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In financial risk management, coherent risk measures have been proposed as a way to avoid undesirable prop-erties of measures such as value at risk that discourage diversification and do not account for the magnitude of
the largest, and therefore most serious, losses. A coherent risk measure equals the maximum expected loss under
several different probability measures, and these measures are analogous to “populations” or “systems” in the
ranking-and-selection literature. However, unlike in ranking and selection, here it is the value of the maximum
expectation under any of the probability measures, and not the identity of the probability measure that attains
it, that is of interest. We propose procedures to form fixed-width, simulation-based confidence intervals for the
maximum of several expectations, explore their correctness and computational efficiency, and illustrate them on
risk-management problems. The availability of efficient algorithms for computing coherent risk measures will
encourage their use for improved risk management.
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1. Introduction
Both poor risk measures and scarcity of computa-
tional resources hamper effective risk management.
For example, value at risk (VaR) is currently used by
nearly all major financial institutions and is enshrined
in the international regulatory framework of the Basel
accords. The owner of a portfolio may experience a
loss, and the goal of risk measurement is to quan-
tify the risk inherent in this possibility of loss. VaR is
a quantile of the distribution of this loss, having the
interpretation of the largest likely loss. One of VaR’s
flaws is that it can discourage diversification, which
would reduce risk, while enabling and encouraging
business units to hide risks by subdividing portfo-
lios into different accounts, thus making it more dif-
ficult for risk managers and regulators to perform
their supervisory functions. Another flaw is that VaR
fails to take into account the magnitude of the largest
losses, which pose the gravest danger. As a result,
financial institutions and regulators are considering
moving away from VaR toward superior risk mea-
sures, primarily coherent risk measures of the type
introduced by Artzner et al. (1999), as a suitable basis
for financial risk management. Coherent risk mea-
sures are also applicable to the problem of pricing
derivative securities with good deal bounds. Under
some conditions, the resulting bid and ask prices can

be expressed in terms of coherent (or convex) risk
measures (Jaschke and Küchler 2001, Staum 2004).
The practice of financial risk management and

derivative security pricing frequently involves inten-
sive computer simulation. With this application in
mind, we develop sequential �multistage� simulation
procedures that generate a fixed-width, two-sided
confidence interval for a coherent risk measure that is
the maximum of several expectations. The availabil-
ity of efficient algorithms for computing coherent risk
measures will facilitate improved risk management.
Any coherent risk measure � with suitable continu-

ity properties has a representation of the form

��Y �= sup
P∈�

EP�−Y/r�	 (1)

where Y is the value of a portfolio at a future time
horizon, 1/r is a stochastic discount factor which rep-
resents the time value of money, and � is a set of
probability measures (Delbaen 2002, Theorem 3.2).
Equations of a similar form exist for the related prob-
lems in derivative security pricing. We simplify the
problem somewhat by assuming that the set � has
only a finite number k of elements P1	P2	 � � � 	Pk. This
assumption often holds, for example, when the deci-
sion maker designs the coherent risk measure (or the
underlying acceptance set, in the case of derivative
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security pricing) by specifying k generalized scenar-
ios. The assumption also covers approximation of �
by the convex hull of k probability measures. Let
X =−Y/r and �i = EPi �X�. The risk measurement (1)
involves a single random variable X, which is a
negative discounted portfolio value or a discounted
loss, viewed under multiple probability measures. For
clarity in discussing simulations, let Xi be a ran-
dom variable whose distribution under the probabil-
ity measure Pr is the same as that of X under Pi, that
is, such that Pr�Xi ≤ x�= Pi�X ≤ x�.
Financial simulations typically require large sam-

ples, so we assume, for purposes of theoretical analy-
sis, that sample averages of each Xi are approximately
normally distributed. Therefore, we study inference
for maxi=1	2	���	k �i based on data Xij ∼ � ��i	�

2
i �,

j = 1	2	 � � � 	 where the means and variances are all
unknown. This problem is the same as that studied
in the literature on ranking and selection, in which
the primary goal is inference about the identity of
the maximum (Bechhofer et al. 1995). Because of this
commonality, the results presented here are applica-
ble to the problem of selecting the best system if one
is also interested in knowing the mean of the best sys-
tem, which is different from estimating the mean of
the selected system. For convenience, we will refer to
“system i” and to �i and �2i as its mean and variance,
rather than referring to probability measure Pi and to
the mean and variance of X under it.
The problem of estimating the maximum is more dif-

ficult than that of selecting the best. To see this, we
introduce more notation. Define �i� as the index of
the ith smallest mean, ��i�. Thus, ��k� =maxi=1	2	���	k �i

is the largest mean, which we want to estimate. Let
�̂i be an estimator for �i. An obvious choice is �̂i = �Xi,
the sample average of the random variable Xi. The
problem features a natural bias: the most obvious esti-
mator maxi=1	2	���	k �Xi is an upper bound for, and has
a larger expectation than, �X�k�, whose mean is ��k�.
Even maximum likelihood estimation for this prob-
lem is not simple and produces remarkable results
(Dudewicz 1971). The effect of positive bias in esti-
mating the maximum, applied to risk management,
would be overestimation of risk, resulting in exces-
sively conservative oversight and unduly high capital
charges for risky activities.
The attraction of the fixed-width confidence-

interval approach is that it avoids the need to directly
quantify the bias in maxi∈I �̂i as an estimator for
��k�; instead, we simply take the confidence-interval
width L small enough so that the error is negligible
relative to the decision that must be made.
Our starting point is a two-stage procedure for

forming a fixed-width confidence interval for the
largest mean of k independent normal populations
due to Chen and Dudewicz (1976). We enhance the

Chen-Dudewicz procedure in a number of ways so
as to make it useful in the type of risk manage-
ment simulations we have in mind. Specifically, we
use screening ideas from ranking and selection to
reduce drastically the number of systems that need
to be simulated to estimate the maximum, and we
use variance-reduction techniques to sharpen the
screening and reduce the total sample size required
for estimating the maximum. To sharpen screening,
we employ common random numbers (CRN; see
Law and Kelton 2000) to induce positive correlation
between the systems and thereby reduce the variance
of their differences. To reduce the number of repli-
cations required for estimation, we employ control-
variate estimators (CV; see Law and Kelton 2000) to
exploit strong correlation between the response of
interest, X, and a collection of random variables with
known expectations, called control variates. Control
variates are often plentiful in financial simulations
where the risks associated with individual compo-
nents of a portfolio or the values of simple financial
instruments are easily computed. The introduction of
screening, CRN, and CV required significant method-
ological advances that we report here.
In Online Appendix B (see the e-companion for

all online appendices),1 we prove the validity of the
new procedures, under specified conditions, includ-
ing normally distributed data. We study the robust-
ness of a more advanced version of our procedures to
non-normality in Lesnevski et al. (2006). For the sake
of simplicity and convenience, we employ an approx-
imation to a sample size formula which is required
for validity. This approximation is quite accurate, as
discussed in Nelson and Staum (2006).
Another approach to estimating the largest mean is

to use a procedure for selecting the best system, then
to estimate its mean using independently generated
observations: in Online Appendix C.3, we discuss this
approach and explain why it tends to be less efficient.
Section 2 contains an exposition of two examples

that motivated our development of new procedures
for estimating coherent risk measures by simulation.
Section 3 explains our framework for proving bounds
on error probabilities of a fixed-width confidence
interval for the largest of k means. In §4, we use
this framework to develop several procedures for gen-
erating such a confidence interval. The reader who
is more interested in applying our procedures than
in theoretical analysis may be served best by read-
ing Online Appendix A, which contains algorithms,
instead of §4. Section 5 provides a computational eval-
uation of the efficiency and coverage of the proce-
dures developed in §4 when applied to the examples

1 An electronic companion to this paper is available as part of the
online version that can be found at http://mansci.journal.informs.
org/.
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of §2, leading to conclusions in §6. The e-companion
to this paper contains the appendices.

