. Specify the error rate a.

STEP 2. Take an initial stationary sample, compute the
batch means, intermediate statistics, and first-stage whis-
ker lengths as in Procedure 1, Steps 3, 4, and 5.

STEP 3. Let w;; = w);, and ¥, = Y,(b,,).
STEP 4. Compute T as in Procedure 1, Step 11.

STEP 5. Construct MCB intervals using {CS(T, w)}.
We believe that Procedures 2 and 3 can be used fre-
quently by simulators. Procedure 2 is convenient for sim-
ulators because h is readily available and because
Procedure 2 involves no complex decision making re-
garding wj;. Procedure 3 can be used as a one-stage pro-
cedure that produces conservative MCB intervals when
variances are unknown and unequal. Thus, our results
should appeal to experiments who prefer one-stage pro-
cedures. However, the additional features provided by
Procedure 1 and its corollary may prove useful in some
situations.

3. SELECTING BATCH SIZE IN TWO-STAGE MCB

As stated in the Introduction, to use batch means we first
generate long sequences of performance observations
Y, ;, from each system i = 1, ..., k. The first-stage
sample ng; is typically determined by judgments regard-
ing normality and independence. However, we can make
recommendations for selecting other constants.

To use the two-stage MCB procedures of Section 2 we
must specify three parameters: the confidence level 1 —
a, the target whisker length w*, and the first-stage num-
ber of batches b, ;. The target whisker length w* is anal-
ogous to the indifference zone in indifference-zone
selection. Simulators can specify w* from practical con-
siderations. The confidence level « is typically selected
from the traditional values 0.10, 0.05, and 0.01. The
choice of the first-stage number of batches b ; affects the
performance of the procedure itself, so this section will
develop recommendations for b ;.

Simulation experiments often require n,; > by ;, so
the selection of b, ; is a compromise between a small
number of batches which improves the approximations
of normality and independence, and a large number of
batches which may result in a smaller total sample, N;.
We recommend using b, ; € [10, 40]. Our recommenda-
tion is based on an examination of Procedure 2, but it
carries over naturally to Procedure 1.

For ease of exposition, assume that Y;,, Y, ,, ...,
Y, n, are i.i.d. N(u;, 07), so that the batch means Y, ;
are i.i.d. N(u;, o7/m;). Analysis under these assump-
tions is worst case in the sense that we could set b, = n,
(that is, not batch at all). Our results show the penalty for
batching when it is not needed. Alternatively, we could
make the detailed assumptions assuring the appropriate-
ness of our b, value as was done by Schmeiser.

With these assumptions we may develop recommenda-
tions for b, in Procedure 2. For Procedure 2 the follow-
ing formula defines the total number of batches B,

B, = max (bo, [(é’)—)z S}‘(boﬂ )

Therefore,



Ni=mB, > (3—)2 m,SHby).

If we assume that second-stage sampling is likely, then
E(N;) = (h/w)* o}. Since the E(N;) decreases as b,
increases, the relative savings from rebatching (RSR) the
first-stage sample to bj, > b, batches is

/ E(Nip,) = E(Nip; )
RSR(by, by) = EN.)
5,04

X 100%,

where E(N,,; ) is the expected total sample size when
the initial number of batches is b,.

From our approximation for E(N,) and the 4 values in
Wilcox, we can plot approximate RSR(b,, by) surfaces.
However, we present instead an upper bound for RSR,
which we call the limiting relative savings from rebatch-
ing (LRSR). The LRSR is

hi, - h2
LRSR(by) = bléi_r{loo RSR(by, by) = T

o«

x 100%,

where A, is the solution to Rinott’s integral equation when
the first-stage sample size is b,, and A, is lim, A, . It
can be shown that i, = V20~ '[(1 - a)l/k— 1] where
® is the cdf of the standard normal distribution. There-
fore, the LRSR(b,,) may also be calculated with the aid
of the tabled values in Wilcox.

Figure 1 is a plot of LRSR(b,) for different numbers of
systems, k = 2, 6, 10, and confidence level « = 0.05.
We judge from the graph that selecting b, < 10 leads to
a large total sample size, and selecting b, > 40 gains
little with regard to total sample size. Other analysts may
draw somewhat different conclusions from the figure.
However, since selecting a large b, for fixed n, may
make normality and independence assumptions inappro-
priate, we see little benefit and potential harm from ven-
turing beyond 40 batches.

Our analysis assumes that the conditions required for
the method of batch means to be valid in small samples
are exactly satisfied. Nakayama (1994) established

100 . 1 ] ] 1 1
40 ' ——
‘ —==k=6
=10
60
[+
N
[a'4
-
40 -
20 - -
0 T T T T T
0 10 20 30 40 50 60

Figure 1. The function LRSR(b,) for o = 0.05.
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conditions under which a two-stage, batch-means proce-
dure for the expected performance of a single system is
asymptotically valid for more general output processes.
Asymptotic validity obtains as the absolute error (indif-
ference zone w in our terminology) decreases to zero. In
brief, his procedure requires that the first-stage batch
size must grow proportional to 1/w? as w — 0.

