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Online Appendices
Appendix A. Algorithms
In this appendix we specify the algorithms used in the experiments reported in §5. The algorithms are
implementations of the procedures developed in §4. All algorithms are stated for the case where at
most q control variates are used for any system, but this includes the case q = 0 where control variates
are not used, as explained in §4.2.
The algorithms are constructed for clarity rather than efficiency. They do not address computational

issues such as how to update sample averages and variances, or the order in which to do the screening
comparisons so as to reduce the number that actually have to be made.

A.1. The Standard Algorithm
This is a two-stage algorithm without screening. It is based on a procedure of Chen and Dudewicz
(1976), but with ordinary sample means instead of generalized sample means, allowing for user-
specified unequal error bounds associated with the lower and upper confidence limits, and using
control variates.
(1) USER INPUT: The user specifies the fixed confidence interval width L > 0 and the lower and

upper error bounds �a and �b in �0�1/2
.
(2) ALGORITHM PARAMETERS: Choose the number of stage-0 replications n0 > q + 2 and �C <

min��a/k��b�, the error component devoted to control variates.
(3) STAGE 0 SIMULATION: Simulate �Xij�Cij 
 for all i= 1�2� � � � � k and j = 1�2� � � � �n0.
(4) COMPUTE FINAL SAMPLE SIZES: Set �′′

a ← �a/k−�C , �′′
b ← �b −�C , and the scaling constant

c← 1
L
�tn0−q−1�1−�′′

a
+ tn0−q−1�1−�′′

b

�

For each i = 1�2� � � � � k, compute the residual variance ��2i of regressing Xi1�Xi2� � � � �Xin0
on

Ci1�Ci2� � � � �Cin0
, according to Appendix D, and from it the final sample size

Ni ←max�n0� �c2 ��2i +�2qi�1−�C
���

(5) STAGE 1 SIMULATION: Simulate �Xij�Cij 
 for all i= 1�2� � � � � k and j = n0+ 1�n0+ 2� � � � �Ni.
(6) COMPUTE CONFIDENCE INTERVAL: For each i= 1� � � � � k, compute the estimate ��i from the

regression of Xi1�Xi2� � � � �XiNi
on Ci1�Ci2� � � � �CiNi

, according to Appendix D. Set

a← 1
c
tn0−q−1�1−�′′

a
and b← 1

c
tn0−q−1�1−�′′

b
�

and the confidence interval is �maxi=1�����k ��i − a�maxi=1�����k ��i + b�.

A.2. A Two-Stage Algorithm with Screening
(1) USER INPUT: The user specifies the fixed confidence interval width L > 0 and the lower and

upper error bounds �a and �b in �0�1/2
.
(2) ALGORITHM PARAMETERS: Choose the number of stage-0 replications n0 > q + 2, the error

component �I < �b devoted to screening, and �C < min��a/k��b�, the error component devoted to
control variates.
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(3) STAGE 0 SIMULATION: Simulate �Xij�Cij 
 for all i= 1�2� � � � � k and j = 1�2� � � � �n0.
For each h� i= 1�2� � � � � k such that h 	= i, set


Dhi ←
1
n0

n0∑
j=1

�Xhj −Xij
�

S2hi ←
1

n0− 1
n0∑
j=1

�Xhj −Xij − 
Dhi

2� and

Whi ← tn0−1�1−�I /�k−1

Shi√
n0

�

Set I ← �h= 1�2� � � � � k � ∀ i ∈ I�l
� 
Dhi ≥−Whi�.
(4) COMPUTE FINAL SAMPLE SIZES: Set �′′

a ← �a/k − �C , �′′
b ← �b − �I − �C , and the scaling

constant
c← 1

L
�tn0−q−1�1−�′′

a
+ tn0−q−1�1−�′′

b

�

where q #=maxi∈I qi and qi is the number of control variates in Ci.
For each i ∈ I , compute the residual variance ��2i of regressing Xi1�Xi2� � � � �Xi�n0