2. Motivating Examples
2.1. Basket Put
We will test the performance of our procedures in
pricing a basket put option. This is a derivative secu-
rity whose payoff at a terminal time T is max�0	
K−w′S�T ��, where K is a contractually specified strike
price, w is a vector of weights, and S�T � is the vec-
tor of terminal prices of the securities in the basket.
The basket put is the right to sell the basket of secu-
rities for the strike price K at time T . If the under-
lying security price vector S obeys the Black-Scholes
model (see, e.g., Shiryaev 1999, Chap. VII, §1b), the
basket put’s price should be its expected discounted
payoff.
Under the Black-Scholes model, the price vector S

follows multivariate geometric Brownian motion with
drift r , the risk-free interest rate, and with covariance
matrix �. That is, ln Sj�T �= ln Sj�0�+ �r −�Aj�2/2�T +
AjZ

√
T , where A is a matrix satisfying AA′ = �,

�Aj� is the Euclidean norm of its jth row, i.e., the
volatility of the jth asset, and Z is a multivariate stan-
dard normal random vector. The short-term interest
rate r is observable, and there are standard methods
for calibrating the underlying securities’ individual
volatilities �Aj�, whether from historical data or by
fitting to observable prices of market-traded options
on the underlying securities: see Cont and Tankov
(2004, Chaps. 7 and 13) and Shiryaev (1999, Chap. IV).
However, estimation of the nondiagonal elements of
� poses a greater problem. For pricing the basket
put, the crucial quantity is �w′A�, the volatility of the
basket, and this depends strongly on the correlations
between assets. There may be a range of plausible cor-
relations and thus a range of plausible prices for the
basket put.
In this example, the basket is a weighted aver-

age of three security prices with weights w1 = 0�5,
w2 = 0�3, and w3 = 0�2. The initial security prices are
all 100, and the strike price is K = 85. The inter-
est rate r = 5% and the volatilities are �A1� = 40%,
�A2� = 30%, and �A3� = 20%. To account for uncer-
tainty about correlations, we use the k= 43 = 64 prob-
ability measures produced by allowing each of the
three pairwise correlations to be 0.2, 0.35, 0.55, or
0.75. Although the payoff in this example is far from
normally distributed, the sample averages are approx-
imately normally distributed, and the minimum cov-
erage guarantees for the confidence limits held in all
our experiments, which include 5,000 independently
simulated confidence intervals (§5).
The three control variates used in this example are

the discounted payoffs of put options with strike K

on each individual asset in the basket. Their means
are given by the Black-Scholes pricing formula, based
on the known volatilities.

2.2. Options Portfolio
In this example, we assess the risk of a portfolio of
European-style call and put options on three assets
with initial prices of 100 and terminal prices S1�T �,
S2�T �, and S3�T �. All options in the portfolio expire at
a terminal time T . We also consider a market index
whose terminal level is S0�T �. For each of j = 0	1	2	3,
Sj�T � follows geometric Brownian motion with drift dj
and volatility �j , so ln Sj�T �= ln Sj�0�+ �dj −�2j /2�T +
�jWj

√
T , where Wj is standard normal. There is a

one-factor model of dependence among the assets:
let  1,  2,  3 be constant “factor loadings.” Under
probability measure P, Z0	Z1	Z2, and Z3 are indepen-
dent standard normal random variables, W0 =Z0, and
Wj =  jZ0 +

√
1− 2j Zj for j = 1	2	3. In this model,

Z0 corresponds to the market factor common to all
assets, while Z1	Z2, and Z3 are idiosyncratic factors
corresponding to each individual asset.
The risk measure we consider in this setting is the

maximum expected loss incurred while holding the
portfolio, where the maximum is taken over 44 = 256
conditional expectations given a generalized scenario.
Of the probability measures Pi in Equation (1), 255 are
defined by Pi�E� = P�E � Ai� for some event Ai of
probability P�Ai� = 1/20 = 5%, while the 256th prob-
ability measure is P itself. This risk measure is simi-
lar in spirit to worst conditional expectation (Artzner
et al. 1999, §5). We construct generalized scenarios
by restricting some of the factors Z0, Z1, Z2, and Z3.
Each of the factors can be “up” (corresponding to
a large increase of the asset price), “down” (a large
decrease), “middle” (not extreme), or “unrestricted.”
The probabilities of the restrictions on the restricted
factors are always equal. For example, letting " be the
standard normal distribution function, in the scenario
“up-down-unrestricted-unrestricted,” Z0 is sampled
conditional on exceeding "−1�1− 1/√20�, Z1 is sam-
pled conditional on being below "−1�1/

√
20�, while

Z2 and Z3 are not restricted. By independence among
Z0, Z1, Z2, and Z3, the probability of this event is 1/20.
The time horizon T is one week, and the parameters
were calibrated using three years of historical weekly
data on the S&P 500 index and shares of Intel (INTC),
ExxonMobil (XOM), and Microsoft (MSFT). The result
was the annualized volatilities �1 = 39�8%, �2 = 19�3%,
and �3 = 27�0% and the factor loadings  1 = 0�617,
 2 = 0�368, and  3 = 0�785 to match the observed cor-
relations. Because one week is such a short period
of time that the expected return is negligible, while
mean returns are hard to estimate due to a high ratio
of volatility to mean, we take each dj = 0. Because we

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Lesnevski, Nelson, and Staum: Simulation of Coherent Risk Measures Based on Generalized Scenarios
Management Science 53(11), pp. 1756–1769, © 2007 INFORMS 1759

Table 1 Amounts of Options in the Portfolio

Strike price
Option

Asset type 85 90 95 100 105 110 115

1 Put −2�000 −2�000 −2�500 1�000 0 0 0
2 Put 2�500 −1�000 1�000 500 0 0 0
3 Put 1�500 1�000 2�500 −1�500 0 0 0

1 Call 0 0 0 −1�000 1�500 −500 −1�000
2 Call 0 0 0 1�500 −2�500 2�000 −2�000
3 Call 0 0 0 −2�000 −1�000 1�000 2�500

do not need to simulate S0, the parameters d0 and �0
are not relevant.
We investigated the performance of our procedures

on several portfolios. The extent of the efficiency
improvement depends on the portfolio, so here we
present a portfolio yielding results we consider typi-
cal. Table 1 lists the number of each type of option in
this example portfolio. Each option is the right to buy
or sell 100 shares. We do not use control variates in
this example.