We are now prepared to apply two-stage MCB to an
example.

4. EXAMPLE

Goldsman, Nelson and Schmeiser propose the following
problem:

We consider k = 4 different airline-reservation systems. The
single measure of performance is the expected time to failure,
E[TTF]—the larger the better. The system works if either of
two computers work. Computer failures are rare, repair times
are fast, and the resulting E[TTF]s are roughly 100,000 minutes
(about 70 days) for all four systems. We are indifferent to ex-
pected differences of less than 3,000 minutes (about two days).

Goldsman, Nelson and Schmeiser used Rinott’s
indifference-zone selection procedure, which is a two-
stage procedure similar to our Procedure 2, to solve this
problem. They chose a probability of correct selection
P* = 0.90, and an indifference-zone § = 3,000 minutes
to start the experiment. They choose an initial sample
size of ny; = 400, and the number of batches b, = 20.
They verified normality following the first-stage sample.
In this example observations were initially independent,
so no test of the independence of the batch means
was required. Table I shows Goldsman, Nelson and
Schmeiser’s results from their first-stage sample.

Goldsman, Nelson and Schmeiser obtained the addi-
tional samples required for the second stage, as pre-
scribed by Rinott’s procedure, and computed Y1 =
110816.5, Y, = 106411.8, ¥, = 99093.1, and Y, =
86568.9. Accordingly, Goldsman, Nelson and Schmeiser
selected system 1 as the best. At this point they appro-
priately claimed:

We can make the formal statement that we are at least 90%
sure that we have made the correct selection (with the proviso
that the true difference between the best and the second best
E[TTF]’s is at least & = 3,000 minutes).

The formal statement is correct, and it is the statement
desired by an indifference-zone selection. However, it
says nothing about the possibility that another system
could actually be best if the difference between the two

Table I
Goldsman, Nelson and Schmeiser’s
First-Stage Results (b, = 20)

i 1 2 3 4
Yiby)  108286.0  107686.0  96167.7  89747.9
S, 29157.3 24289.9  25319.5  20810.8
B, 699 485 527 356




638 / MATEICIK AND NELSON

best systems is less than 8. Furthermore, it says nothing
about eliminating any of the systems from being consid-
ered the best. Fortunately, as we see from our solution,
MCB allows inferences beyond the indifference-zone se-
lection procedure with just a simple additional calculation.

4.1. Our Solution

A comparison of our Procedure 2 and Rinott’s selection
procedure finds differences only in Steps 1, 4, and 7. If
we allow « from both procedures to be the same and set
w = §, then the procedures differ only in the final step.
In Procedure 2 we set w = 3,000, « = 0.10, and used
Goldsman, Nelson and Schmeiser’s results. After per-
forming the calculations in Step 7 we obtained the MCB
intervals in Table II. With a 90% confidence level the
MCB intervals presented in Table II exclude systems 2-4
from being the best and clearly identify system 1 as being
the best. This a much stronger statement than was given
by Goldsman, Nelson and Schmeiser using the same data
and a selection procedure. These stronger statements are
a characteristic of MCB and demonstrate an advantage
of MCB over indifference-zone selection procedures.
Furthermore, indifference-zone results usually can be
supplemented by MCB intervals as we have done in this
example. Later, we formalize this statement into a
theorem.

Additionally, we could have made a useful inference
following Step 3, if, for some reason, obtaining a second-
stage sample was not possible. Procedure 3 allows us to
find MCB intervals for an experiment terminated at Step
3. Applying Procedure 3 to Goldsman, Nelson and
Schmeiser’s first-stage data we obtain Table III. With a
90% confidence level the MCB intervals presented in the
table exclude system 4 from being the best. They fail to
identify any of the other systems as the best, but they do
provide bounds on the potential difference between each
one and the best. This ability to make reports if the ex-
periment must be stopped at the first stage can be useful
in some circumstances. Notice that forming Table III
following Step 3, but then eliminating system 4 from
second-stage sampling based on the first-stage results, is
not an appropriate use of Corollary 1.

4.2. An Observation from the Example

We commented previously that we can typically supple-
ment an indifference-zone selection procedure with MCB

Table II
Two-Stage Means MCB Solution for the
Airline Reservation Problem

Y, — max;

i Y, ' Lower Limit I Y, T Upper Limit
1 110816.5 0 4,405 7,405
2 106411.8 -7,405 —4,405 0
3 99093.1 —14,724 -11,723 0
4  86568.9 —27,248 —24,248 0

Table 11T
MCB for Goldsman, Nelson and Schmeiser’s
First-Stage Data

Y, — max;.;

i Lower Limit f Upper Limit
1 -17,134 600 18,334
2 ~18,234 —600 17,134
3 —-29,852 -12,118 5,616
4 ~36,272 ~18,538 0

intervals. We state this result as a theorem to be used to
supplement such procedures.