on Ci1�Ci2� � � � �Ci�n0
,

according to Appendix D, and from it the final sample size

Ni ←max�n0� �c2 ��2i +�2qi�1−�C
���

(5) FINAL STAGE SIMULATION: Simulate �Xij�Cij 
 for all i ∈ I and j = n0+ 1�n0+ 2� � � � �Ni.
(6) COMPUTE CONFIDENCE INTERVAL: For each i ∈ I , compute the estimate ��i from the regres-

sion of Xi1�Xi2� � � � �XiNi
on Ci1�Ci2� � � � �CiNi

, according to Appendix D. Set

a← 1
c
tn0−q−1�1−�′′

a
and b← 1

c
tn0−q−1�1−�′′

b
�

and the confidence interval is �maxi∈I ��i − a�maxi∈I ��i + b�.

A.3. A Multistage Algorithm with Early Stopping
(1) USER INPUT: The user specifies the fixed confidence interval width L > 0 and the lower and

upper error bounds �a and �b in �0�1/2
.
(2) ALGORITHM PARAMETERS: Choose
(a) the number of stage-0 replications n0 =N�0
 > q+ 2,
(b) the maximum number m of screening stages,
(c) the number l∗ ∈ �1�2� � � � �m− 1� of screening stages at which early stopping is not allowed,
(d) the factor R> 1 by which the sample size grows at each screening stage,
(e) the error component �I < �b devoted to screening, and
(f) the error component �C <min��a/k��b −�I� devoted to control variates.

(3) INITIALIZATION: Set l← 0, I�0
← �1�2� � � � � k�, and N�−1
← 0.
(4) SCREENING STAGE SIMULATION: Simulate �Xij�Cij 
 for all i ∈ I�l
 and j = N�l − 1
 + 1,

N�l− 1
+ 2� � � � �N �l
.
For each h� i ∈ I�l
 such that h 	= i, set



Dhi ←
1

N�l


N�l
∑
j=1

�Xhj −Xij
�

S2hi ←
1

N�l
− 1
N�l
∑
j=1

�Xhj −Xij − 

Dhi

2� and

Whi ← tN�l
−1�1−�I /�m�k−1


Shi√
N�l


�

Set I�l+ 1
← �h ∈ I�l
 � ∀ i ∈ I�l
� 

Dhi ≥−Whi�.
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(5) PROCEED TO NEXT STAGE: Increment l← l+ 1.
If l≤ l∗, or if l <m and �I�l
�> 1, set N�l
←�n0Rl� and return to Step 4.
Otherwise, set M ← l.
(6) COMPUTE FINAL SAMPLE SIZES: Set �′′

a ← �a/k − �C , �′′
b ← �b − �I − �C , and the scaling

constant

c← 1
L
�tN�l∗
−q−1�1−�′′

a
+ tN�l∗
−q−1�1−�′′

b

�

For each i ∈ I�M
, compute the residual variance �'2
i of regressing Xi1, Xi2, � � �, XiN�l∗
 on Ci1, Ci2� � � � �

CiN�l∗
, according to Appendix D, and from it the final sample size

Ni ←max�N �M − 1
� �c2 �'2
i +�2qi�1−�C

���

(7) FINAL STAGE SIMULATION: Simulate �Xij�Cij 
 for all i ∈ I�M
 and j =N�M − 1
+ 1� � � � �Ni.
(8) COMPUTE CONFIDENCE INTERVAL: For each i ∈ I�M
, compute the estimate ��i from the

regression of Xi1�Xi2� � � � �XiNi
on Ci1�Ci2� � � � �CiNi

, according to Appendix D. Set

a← 1
c
tN�l∗
−q−1�1−�′′

a
and b← 1

c
tN�l∗
−q−1�1−�′′

b
�

and the confidence interval is �maxi∈I�M
 ��i − a�maxi∈I�M
 ��i + b�.