3. A Framework for Estimating
the Maximum

Recall that our goal is to provide a fixed-width con-
fidence interval for ��k�, the largest mean. Our meth-
ods seek a random subset I ⊆ �1	2	 � � � 	 k�, estimators
�̂i	 i= 1	2	 � � � 	 k, and constants a	 b > 0 such that

Pr
{
��k� ≥max

i∈I
�̂i − a

}
≥ 1−&a	 (2)

Pr
{
��k� ≤max

i∈I
�̂i + b

}
≥ 1−&b	 (3)

and a+ b= L, where the user specifies the error prob-
ability bounds &a	&b ∈ �0	1/2� and the confidence
interval width L. Together, inequalities (2) and (3)
imply that

Pr
{
max
i∈I

�̂i − a≤��k� ≤max
i∈I

�̂i + b
}
≥ 1−&a−&b� (4)

The random subset I contains the systems deemed
to have a sufficiently high chance of being the best,
and will be generated in such a way as to give the
best system �k� a high probability of being in I . The
systems not in I are “screened out.” For an argument
that screening is likely to enhance efficiency, see §4.3.
The appropriate error probability bounds &a	&b

and confidence interval width L depend on the appli-
cation. In pricing derivatives, we might use an error
probability bound &b = 0�2% that is very low because
offering to sell a derivative security at a low price
can lead to large losses, which can be tolerated only
very infrequently. We might also consider confidence
interval widths L of 0.1% to 1% of the derivative’s
true value because these widths are comparable to or
slightly smaller than typical bid-ask spreads. That is,

at greater widths, one would be unable to quote com-
petitive prices. Lesser widths would be unnecessar-
ily precise. A risk-management problem, on the other
hand, does not require such high confidence and pre-
cision. Risk management is more a matter of decisions
internal to a firm, so there are no customers to take
advantage of violations of the upper confidence limit
when they occur (in at most a fraction &b of the cases),
or whose business is lost when the upper confidence
limit is too far above the true value. Moreover, in
risk-management problems, X involves the value of
a portfolio containing many securities, so it is usu-
ally very expensive to generate. If so, then demanding
very high confidence or precision could result in an
unacceptably large time to run the simulation.
Consider the upper confidence limit, and note that

Pr
{
��k� ≤max

i∈I
�̂i + b

}

≥ Pr��k� ∈ I	��k� ≤ �̂�k�+ b�

≥ 1−Pr��k� �∈ I�−Pr���k� > �̂�k�+ b�� (5)

Thus, if we can guarantee that

Pr��k� �∈ I�≤ &I and (6)

Pr���k� > �̂�k�+ b�≤ &′
b	 (7)

where &I + &′
b = &b, then the upper confidence limit

will be valid as in inequality (3).
Next, consider the lower confidence limit, and note

that

Pr
{
��k� ≥max

i∈I
�̂i − a

}
≥ Pr

{
��k� ≥ max

i=1	2	���	k
�̂i − a

}

= Pr��̂i≤��k�+a	 i=1	2	���	k�
≥ Pr��̂i ≤�i + a	 i= 1	2	 � � � 	 k�

≥ 1−
k∑
i=1
Pr��̂i > �i + a� (8)

by the Bonferroni inequality. Therefore, the lower con-
fidence limit will be valid as in inequality (2) if, for
i= 1	2	 � � � 	 k,

Pr��̂i > �i + a�≤ &′
a = &a/k� (9)

To obtain a fixed-width confidence interval, we
need to determine the half-widths a and b, given the
width L and the error spending structure, so that
a+ b= L and inequalities (7) and (9) hold. To verify
the validity of the confidence limits for the estima-
tion of the systems’ means �i, we need to show that
there are increasing functions Ga and Gb defined on
the positive part of the real line, such that, for all i=
1	2	 � � � 	 k and x > 0,

Pr��̂i −�i > x�≤ 1−Ga�cx� and

Pr��̂i −�i <−x�≤ 1−Gb�cx�	
(10)
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where

a= 1
c
G−1

a �1−&′
a�	 (11)

b= 1
c
G−1

b �1−&′
b�	 and (12)

c= 1
L
�G−1

a �1−&′
a�+G−1

b �1−&′
b��� (13)

This determines the sampling scheme in such a way
that it bounds the distribution of �̂i−�i by a function
that is free of dependence on i (see §§4.1 and 4.2 for
examples).

Proposition 3.1. Inequalities (2) and (3) hold if in-
equalities (6) and (10) hold, where Ga and Gb are increas-
ing functions defined on the positive part of the real line,
satisfying Ga�0� < 1 − &′

a < limx→�Ga�x� and Gb�0� <
1−&′

b < limx→�Gb�x�.

Proof. Because Ga�0� < 1− &′
a < limx→�Ga�x� and

Gb�0� < 1− &′
b < limx→�Gb�x�, a and b exist and are

positive. For all i= 1	2	 � � � 	 k, by inequality (10) and
Equation (11), Pr��̂i −�i > a�≤ &′

a, while by inequal-
ity (10) and Equation (12), Pr��̂i−�i <−b�≤ &′

b. Thus,
for all i = 1	2	 � � � 	 k, inequality (9) holds, which we
already argued implies inequality (2). Inequality (7)
holds, and we have already argued that with inequal-
ity (6), it implies inequality (3). �

To show that a procedure delivers confidence lim-
its with at least the coverage probabilities specified in
inequalities (2) and (3), we will verify that the screen-
ing procedure satisfies inequality (6), and exhibit
increasing functions Ga and Gb with Ga�0�= Gb�0�=
1/2 such that the mean estimators satisfy inequal-
ity (10). These results provide a general framework
for estimating ��k�; the remainder of the paper works
out details for specific ways to form the subset I and
the estimators �̂i. The procedures we will discuss all
have the following structure.
1. Simulate all systems, possibly over multiple

stages, and retain a subset I ⊆ �1	2	 � � � 	 k�.
2. For all systems i ∈ I , compute a terminal sample

size Ni and simulate more observations to get a total
of Ni.
3. Compute an estimator �̂i of the mean �i for each

system i ∈ I .
4. Report the confidence interval �maxi∈I �̂i − a,

maxi∈I �̂i + b�.
We obtain efficient procedures in two ways:
1. by reducing �I �, the number of means that we

estimate, and
2. by employing efficient estimators �̂i of �i, so that

the means we do estimate require as little computa-
tional effort as possible.
In Lesnevski et al. (2004), we reported on two-stage

and multistage procedures that fit this framework.

These procedures used screening to form the sub-
set I , estimated �i using a sample mean, and assumed
that the systems were simulated independently. In
this paper, we employ CRN to further reduce �I �, esti-
mate �i using control-variate estimators, and investi-
gate “restarting” the procedure after screening, which
allows us, in effect, to tackle a smaller problem.