Theorem 2. (MCB intervals for indifference-zone selec-
tion procedures) Using the data produced by the
indifference-zone selection procedures presented in
Dudewicz and Dalal (1975), Rinott (1978), and Clark and
Yang (1986), we may supplement the analysis with MCB
intervals as defined by

*=1-a

< Prip; - max p;
E[-(Y; —max ¥; - §)7,
J#L
(Vi = max ¥; + 8) ], for all i},
j=i
where § is the indifference zone.

Proof. See Nelson and Matejcik (1994).

It is worth noting that the selection procedure of
Clark and Yang permits the use of common random num-
bers by employing the Bonferroni inequality. The details
of our two-stage, Bonferroni MCB procedure are in
Matejcik (1992). We hope that this theorem will cause
selection procedures to be more useful in practice be-
cause of the additional inference that it allows.

5. CONCLUSIONS

We have developed two-stage means MCB proced-
ures. We have shown that they are versatile and easy to
apply. Furthermore, we have argued that two-stage pro-
cedures are appropriate for computer simulation because
computer simulations allow design from a pilot study.
Also, we have suggested guidelines for selecting the first-
stage number of batches, b,. Additionally, we have
shown by example and analysis that MCB can supple-
ment many common selection procedures, thus allowing
many helpful inferences.

APPENDIX
Proof of Theorem 1

Hsu’s multiple bound lemma tells us that we need only
show that T is obtained so that we may make the appro-
priate MCC claims in (3). To do this we modify the proof
in Rinott. '



Fix i. Define Pr{Coverage} as
Pr{Coverage}
=Pr{Y;, = Y; — (u; — nj) > —wy, for all j=i}
=Pr{ ()—jj—ﬂj)"(?i_/-"i)< Wij
[(o?/By) +(af/B)1"  [(0f/Bi)+(o}/B))]

for allj#i},

where o} = E(S?).
Let

=(?/ “Mj)“(?i — W)

;= , for all j=i
' (0B, + (@B !
and
h;
for all j=i.

O oEsh + (@ FsH
Since B; = (hi/w,»j)sz‘ and B, = (h,v/w,_vi)sz2 it follows that
Wi
[(of/B;) + (o}/B))]"?

so that
Pr{Coverage} = Pr{Z; < Q;, for all j=i}.
By standard arguments it follows that the conditional
joint distribution of the Z;’s given S7, ..., St is multi-
variate normal with mean vector equal to zero and cova-

riance matrix determined by Var(Z;) = 1, for all j # i,
and for j = € and €, = i:

Cov(Z;, Z¢)

> Q;

= oi/B; >0
[(of/B)) + (o/B)] (0 #/Be) + (a7/B)]'?
Since the variances are constant, the covariances are
positive, and the Q; are functions of S3, ..., S7 and may
therefore be regarded as constants when we condition on
S1, ..., Si, we have by Slepian’s inequality

Pr{Z; < Q;, for all j=i|S?, ..., S{}
> H Pr{Z; < ijsz, oo, SE

J=1

Let ® denote the standard normal distribution function.
Notice that the marginal conditional distribution of each
Z; given S1, ..., St is ®. Thus

PI'{ZJ < QJ|S%, cee S]%} = (I)(Q]).

Combining the previous equation and the previous in-
equality we obtain

Pr{Z; < Q;, for all j=i}
= E{Pr(Z; < Q;, for all j=i|S}, ..., S})}
> E{H @(Qj)}

j=i

h;
el )
=i \[(a?/B;) + (]/B))]"?
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Let X; = (b,,; — 1)S}/o}, j =1, ..., k. By our
assumptions the X; are independent y* random variables
with b, ; — 1 degrees of freedom. By substitution we
have

Pr{Coverage}

e S—
T {([bo,i‘l]/Xi)+([b0,j"1]/)(j)}”2).

Notice that the expression on the right-hand side of (5) is
independent of o7, ..., 7. Let f,, denote the density
of the x* distribution with m degrees of freedom. Ex-
ploiting the independence of the X}, j = 1, ..., k, we
can simplify (5) to

By
BT of )
e \{boy — 11X) + (Tbo,, — LX) |

h;
i ]
i=i \{([bo,; —11/X:) + ([bo,; — 11/X;)}

- - h,

[l |

o= Jo \{([bo,; —11x) +([bo; — 11y)}!*
'fb(,,j‘l(x) dx}fbw—l()") dy.

Thus, we have shown that Pr{Coverage} = 1 — aif k; is
determined by the integral equation

0

o hi
P
jo fDi “0 ({([bo,;‘ = 11x%) + ([bo; — 1y)}'?

.fbo.j“l(x) dx fb()’,‘~1(y) dy=1—oz. (6)

So, by the definition of Pr{Coverage},
PT{T,"]‘ - (,LL, - /.Lj) > "“Wij, for all]¢l} z21- a.

Notice that the above inequality holds for any /, so ap-
plying Hsu’s multiple-bound lemma proves the theorem.

NOTES

'Notice that 4 is the set of systems i/ whose MCB upper
bound D;" for u; — max;.; u, is positive. Thus, 4 is the
set of all systems that may be inferred to be the best.
However, the most that MCB can infer is that a system is
no worse than the best. Therefore, when ¢ is a singleton
{i} the lower bound D;” must be 0.
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