A.4. A Multistage Algorithm with Restarting
(1) USER INPUT: The user specifies the fixed confidence interval width L > 0 and the lower and

upper error bounds �a and �b in �0�1/2
.
(2) ALGORITHM PARAMETERS: Choose
(a) the number of stage-0 replications n0 =N�0
 > q+ 2,
(b) the maximum number m of screening stages,
(c) the factor R> 1 by which the sample size grows at each screening stage,
(d) the error component �I < �b devoted to screening,
(e) the error component �C <min��a/k��b −�I� devoted to control variates, and
(f) the prediction confidence level 0< ( < 1/2 for use in choosing the number of replications in

the first stage of the restarted procedure.
(3) INITIALIZATION: Set l← 0, I�0
← �1�2� � � � � k�, and N�−1
← 0.
(4) SCREENING STAGE SIMULATION: Simulate �Xij�Cij 
 for all i ∈ I�l
 and j = N�l − 1
 + 1�

N �l− 1
+ 2� � � � �N �l
.
For each h� i ∈ I�l
 such that h 	= i, set



Dhi ←
1

N�l


N�l
∑
j=1

�Xhj −Xij
�

S2hi ←
1

N�l
− 1
N�l
∑
j=1

�Xhj −Xij − 

Dhi

2� and

Whi ← tN�l
−1�1−�I /�m�k−1


Shi√
N�l


�

Set I�l+ 1
← �h ∈ I�l
 � ∀ i ∈ I�l
� 

Dhi ≥−Whi�.
(5) PROCEED TO NEXT STAGE: Increment l← l+ 1.
If l <m and �I�l
�> 1, set N�l
←�n0Rl� and return to Step 4.
Otherwise, set M ← l.
(6) FIRST STAGE OF MEAN ESTIMATION: Set �′′

a ← �a/�I�M
� −�C and �′′
b ← �b −�I −�C .

For each i ∈ I�M
, compute the residual variance ��2i of regressing Xi1�Xi2� � � � �XiN�M−1
 on
Ci1�Ci2� � � � �CiN�M−1
, according to Appendix D, and set

ni ←max
{
q+ 3�

⌈(
)−1�1−�′′

a
+)−1�1−�′′
b 


L

)2 �N �M − 1
− 1
��2i
�2N�M−1
−1�1−(

+�2qi�1−�C

⌉}
�
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Set n←mini∈I�M
 ni and the scaling constant

c← 1
L
�tn−q−1�1−�′′

a
+ tn−q−1�1−�′′

b

�

Simulate �Xij�Cij 
 for all i ∈ I�M
 and j =N�M − 1
+ 1� � � � �N �M − 1
+ni.
For each i ∈ I�M
, compute the residual variance �'2

i of regressing Xi�N�M−1
+1�Xi�N�M−1
+2� � � � �
Xi�N�M−1
+ni

on Ci�N�M−1
+1�Ci�N�M−1
+2� � � � �Ci�N�M−1
+ni
, according to Appendix D, and set the final

sample size
Ni ←max�ni� �c2 �'2

i +�2qi�1−�C
���

(7) SECOND STAGE OF MEAN ESTIMATION: Simulate �Xij�Cij 
 for all i ∈ I�M
 and j = N�M −
1
+ni + 1� � � � �N �M − 1
+Ni.
(8) COMPUTE CONFIDENCE INTERVAL: For each i ∈ I�M
, compute the estimate ��i from

the regression of Xi�N�M−1
+1�Xi�N�M−1
+2� � � � �Xi�N�M−1
+Ni
on Ci�N�M−1
+1�Ci�N�M−1
+2� � � � �Ci�N�M−1
+Ni

,
according to Appendix D. Set

a← 1
c
tn−q−1�1−�′′

a
and b← 1

c
tn−q−1�1−�′′

b
�

and the confidence interval is �maxi∈I�M
 ��i − a�maxi∈I�M
 ��i + b�.