4. Procedures
In this section, we construct simulation procedures
that generate a fixed-width, two-sided confidence
interval for a coherent risk measure that is the maxi-
mum of k means. Online Appendix A contains algo-
rithms implementing procedures with various com-
binations of these features. Proofs of the procedures’
validity appear in Online Appendix B.

4.1. The Basic Procedure
First, we briefly explain our variant of the proce-
dure of Chen and Dudewicz (1976), which serves as
our standard for comparison on examples without
control variates. This is a two-stage procedure. The
first stage is called stage 0. For each system i, in
stage 0, the procedure generates independent replica-
tions Xi1	Xi2	 � � � 	Xin0

, whose common distribution is
that of the discounted loss X under probability mea-
sure Pi. The replications are used to estimate the vari-
ances �2i =Var�Xi�. These are

S2i =
1

n0− 1
n0∑
j=1
�Xij − �Xi�

2	

where �Xi =
∑n0

j=1Xij/n0 are the stage-0 sample aver-
ages. Let �x� represent the smallest integer greater
than or equal to x. After stage 0, the total sample sizes

Ni =max
{
n0	 �c2S2i �

}
(14)

are computed on the basis of the variance esti-
mates S2i and the scaling constant c as defined in
Equation (13), where Ga = Gb = Ftn0−1

, the t distribu-
tion with n0− 1 degrees of freedom. In the second
stage, called stage 1, additional replications Xij are
simulated for i = 1	2	 � � � 	 k and j = n0 + 1	n0 +
2	 � � � 	Ni. The procedure estimates the means �i with
the cumulative sample averages as of the end of
stage 1,

�̂i =
1
Ni

Ni∑
j=1

Xij �

Note that the standard procedure manipulates the
marginal distributions of the estimators �̂i individu-
ally; their relative values and joint distribution have
no impact.
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4.2. Controlled Control Variates
In this section, we present an extension (Algo-
rithm A.1) of the Chen-Dudewicz (1976) procedure
that incorporates control variates in mean estimation.
Although we could also use control variates in screen-
ing, we found little added benefit because common
random numbers alone were so effective for the finan-
cial examples we considered. As control variates in
screening introduce technical complications, we defer
that topic to Nelson and Staum (2006).
To have a fair comparison of the performance of

our procedures on examples using control variates,
the standard of comparison will be this variant of the
Chen-Dudewicz procedure that uses control variates.
For details about the construction of the control-
variate estimators, see Online Appendix D. We intro-
duce a qi-dimensional vector Ci of control variates
with known mean 0i. Because Xi comes from a port-
folio value simulated under Pi, usually Ci repre-
sents other financial variables generated simultane-
ously under Pi. Frequently, the dimension qi is the
same for all i, because the same financial variables
are used in each case. In Example 1, the control vari-
ates are the payoffs of European put options whose
prices are known by the Black-Scholes formula. For
more on control variates in financial simulations, see
Glasserman (2004, §4.1).
We now allocate error &C to a bound on the sample

variance of the control-variate point estimator, which
depends on control-variate observations after the first
stage of sampling (see Nelson and Staum 2006), un-
like the sample variance of the sample mean, which
only depends on first-stage observations. Define q =
maxi=1	2	���	k qi, the maximum number of control vari-
ates used for any system. The functions that generate
the scaling constant c in Equation (13) are given by
Ga�x�=Gb�x�= Ftn0−q−1

�x�−&C , so

c = 1
L
�G−1

a �1−&′
a�+G−1

b �1−&′
b��

= 1
L
�tn0−q−1	1−&′

a+&C + tn0−q−1	1−&′
b+&C �	

where t1	u represents the u quantile of the t distri-
bution with 1 degrees of freedom. This corresponds
to decomposing the error bounds as &′

b = &C + &′′
b

and &′
a = &C + &′′

a , and using the 1 − &′′
a and 1 − &′′

b

quantiles of a t distribution. When using control vari-
ates, replace in Equation (14) the sample variance S2i
of Xi with the sample residual variance �32i of the
regression of Xi on the control variates Ci (see Online
Appendix D). As in Nelson and Staum (2006, Proce-
dure 4 and Remark B.2), the effect of spending &C

on controlling the dispersion of the control variates’
sample average from its expectation is to add 42qi	1−&C ,
the 1 − &C quantile of the chi-squared distribution

with qi degrees of freedom, to the required number of
replications:

Ni =max�n0	 �c2 �32i +42qi	1−&C ��� (15)

This formulation subsumes the case without control
variates discussed in the previous section, with qi = 0,
&C = 0, and �32i = S2i .

4.3. Screening with Common Random Numbers
Algorithm A.2 is a two-stage algorithm with screen-
ing. In this section, we describe this algorithm and
how to implement it with common random numbers.
Let U1	U2	 � � � be a sequence of independent, iden-

tically distributed random vectors. Each Uj is inter-
preted as a vector of random numbers forming the
basis for the jth replication in the simulation. For
all i = 1	2	 � � � 	 k, the jth realization of the negative
discounted portfolio value Xij = Xi�Uj� and the jth
realization of the control-variate vector Cij = Ci�Uj�
are generated from the vector of common random
numbers Uj , which are common to all systems. The
result is that random variables such as Xhj and Xij are
dependent, but for different replications j �= l, Xhj and
Xil are independent.
For screening, define the stage-0 sample variances

of the differences Xh−Xi as

S2hi =
1

n0− 1
n0∑
j=1
�Xhj −Xij − ��Xh− �Xi��

2�

Construct the set I = �i � ∀h �= i	 �Xi ≥ �Xh−Whi�, where
the threshold

Whi = tn0−1	1−&I /�k−1�
Shi√
n0
�

The set I contains those systems that could plausibly
be the best, in the sense of not being statistically dom-
inated by some other system at stage 0. Every i � I
has been screened out.
Does screening increase efficiency? The error spent

on screening subtracts from the error that can be spent
on estimating systems’ means (Equations (6) and (7)),
and thus inflates the sample size required for each
system that survives screening. If screening does not
eliminate enough systems, it will increase the total
number of replications that the procedure requires.
However, in financial simulations sample sizes are
usually large, and therefore the benefits of screening
out the inferior scenarios early are usually substantial.
Even in situations where some systems have means
that are very close to the best, screening will gener-
ally be effective. One reason is that the benefits can
still exceed the costs even if only a few systems are
eliminated. Another reason is that, in financial appli-
cations, systems whose means are very similar usu-
ally also have high correlation, which makes common
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random numbers very effective, so it is often not too
hard to screen out a system that is only slightly infe-
rior to another system.
The worst-case efficiency loss due to screening is

in fact very limited. If all k means are the same, it
would be best to forgo screening and use a proce-
dure such as Procedure 4 of Nelson and Staum (2006).
However, as long as the screening budget is less than
the required final sample size, the ratio of the sample
sizes with and without screening is approximately

(
"−1�1−&a/k�+"−1�1−&b +&I�

"−1�1−&a/k�+"−1�1−&b�

)2
�

This follows from Equation (13) for the scaling con-
stant c	 which determines the total sample sizes in all
of the procedures, and from approximating a t dis-
tribution with many degrees of freedom by a normal
distribution. When &a = 0�8%, &b = 0�2%, &I = �0�2�&b,
and k= 256, as in the options portfolio example, this
worst-case efficiency loss is only 2%. This worst-case
efficiency loss is decreasing in k, and its maximum
over k is just 2�65%. For these reasons, screening is
very likely to improve efficiency, and even if it does
not, it cannot decrease efficiency by much.
The performance of the two-stage procedure

depends significantly on the initial sample size n0
(Lesnevski et al. 2004). When n0 is small, increas-
ing it tends to lead to improved screening because
more information at stage 0 allows more systems
to be screened out. If n0 becomes too large, how-
ever, computational resources are wasted on poor sys-
tems that could have been screened out earlier and
on systems with low standard deviations for which
the desired terminal sample size Ni < n0; see Equa-
tion (14). It would be preferable to have a procedure
that is less sensitive to n0, and the multistage proce-
dure described in the next section has this property.