Appendix B. Proofs
The proofs rely on Proposition 3.1. We show that inequalities (6) and (10) hold. Inequality (6) bounds
the probability of wrongly discarding the best system during screening. We must specify some increas-
ing functions Ga and Gb defined on the positive part of the real line and show that they satisfy
inequality (10), which involves the error in estimating �i, the mean of system i.

Proposition B.1. If for each i = 1�2� � � � � k, the observations Xi1�Xi2� � � � are independent and identically
distributed (i.i.d.) normal random variables, then the standard procedure (Algorithm A.1) without control
variates makes inequalities (2) and (3) hold.

Proof. This procedure has no screening, so �I = 0, I = �1�2� � � � � k�, and inequality (6) holds trivially.
Let Ga and Gb be the cumulative distribution function Ftn0−1

of the t distribution with n0−1 degrees
of freedom. Because the error probability bounds �′

a and �′
b are both in �0�1/2
, while Ftn0−1

�0
= 1/2
and limx→� Ftn0−1

�x
= 1, Ga�0
 < 1−�′
a < limx→�Ga�x
 and Gb�0
 < 1−�′

b < limx→�Gb�x
.
In the absence of control variates, ��i =

∑Ni
j=1Xij/Ni. The distribution of � ��i −�i
/�Si/

√
Ni
 is t with

n0−1 degrees of freedom (Hochberg and Tamhane 1987, Theorem 2.1). By Equation (14), cSi/
√
Ni ≤ 1.

Thus, for x≥ 0,

Pr � ��i −�i ≤ x�≥ Pr
{
��i −�i ≤

xcSi√
Ni

}
= Pr

{
��i −�i

Si/
√
Ni

≤ xc

}
= Ftn0−1

�xc
�

Similar reasoning provides the other half of inequality (10). �

When we employ control variates, the terminal sample size in our procedures is of the form

Ni =max�n0� �c2 ��2+�2q�1−�C
���

However, this formula is a convenient approximation for the exact required sample size

min
n≥n0

{
n

∣∣∣∣
(
n− q

q

)(
n

c2 ��2 − 1
)
≥�1−�C�q�n−q

}
�

where �1−�C�q�n−q is the 1−�C quantile of the F distribution with �q�n−q
 degrees of freedom (Nelson
and Staum 2006). Although the proofs that follow refer to algorithms incorporating the approximation,
they depend on having the exact required sample size.

Proposition B.2. Suppose that for each i = 1�2� � � � � k, Xij = �i + �Cij − -i

′.i + /ij , where the residuals

�/ij� j = 1�2� � � �� and controls �Cij� j = 1�2� � � �� are independent sets of i.i.d. normal random variables, .i is
an unknown constant vector, E�Ci1�= -i, and E�/i1�= 0. Also suppose that for each j = 1�2� � � � � the vector
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�Xij�X2j � � � � �Xkj
 is multivariate normal. Thenn the standard procedure (Algorithm A.1) and the two-stage
procedure with screening (Algorithm A.2) make inequalities (2) and (3) hold.

Proof. Inequality (10) follows from Proposition 4 of Nelson and Staum (2006), using Ga�x
=Gb�x
=
Ftn0−q−1�x
−�C , where q is the number of controls.
The error probability bounds �′

a and �′
b are both in �0�1/2
, while �C <min��′

a��
′
b�. From Ga�0
=

Gb�0
= 1/2−�C and limx→�Ga�x
= limx→�Gb�x
= 1−�C , it follows that Ga�0
 < 1−�′
a < limx→�Ga�x


and Gb�0
 < 1−�′
b < limx→�Gb�x
.

If there is no screening (Algorithm A.1), inequality (6) holds trivially. If there is screening
(Algorithm A.2), inequality (6) follows from reasoning along the lines of the appendix of Nelson
et al. (2001b): first, by construction of I , the probability of correct screening Pr��k� ∈ I� = Pr�∀ i =
1�2� � � � � k� 
D�k�i ≥ −W�k�i�. Next, define '2

hi #= Var�Xh − Xi� and Zi #= �
D�k�i − ���k� − �i

/�'�k�i/
√
n0
,

which is standard normal. By symmetry of the standard normal distribution,

Pr��k� ∈ I� = Pr

{
∀ i= 1� � � � � k�Zi ≤

W�k�i + ���k� −�i


'�k�i/
√
n0

}

≥ Pr

{
∀ i= 1� � � � � k�Zi ≤ tn0−1�1−�I /�k−1


S�k�i
'�k�i

}
�

by definition of W�k�i and using ��k� − �i ≥ 0. Applying the Bonferroni inequality, the probability of
correct screening is at least

1−
k∑

i=1
Pr

{
Zi > tn0−1�1−�I /�k−1


S�k�i
'�k�i

}
�

The term for i = �k� is zero because Z�k� = 0, while the other k − 1 terms are �I/�k − 1
 because Zi

and �n0− 1
�S�k�i/'�k�i

2 are independent and their distributions are respectively standard normal and

chi-squared with n0− 1 degrees of freedom. Consequently, Pr��k� ∈ I �≥ 1−�I . �

Proposition B.3. Under the conditions of Proposition B.2, the multistage procedure with early stopping
(Algorithm A.3) makes inequalities (2) and (3) hold.

Proof. Inequality (6) follows from a screening error decomposition via the Bonferroni inequality:

Pr��k�� I�m
�≤
m−1∑
l=0

∑
i 	=�k�

Pr�
X�k��l
 < 
Xi�l
−W�k�i�l
�≤
m−1∑
l=0

∑
i 	=�k�

�I

m�k− 1
 = �I �

The univariate inference Pr�
X�k��l
 < 
Xi�l
 − W�k�i�l
� ≤ �I/�m�k − 1

 is the same as in the proof of
Proposition B.2 because the sample sizes N�l
 are constants.
Inequality (10) holds with Ga�x
 = Gb�x
 = FtN�l∗
−q−1�x
− �C by Proposition 4 of Nelson and Staum

(2006), which applies because there is a residual variance estimator (called �'2
i here and ��2i �n0
 there)

formed from a regression using an initial sample of a fixed number of observations (called N�l∗
 here
and n0 there), and the final sample size Ni is set in the same way as a function of the residual variance
estimator. �

Proposition B.4. Under the conditions of Proposition B.2, the multistage procedure with restarting (Algo-
rithm A.4) makes inequalities (2) and (3) hold.

Proof. Steps 6–8 of Algorithm A.4 are simply the standard algorithm (Algorithm A.1) applied with
unequal initial sample sizes ni and a set I�M
 of systems both of which are determined by Steps 1–5
of Algorithm A.4. We can view this as a randomly generated simulation problem, where restarting
makes the random variates used in Steps 6–8 independent of the mechanism in Steps 1–5 that ran-
domly generates the problem. We compensate for the unequal sample sizes by using n #=mini∈I�M
 ni

in setting the degrees of freedom while computing the scaling constant c. Decreasing the degrees of
freedom increases the final sample size and thus also increases the probability that the confidence
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interval contains the largest mean ��k�. Applying Proposition 4 of Nelson and Staum (2006) to the ran-
domly generated problem shows that inequality (10) holds with Ga�x
=Gb�x
= Ftn−q−1�x
−�C for each
i ∈ I�M
. Because there is no screening in Steps 6–8, I = I�M
 and Proposition 3.1 implies