4.4. Multistage Screening
In this procedure, there are m screening stages
0	1	 � � � 	m− 1 and one final estimation stage m. Our
notation is that a number l in parentheses indicates a
quantity that applies to or is estimated after the lth
stage. For example, the sample average of Xi over all
stages up to l is �Xi�l� =

∑N�l�
j=1 Xij/N �l�, where N�l� is

the total number of replications sampled from each
surviving system through screening stage l. Online
Appendix C.1 includes an explanation of why the
sample size N�l� is the same for each system still in
contention.
There are three main aspects of the multistage pro-

cedure to resolve. We must specify
1. the screening stage sample sizes N�l� for l =

1	2	 � � � 	m− 1,
2. the screening thresholds Whi�l� for l = 0	

1	 � � � 	m− 1 and h	 i= 1	2	 � � � 	 k, and

3. the sample size Ni used in constructing the mean
estimate �̂i for systems i ∈ I�m� that survive screening.
We must choose the screening-stage sample sizes and
thresholds so that there is an error decomposition
satisfying inequality (6) and choose the final sample
size so that inequality (10) holds. It turns out that
these three issues are intimately related by the way
in which simulated data are used to supply variance
estimates.
More than one scheme is possible, but here, for

simplicity, we set all screening-stage sample sizes
N�0�	N �1�	 � � � 	N �m − 1� before the simulation be-
gins. We have found experimentally that a good way
of choosing these sample sizes is to choose n0 and a
constant growth factor R, and then set N�l�= �n0Rl�.
The intuition behind this is that it makes standard
errors likely to decrease by roughly the constant fac-
tor

√
R at each stage. If, for example, sample sizes

grew at a constant arithmetic rate instead of a con-
stant geometric rate, later stages would be spending
opportunities to look at the data (see point 2 of the
list below) with very little chance of screening out a
system that had survived the previous stage.
How should the growth factor R be chosen? The

maximum number of replications during screening
for each system is N�m−1�= �n0Rm−1�. If this number
is too large, the number of replications sampled dur-
ing screening can exceed the number Ni required for
the estimate �̂i, which is wasteful. Suppose that we
choose a maximum screening budget N�m−1� that is
not too large. Given this maximum budget, the initial
sample size n0, and the number of screening stages m,
the factor R= �N �m−1�/n0��1/�m−1��. We should choose
n0 and m with the following points in mind.
1. The ends of the m screening stages are the only

m opportunities at which systems can be screened
out. The fewer these opportunities, the longer the pro-
cedure must wait to screen out a system, and the
more work is expended on systems that are eventu-
ally screened out.
2. On the other hand, the screening thresholds

defined in Equation (16) below are increasing in m.
Given a fixed amount of data, fewer systems can
be screened out when m is larger. The more oppor-
tunities there are to screen out a system, the less
aggressive the procedure can be at each screening
opportunity, if a fixed error probability is to be
maintained.
3. It is desirable to have n0 small, so that extremely

poor systems can be screened out quickly. However, if
n0 is too small, then the normal approximation used
to justify the confidence limits may break down at
early stages (Lesnevski et al. 2006).
Next, we consider the screening thresholds and

error decomposition, given that sample sizes are fixed
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in advance. After each stage l= 0	1	 � � � 	m−1, screen-
ing takes place by constructing

I�l+ 1� = �i ∈ I�l� � ∀h ∈ I�l�	 �Xi�l�≥ �Xh�l�−Whi�l��	

where I�0�= �1	2	 � � � 	 k�. Define the threshold

Whi�l� = tN�l�−1	1−&I /�m�k−1��
Shi�l�√
N�l�

	 (16)

where the stage-l sample variance is

S2hi�l� =
1

N�l�− 1
N�l�∑
j=1
�Xhj −Xij − ��Xh�l�− �Xi�l���

2�

We use fully updated, cumulative sample variances
to set the screening thresholds. Typically, multistage
screening procedures for ranking and selection use
only stage-0 sample variances to simplify inference.
In this procedure, it is valid to use updated variance
information, and valuable to do so while keeping n0
very small. Because a large fraction of systems were
screened out at stage 0 in our examples, this allows
us to decrease the sample size. Updating variance
information makes thresholds at later stages smaller
because it reduces the t quantile, which allows more
screening to take place.
After screening, we must choose a final sample

size Ni for estimation of the mean �i by �̂i. We
cover the case with CV, which subsumes that without
CV (§4.2). The scaling constant c comes from Equa-
tion (13) and Ga�x�=Gb�x�= FtN�m−1�−q−1�x�−&C . Equa-
tion (15) becomes

Ni =max�N �m− 1�	 �c2 �32i �m− 1�+42qi	1−&C ��	 (17)

where �32i �m−1� is the sample residual variance of the
regression of Xi1	 � � � 	Xi	N�m−1� on the control variates
Ci1	 � � � 	Ci	N�m−1�.
In stage m, Xij is simulated for i ∈ I�m� and j =

N�m − 1� + 1	N�m − 1� + 2	 � � � 	Ni, and then the
confidence limits are constructed around maxi∈I�m� �̂i,
where each estimate �̂i is based on all replications
j = 1	2	 � � � 	Ni. That is, �̂i is either the sample aver-
age �Xi�m�=

∑Ni
j=1Xij/Ni, or this sample average after

correction by control variates, as detailed in Online
Appendix D.
This works because N�m−1� is a constant. For pur-

poses of mean estimation, it does not matter how we
screen, as long as the probability of wrongly screen-
ing out the best system satisfies inequality (6) and we
finish the screening phase with a variance estimator
that has the desired distribution and is independent
of the existing sample average �X�m − 1�. Fixing the
screening stage sample sizes in advance is one way to
achieve this.

The situation would be far more delicate if we
allowed the screening-stage sample sizes to be ran-
dom, for example, to depend on sample variances
from prior stages. In particular, the arguments above
rely on a constant sample size N�m− 1� at the end of
screening for all systems that survive. This means that
we have not entirely solved the n0 problem faced by
a two-stage procedure. Similarly, the multistage pro-
cedure could be said to have an N�m− 1� problem. If
we choose the maximum per-system screening bud-
get N�m−1� too small, not enough screening is done.
If we choose N�m− 1� too large, then this multistage
procedure wastes effort by exceeding the desired final
sample size �c2 �32i �m − 1� + 42qi	1−&C � in Equation (17)
for any system that survives too long.
In the next section, an enhancement to the multi-

stage procedure ameliorates this problem. Nonethe-
less, even for the procedures described below, there
is still some danger of wasting effort by choosing
N�m− 1� too large. Lesnevski et al. (2006) makes fur-
ther progress in solving this problem.