Pr
{
max
i∈I

�i ≥max
i∈I

��i − a
}
≥ 1−�a and Pr

{
max
i∈I

�i ≤max
i∈I

��i + b
}
≥ 1−�b +�I �

The reason that the upper bound for the probability of a violation of the upper confidence limit is
�b − �I is that Step 6 of Algorithm A.4 sets �′′

b ← �b − �I − �C while the corresponding Step 4 of
Algorithm A.1 sets �′′

b ← �b −�C because no screening takes place in the standard algorithm.
Consider the lower confidence limit and notice that ��k� #=maxi=1�2�����k �i ≥maxi∈I �i, whatever the

subset I ⊆ �1�2� � � � � k� generated by Steps 1–5 of Algorithm A.4 may be. Consequently,

Pr
{
��k� ≥max

i∈I
��i − a

}
≥ Pr

{
max
i∈I

�i ≥max
i∈I

��i − a
}
≥ 1−�a�

which verifies inequality (2). Next consider the upper confidence limit and notice that if �k� ∈ I , then
��k� #=maxi=1�2�����k =maxi∈I �i. Consequently,

Pr
{
��k� ≤max

i∈I
��i + b

}
≥ Pr

{
�k� ∈ I���k� ≤max

i∈I
��i + b

}
= Pr

{
�k� ∈ I�max

i∈I
�i ≤max

i∈I
��i + b

}
≥ 1−Pr��k�� I�−Pr

{
max
i∈I

�i >max
i∈I

��i + b
}
�

From the result of Proposition 3.1, we found Pr�maxi∈I �i >maxi∈I ��i + b� ≤ �b − �I . Because Steps 3
to 5 of Algorithms A.3 and A.4, which perform screening, are the same, the proof of Proposition B.3
applies here and shows that inequality (6) holds: Pr��k�� I�≤ �I . The result is Pr���k� ≤maxi∈I ��i+b�≥
1−�I − ��b −�I
= 1−�b, which verifies inequality (3). �

Appendix C. Variants
This appendix discusses possible variants of the procedures discussed in the text.

C.1. Common Random Numbers

C.1.1. Grouping. Common random numbers are intended to induce positive correlation between
systems, reducing the variances of the differences of their sample means, and thus facilitating screen-
ing. However, common random numbers may instead induce negative correlation between some pairs
of systems, which inflates the variance of the difference of their sample means. If this were known in
advance, it would be possible to divide the systems into groups such that no group contains a pair
of systems with negative correlation under common random numbers. Then one would give each
group its own set of common random numbers, independent of those belonging to all other groups.
This approach ensures that all systems have nonnegative correlation, so that common random num-
bers cannot hurt screening. Moreover, this approach delivers a multiplicative error decomposition, as
explained in §C.2.1. However, we found that this was not helpful for the examples we considered.
To screen out an inferior system i quickly requires that there be some superior system h such that
the expectation of the difference 
Xh − 
Xi is large relative to its standard deviation. We found that
typically a system has negative correlation only with a few of the superior systems, not all of them,
and that the negative correlations are small in magnitude. Consequently, negative correlations have
a very small effect on screening. The multiplicative error decomposition discussed in §C.2.1 also has
only a very small effect on simulation efficiency. Thus, grouping systems to avoid negative correlation
has only very slight benefits. These benefits are less important than the drawback that some pairs of
systems with positive correlation are split between different groups, because one member of the pair
has negative correlation with a third system, and thus the benefits of common random numbers for
this pair are lost. In conclusion, we recommend not dividing systems into groups that are simulated
independently.
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C.1.2. Multistage Procedures without CRN. The sample size during screening should be the same
for all systems when using CRN. Suppose instead that screening featured comparisons of averages
over samples of unequal size,

∑nh
j=1Xhj/nh and

∑ni
j=1Xij/ni, where nh < ni. The variance of the difference

between these averages is '2
i /ni−2'2

hi/ni+'2
h/nh, where '2

hi =Cov�Xhj�Xij 
. Using only nh replications
to form both sample averages, Var�

∑nh
j=1�Xij −Xhj
/nh� = �'2

i − 2'2
hi + '2

h
/nh. The change in variance
due to using the extra replications Xij for j = nh + 1�nh + 2� � � � �ni is �1/ni − 1/nh
�'

2
i − 2'2

hi
= �1/nh −
1/ni
�21hi'h − 'i
'i, where 1hi is the correlation that common random numbers induce between Xh

and Xi. When 1hi > 'i/�2'h
, this change is positive, meaning that the inclusion of extra replications of
Xi actually increases the variance of the difference used in screening, making screening less effective.
Thus, when common random numbers are effective in inducing high correlation, the use of unequal
sample sizes during screening is a mistake.
In the absence of common random numbers, it would be possible to allow different systems to

have different sample sizes during screening, and to replace sample variances of differences S2hi with
sums of sample variances S2h and S2i . Lesnevski et al. (2004) describe a scheme for choosing different
sample sizes during screening and present numerical results for the basket put example described
in §2.1. However, the presence of unequal sample sizes in screening complicates matters. The screening
threshold

Whi = tn0−1�1−�I /�m�k−1



√
S2h

Nh�l

+ S2i

Ni�l


in Lesnevski et al. (2004) can only be proved to deliver Pr��k� � I�≤ 2�I : see the appendix of Nelson
et al. (2001b). However, Pr��k�� I�≤ �I holds in limiting cases and held reliably in extensive simulation
experiments (Nelson et al. 2001a). This issue does not affect our procedures with common random
numbers.

C.2. Error Spending

C.2.1. Multiplicative Decomposition. In Lesnevski et al. (2004), we used a multiplicative decom-
position 1 − �b = �1 − �I
�1 − �′

b
. This is frequently possible in settings such as inequality (5); see
also Wilson (2001). However, we found that multiplicative decomposition provided negligible effi-
ciency gains over additive decomposition. Furthermore, in the presence of common random numbers,
discussed in §4.3, it is easier to establish coverage bounds given an additive decomposition.
In the case of independent sampling of the Xi, or by means of Slepian’s inequality (Hochberg and

Tamhane 1987, Theorem A2.2.1) in the case when common random numbers induce nonnegative
correlation among all systems (Corr�Xi�Xj�≥ 0 for all i� j), one may use a multiplicative decomposition
in inequality (8) instead of an additive decomposition. That is, instead of �a/k in inequality (9), we
would have 1− �1− �a


1/k. The result is a reduction in the required sample sizes to attain the fixed
confidence interval width, but we found that this effect was negligible in practice.

C.2.2. Unequal Allocations. In inequality (8), we could allocate error unequally across systems as
long as the individual error probabilities sum to �a. If we could guess in advance some information
about the systems, we might allocate less error to those systems that are more likely to be screened
out or have lower variances.
When systems are simulated independently, it is possible to give unequal allocations of error in

constructing the various thresholds Whi�l
. While it would require good advance guesses about the
problem’s structure to motivate unequal allocations across systems, the m screening stages are different
because some come before others, and the earlier ones have higher variances associated with the
sample averages. Therefore, it might make sense to allocate more error to earlier stages so as to screen
out systems more quickly at first, but we do not explore this possibility here.

C.3. A Different Approach to Estimating the Largest Mean
Instead of using the procedure of Chen and Dudewicz (1976), one might estimate the largest mean
by first employing a selection-of-the-best procedure, and then generating independent observations
to estimate the mean of the selected system. In the existing literature, selection procedures use an
indifference-zone approach: they find a system whose mean is within 2 of the best with a given prob-
ability. To be valid, the combined procedure must divide the fixed width L and the error probability �
between selection and estimation. For example, half of L and half of the error could be allocated for
selection. (Selection procedures require an indifference-zone parameter 2 and only guarantee to select
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Table EC.1 Efficiency of Our Multistage Procedure with Restarting
Relative to a Selection-and-Estimation Procedure at 99% Confidence