4.5. Early Stopping During Screening
In many of our examples, we found that all systems
but the best were screened out before the scheduled
end of screening; that is, the event I�l� = ��k�� often
occurred for some screening stage l < m− 1. Clearly,
it makes sense to stop screening once the set I has
become a singleton and move immediately to estima-
tion. This helps us to avoid the problem, mentioned
at the end of the previous section, that the screen-
ing budget N�m− 1� might be larger than the desired
final sample size: frequently, I becomes a singleton
before the screening budget is exhausted and before
the desired final sample size is exceeded.
Define the random stage

M =min�m	 inf�l � �I�l�� = 1��	
at which we would like to proceed to mean estima-
tion. Unfortunately, invoking our estimation proce-
dure from this random stage alters the distribution of
the final estimator in ways that we cannot explicitly
evaluate. Where I�M�= �i�, we might like to use Ni =
max�N �M−1�	 �c2 �32i �M�+42qi	1−&C ��. However, unlike
in previous sections, we do not find a chi-squared dis-
tribution related to �32i �M�. This is because the event
M = l of stopping at an early stage l is associated with
low values of S2ih�M� for all systems h �= i: when these
sample variances are low, it helps system i to screen
out all the others quickly. Low values of S2ih�M� are
associated with low values of S2i �M�, and low values
of S2i �M� are associated with low values of �32i �M�, so
although there is a chi-squared distribution related to
�32i �l� for any fixed l, there is not for �32i �M�. A rem-
edy for this technical problem is to set the terminal
sample size as

Ni =max�N �M − 1�	 �c2 ��2i +42qi	1−&C ��	 (18)
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where ��2i is a variance estimator with the right dis-
tribution. We accomplish this by following a fixed
screening schedule for a small number of stages and
allowing early stopping only after that.
More precisely, we fix a stage l∗ between 1 and

m− 1, and forbid early stopping until after stage l∗,
forcing M ≥ l∗. We only use variance information up
through stage l∗ to determine the terminal sample size
for estimation. That is, ��2i = �32i �l∗� is the sample resid-
ual variance of the regression of Xi1	Xi2	 � � � 	XiN�l∗�
on the control variates Ci1	Ci2	 � � � 	CiN�l∗�. Because
�32i �l∗� is computed over a prespecified constant num-
ber N�l∗� of replications, we can find associated chi-
squared and t distributions. The scaling constant c
comes from Equation (13) with

Ga�x�=Gb�x�= FtN�l∗�−q−1�x�−&C� (19)

This yields Algorithm A.3.

4.6. Restarting
The critical values that determine the overall sample
size for mean estimation depend on the number of
systems k. The sample size increases as k increases
to compensate for the greater chance of error when
there are more alternatives. Consider the situation
when K�M� = �I�M��, the number of systems remain-
ing after screening ends at the random stage M − 1,
turns out to be small. It would then be efficient to pre-
tend that the mean-estimation problem only involved
the K�M� systems still in play. Unfortunately, this
is invalid when we retain the data obtained up to
stage M . This is because of selection bias: when the
number k of systems is higher, the sample averages
through stage M of any systems that survive tend to
be higher (Boesel et al. 2003). If, on the other hand,
we “restart” the simulation after screening—that is,
throw out all data from the screening stages—then
our mean-estimation procedure applied only to the
K�M� survivors is valid. If K�M� is small enough, then
the reduction in required sample size due to reduced
critical values will outweigh the cost of discarding the
data from the screening stages.
After screening, we will obtain Ni new replications

for each surviving system i ∈ I�M� and form the
estimators �̂i from these replications alone. We will
choose the sample size Ni by performing an inde-
pendent two-stage procedure. In the follow-up exper-
iment’s first stage, we simulate ni replications from
system i and form a variance estimate ��2i , the sam-
ple residual variance of the regression of Xij on Cij ,
j = 1	2	 � � � 	ni. From ��2i , we determine the terminal
sample size as

Ni =max�ni	 �c2 ��2i +42qi	1−&C ��� (20)

The scaling constant c comes from Equation (13) with

G�x�= Ftn−q−1�x�−&C	 (21)

where n =mini∈I�M� ni is used to quantify the mini-
mum degrees of freedom in constructing any variance
estimate ��2i for a surviving system i. In the second
and last stage, we simulate replications j = ni + 1	
ni + 2	 � � � 	Ni.
This two-stage procedure for fixed-width interval

estimation is valid for any value of ni. By increas-
ing ni, we increase the degrees of freedom of the t
distribution in G�x�, which helps to reduce the sam-
ple size Ni, as well as its variability. However, if we
choose ni too large, then ni > �c2 ��2i +42qi	1−&C � and we
waste effort. Fortunately, it is valid to choose ni as a
function of �32i �M − 1�, the residual variance estima-
tor obtained from screening, because all data in the
follow-up experiment are independent of the screen-
ing data. In particular, we will use this information to
form a lower prediction limit for the terminal sample
size Ni.
As an approximation, suppose that the conditional

distribution of �32i �M − 1�/ ��2i , given M , is F with
N�M − 1�− 1 and ni − 1 degrees of freedom. Assum-
ing that ni is large, the distribution of �N �M −1�−1� ·
�32i �M − 1�/ ��2i is approximately 42N�M−1�−1. This yields
an approximate �1−;�100% lower prediction limit for
��2i of �N �M − 1�− 1��32i �M − 1�/42N�M−1�−1	1−;. Because
all ni and hence n =mini∈I�M� ni are large, the t dis-
tribution in Equation (21) has many degrees of free-
dom and is thus approximately a normal distribu-
tion. This yields, from Equation (13), c≈ �"−1�1−&′′

a�+ "−1�1 − &′′
b ��/L. Putting these approximations

together, we set

ni =
(
"−1�1−&′′

a�+"−1�1−&′′
b �

L

)2

· �N �M − 1�− 1��32i �M − 1�
42N�M−1�−1	1−;

+42qi	1−&C 	 (22)

an approximate lower prediction limit for the desired
size c2 ��2i +42qi	1−&C in Equation (20). This yields Algo-
rithm A.5.