Example

Options portfolio Basket put

Precision= L

Allocated to selection 0.3% 1% 5% 0.3% 1% 5%

�= L/4 7�8 20 55 6.4 13 4.2
�= L/2 5�9 10 18 5.2 5.9 1.5
�= 3L/4 17 18 17 17 13 2.3

the best if it is 2 better than all other systems. It is necessary to choose 2 < L since it is impossible to
recover from an incorrect selection in the estimation phase.)
The major disadvantage of such a procedure is that it should be significantly less efficient than our

multistage procedures. The reason is that the total sample size required for estimation is inversely
proportional to L2 (see Equations (13) and (14)): halving L by allocating half the width to selection
causes the required sample size to increase fourfold. On the other hand, for all available selection
procedures, the expected number of observations required to select a single system also grows very
rapidly as the indifference-zone parameter 2 shrinks. For example, in the fully sequential (“KN”)
procedure of Kim and Nelson (2001), the distance to the screening boundary is proportional to 1/22.
However L is split between selection and estimation, the expected number of observations required
for the combined procedure will be large.
To illustrate this, let us consider a combined procedure where we use the KN procedure as the

selection method. Using the basket put and options portfolio examples, we performed a number of
experiments allocating one quarter, one half, or three quarters of L to selection. We set L, �a, �b and
the confidence level the same way we did in our experiments in §5, and we set the error allocated
for selection here equal to the error allocated for screening in §5. Table EC.1 summarizes the results,
which confirm that our multistage procedure is more efficient than a simpler procedure combining
separate phases of selection and estimation. The numbers reported are ratios of the total sample size
required by a procedure which follows KN by estimation to the sample size required by our multistage
procedure with restarting.

Appendix D. Control Variate Estimators
This appendix provides definitions and notation for the paper’s use of control variates; it is based on
Nelson and Staum (2006). We assume that Xij , the jth output from the simulation of system i, can be
represented as

Xij =�i + �Cij − -i

′.i +/ij �

For each system i = 1�2� � � � � k and any sample size n, �/ij� j = 1�2� � � � �n� are i.i.d. � �0� �2i ) random
variables. The qi × 1 vector Cij is called the control variate; for fixed i and j = 1�2� � � � �n the control
variates are also i.i.d., are independent of /ij , and have known expected value -i. The multiplier .i

is a qi × 1 vector of unknown constants that captures the relationship between the output Xij and the
control Cij , while /ij represents that part of the variability in Xij that is not explained by the controls.
We define the CV estimator; the development is based on Nelson (1990).
Let

Xi�n
=




Xi1

Xi2

���

Xin




and Ci�n
=




Ci1

Ci2

���

Cin




be vectors of the output and controls across all n replications from system i. Define the sample mean
of the outputs and controls as 
Xi�n
 #=

∑n
j=1Xij/n and �Ci�n
 #=

∑n
j=1Cij/n. In this appendix, for clarity

we append “�n
” to represent quantities defined across n replications.
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To define the CV point estimator, let

L′
i�n
 #= ��Ci1− �Ci�n

� �Ci2− �Ci�n

� � � � � �Cin − �Ci�n

��

Then the CV estimator of �i is

��i�n
 =
[
1
n
1′n×1− � �Ci�n
− -i


′�L′
i�n
Li�n



−1L′
i�n


]
Xi�n


= 
Xi�n
− � �Ci�n
− -i

′ �.i�

where 1n×1 is a column n-vector whose entries all equal one, and �.i, defined by the equations imme-
diately above, is the usual least-squares regression slope coefficient (Nelson 1990). Also define

��2i �n
 #=
1

n− qi − 1
n∑

j=1
�Xij − ��i�n
− �Cij − -i


′ �.i�n
�
2

as the residual variance estimator.
In Nelson and Staum (2006) we show that if the assumptions made in this appendix hold and

Cij has a multivariate normal distribution, then ��i�Ni
−�i satisfies inequality (10) with Ga�x
=Gb�x
=
Ftn0−q−1�x
−�C .
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