5. Experimental Results
We now report selected results of computational
experiments to test the efficiency and validity of the
procedures developed in §4. We discuss the magni-
tude of the procedures’ efficiency gains in §5.1, as well
as the factors that contribute to them. This includes,
in §5.2, an assessment of the extent to which efficiency
depends on the choice of parameters such as sample
sizes and error decomposition. Section 5.3 illustrates
the validity of the procedures in practice by analyzing
the coverage of the confidence intervals they gener-
ate. Before reporting the results, we mention choices
of parameters common to the experiments.
In all experiments, one fifth of the error is allocated

to the upper confidence limit, and four fifths to the
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lower confidence limit. For example, for a 99% confi-
dence interval, the probability that the true maximum
mean exceeds the upper confidence limit is nominally
guaranteed to be no more than &b = 0�2%, while the
probability that it falls below the lower confidence
limit is nominally guaranteed to be no more than
&a = 0�8%.
For ease of interpretation, we specify the fixed con-

fidence interval width L as a percentage of a quan-
tity which provides a natural scale for the example.
For the options portfolio example, this quantity is
the portfolio’s standard deviation. For the basket put
example, this quantity is the true value ��k�, inter-
preted as an ask price for the basket put. In either
case, the scaled quantity is estimated in advance by
a very precise simulation. To assign L equal to a
fraction of an estimate of ��k� after stage 0 would
introduce additional complications. In financial appli-
cations, there is often a previous problem with simi-
lar parameters which can supply a value of L giving
approximately the desired relative precision.
Except when otherwise specified, the level of preci-

sion is 1%, the confidence level is 99%, and the algo-
rithms’ parameters are set to the following default
values. The error allocated to screening is &I = �0�2�&b,
there are n0 = 30 replications in the initial stage 0,
there are m = 15 stages, and the cumulative sample
size grows by a factor of R = 2 at each stage. This
makes the budget available for screening N�m− 1�=
n0R

m−1 = 30 · 16	384 = 491	520. When using control
variates, the error allocated to controlling them is
&C = �0�01�min�&′

a	&
′
b�. This adds 27 or 31 extra repli-

cations (at 95% or 99% confidence, respectively) per
system that survives screening; the right panel of Fig-
ure 3 shows that this cost is not large relative to the
simulation’s total cost. For the multistage algorithms
with early stopping, stopping is forbidden until after
stage l∗ = 5, yielding N�l∗�= n0R

l∗ = 30 ·32= 960 repli-
cations to provide variance information for use in
setting the final sample sizes. For the multistage algo-
rithm with restarting, the significance level used in
creating the prediction limit for the final sample size
that underlies Equation (22) is ;= 1%.
5.1. Efficiency: Procedures and Precision
We report efficiency as a speed improvement relative
to the standard procedure. This is the ratio of the
average number of samples required by the standard
procedure to the average number required by our
more advanced procedures. The number of samples
required by the standard procedure is

∑k
i=1Ni, where

Ni is defined in Equations (14) or (15), depending on
whether control variates are in use. We have ignored
overhead costs such as those associated with compar-
isons during screening or with generating and using
control variates. In the financial applications we have

Table 2 Efficiency Relative to the Standard Procedure at 99%
Confidence and 1% Precision

Procedure Example

Stages CRN Restarting Basket put Options portfolio

15 � � 157 249
15 � 115 147
15 5�5 146
2 � 41 103

in mind, generating a single negative discounted port-
folio value Xij is moderately to extremely expensive
because it involves simulating over many time steps,
underlying risk factors, or securities in the portfolio.
Also, the control variates Cij used in such applications
are usually cheap to compute once Xij has already
been simulated.
Table 2 reports the efficiency of four procedures:

the multistage procedure with restarting and CRN,
the multistage procedure with early stopping and
CRN, the multistage procedure with early stopping
and without CRN, and the two-stage procedure with
CRN. Recall that we use CVs in the basket put
example and not in the options portfolio example.
In practice, the appropriate levels of precision might
be 0.1%–1% for the basket put example because the
statistical error surrounding a simulation estimate
to be used as a derivative security price should be
within the bid-ask spread, and 1% or more for a risk-
management problem, such as the options portfolio
example. For this reason, we use 1% precision in the
table. In most cases, the improvement is dramatic.
For the two-stage procedure, the initial sample size

n0 is 3,000 for the basket put example and 1,000 for
the options portfolio example. We chose these values
to yield good performance for these examples, at this
level of confidence and precision. The values are cho-
sen to be this large to allow the two-stage procedure
to screen out many systems at the first stage (see the
end of §4.3). Nonetheless, the two-stage procedure’s
performance is markedly inferior to that of the mul-
tistage procedure, primarily because the multistage
procedure does less work by screening out some sys-
tems earlier than others.
Using CRN is very effective for the basket put

example, but has little effect for the options portfolio
example at this level of precision and confidence. For
the basket put example, the procedure without CRN
usually spends a great deal of effort on screening: it
tends not to stop early because it does not succeed
in eliminating all but one of the systems. Indeed, for
low precision, the effort may be more than is needed
to estimate each system’s mean, resulting in a loss of
efficiency relative to the standard procedure. Reduc-
ing the total budget available for screening would
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improve the procedure’s performance on this exam-
ple, but to do so would require advance knowledge of
the problem. The procedure is not adaptive: for exam-
ple, it cannot stop screening early when the sample
size accumulated during screening reaches a running
estimate of the final sample size required for inference
about a system’s mean. For an adaptive procedure,
see Lesnevski et al. (2006). For variations on the mul-
tistage procedure that become possible without CRN,
see Online Appendix C.1. Here we focus only on the
direct impact of correlation among systems induced
by CRN, not the indirect impact of changing the pro-
cedure to accommodate their use.
Another way to consider the efficiency of the pro-

cedures is relative to the maximum possible benefit
that might be achieved, which we define as follows.
To produce a fixed-width confidence interval for the
maximum among k means requires at least as many
replications as to produce such a confidence interval
for the best system’s mean considered in isolation.
That is, the minimum sample size is what would be
required if we were told in advance which system
was best and could ignore the other k − 1 systems.
The ratio of the standard procedure’s sample size to
this minimum sample size depends on k, the number
of systems, and the size of the best system’s standard
deviation relative to the standard deviations of the
other systems. In both examples, the sample size of
the multistage procedure with CRN and restarting is
within a few percent of this minimum size.
In summary, we recommend using a multistage

procedure with CRN. We have found that restarting
increases efficiency for most examples. However, in
examples where the number of replications required
to screen out all but one system is large enough, it is
more efficient not to restart.
Having examined the performance of different pro-

cedures on the same problems, we now consider the
effect of the problem’s difficulty on the procedures’
efficiency. The same example becomes more difficult
when greater confidence or precision is demanded.
Greater difficulty is associated with higher efficiency
of procedures with screening but without CRN or CV
(Lesnevski et al. 2004). This happens because proce-
dures with screening do only enough work on most
systems to screen them out, and this is much less than
the amount of work the standard procedure must do
to estimate means with high confidence and precision.
Figure 1 shows the effect of the confidence interval
width L on the efficiency of the multistage proce-
dure with early stopping and CRN. The fixed width
is expressed as a percentage of a quantity which pro-
vides the scale for the example, so that a high per-
centage indicates that the user asked the procedure to
deliver low precision.

Figure 1 Effect of Required Precision on Efficiency of the Multistage
Procedure with Early Stopping and CRN Relative to the
Standard Procedure at 99% Confidence
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In Table 2, we saw that the multistage procedure
with early stopping and CRN delivered more than
100-fold efficiency improvement for these examples at
1% precision, which is a reasonable level. From Fig-
ure 1, we see that the efficiency improvement is very
high for a wide range of precision, and there is sub-
stantial improvement even at low precision. We found
that the multistage procedures with CRN were more
efficient than the standard procedure in every experi-
ment we ran; we recommend using one of them in all
simulations of coherent risk measures based on gen-
eralized scenarios.

5.2. Efficiency: Parameters
We have selected default values of the procedure
parameters based on experimentation to find which
values yield good efficiency for a range of problems.
Here we present evidence showing that efficiency is
fairly robust to the choice of some parameters, indi-
cating that they can be used without further tuning.
Analogous results for procedures without CRN or
CV agree qualitatively with the results reported here
(Lesnevski et al. 2004).
First, we consider the effect of the sample sizes of

the screening stages on the efficiency of the multistage
procedure with restarting and CRN. The results are
easier to interpret than for the multistage procedure
with early stopping; changing its screening-stage sam-
ple sizes would require an adjustment to l∗, the first
stage at which early stopping is allowed.
Recall that the cumulative sample size after l stages

is N�l�= �n0Rl�, where n0 =N�0� is the stage-0 sample
size and R is a constant growth factor. We consider
two types of changes to the design of the screening
phase. The first type is to vary the number of stages m
with R fixed. The primary effect is on the total screen-
ing budget, N�m− 1�= �n0Rm−1�. The second type is
to change the number of stages m with N�m−1� fixed,
so that the growth factor R varies inversely with m.
The effect is on how often the procedure is allowed
to look at a fixed amount of data to screen out poor
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Figure 2 Effect of Screening Phase Design on Efficiency of the Multistage Procedure with Restarting and CRN Relative to the Standard Procedure at
99% Confidence
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systems. Figure 2 shows how these changes affect the
efficiency of the multistage procedure with restarting
and CRN.
The graphs in Figure 2 show that the procedure’s

efficiency is gravely limited when the total screening
budget N�m−1� or the number of screening stages m
are too small. If N�m − 1� is too small, not enough
screening occurs, and in the final stage, the proce-
dure must estimate an excessive number of systems’
means. If m is too small, screening occurs too slowly,
and excessive work is done on systems that are even-
tually screened out. In these examples, choosing m
too large does not reduce efficiency by much. There is
a statistical price to be paid for looking frequently at
the data, but it has a small effect on the efficiency of
screening. Having a large screening budget N�m− 1�
does not mean that it must be used; the procedure
restarts once screening has succeeded in eliminating
all but one system. In the examples shown in the left
panel of Figure 2, the efficiency losses due to occasion-
ally sampling too many replications during screening
are detectable but small.
However, a large screening budget poses a danger:

as mentioned in the discussion of Table 2, there are
examples in which the amount of work required to
screen out all but one system exceeds the amount of
work required to estimate the system’s means. An

Figure 3 Effect of Error Allocation on Efficiency of the Multistage Procedure with Early Stopping and CRN Relative to the Standard Procedure at
99% Confidence
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extremely bad case is when more than one system
has the maximum mean. Such ties can easily arise in
finance when the discounted portfolio value X has the
same distribution under two probability measures. In
such cases, making N�m− 1� too large is a mistake.
The other parameter controlling the design of the

screening phase is the initial sample size n0. Our
experiments showed that choosing n0 very small max-
imizes efficiency. The danger in choosing n0 too small
is not a loss of efficiency, but rather a danger that
the resulting confidence interval might provide inad-
equate coverage, due to failure of the normal approx-
imation in the early screening stages causing the best
system to be screened out. Results reported in §5.3
show that n0 = 30 yielded adequate coverage for these
examples.
Next, we consider the effect of error allocation on

the efficiency of the multistage procedure with early
stopping and CRN. The user specifies the confidence
levels 1−&a and 1−&b associated with the lower and
upper confidence limits, respectively, but the proce-
dures have one or two further parameters controlling
how the allowable errors &a and &b are spent. A por-
tion &I of &b must be allocated to screening (inequal-
ity (6)). When using control variates, a portion &C of
both lower and upper error must be set aside for con-
trolling them (§4.2). Figure 3 displays the effect of
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changing the fractions &I/&b and &C/min�&′
a	&

′
b� on

efficiency. It is easy to choose an allocation yielding
most of the possible efficiency improvement.
Allocating too much error to screening or control

variates degrades the performance of the procedure.
Having too little error left to spend on inference
about the means of the systems that survive screen-
ing inflates the required sample size. However, an
implausibly large amount of error must be allo-
cated to screening or control variates before efficiency
diminishes much; this mistake is easy to avoid. Like-
wise, efficiency may decrease if too little error is spent
for these purposes, but the procedure’s performance
is even more robust against deficiency than excess.
If &I is too small, less screening takes place because
the thresholds in Equation (16) become larger. How-
ever, the behavior of the quantiles of a t distribu-
tion (with many degrees of freedom) as a function of
tail probability makes this effect small for the exam-
ples we considered: with m = 15, N�l∗� = 960, and
k = 256, changing &I from 0.04% to 0.002% changes
the relevant t quantile from 5.23 to 5.77. This change
corresponds to inflating the threshold by approxi-
mately 10%, but screening with CRN eliminates sys-
tems so quickly that this has little absolute effect on
the efficiency of screening. Similarly, decreasing &C

inflates the chi-squared quantile added to the required
final sample size in Equation (15), but &C can be very
small without having much impact. We found that
&I = �0�2�&b and &C = �0�01�min�&′

a	&
′
b� are reliably

good choices.
Finally, there are parameters related to early stop-

ping (§4.5) and restarting (§4.6). After some exper-
imentation, we selected the first stage after which
early stopping is allowed as l∗ = 5. The right choice
of l∗ depends on the growth structure of the screen-
ing stages, as embodied in the initial sample size n0,
the growth factor R, and the number of stages m.
We found that choosing l∗ too small can substantially
degrade performance because of poor variance esti-
mation. Choosing l∗ too large has a significant cost
only when the maximum screening budget N�m− 1�
is far too large, as happened to the multistage pro-
cedure with early stopping and without CRN on the
basket put example, shown in Table 2. For the mul-
tistage procedure with restarting and CRN, we found
that, over a very wide range of values, efficiency is
also rather insensitive to the significance level ; used
in creating the prediction limit for the final sample
size that underlies Equation (22). A good value is
;= 1%.
5.3. Coverage
Our procedures come with coverage guarantees
(2) and (3) for their confidence limits, but the guaran-
tees are proved only for normally distributed data Xij .

Table 3 Error Rates of Multistage Procedures with CRN at 95%
Confidence and 5% Precision

With early With restarting
stopping (%) (%)

Error Nominal Basket Options Basket Options
prob. (%) Estimate put portfolio put portfolio

Upper 1 UCL 0.90 1�25 1.11 1.18
Point 0.64 0�94 0.82 0.88
LCL 0.44 0�69 0.59 0.64

Lower 4 UCL 0.20 0�07 3.40 4.54
Point 0.08 <0�01 2.90 3.96
LCL 0.02 <0�01 2.45 3.44

The distribution of a negative discounted portfolio
value, especially when it contains derivative securities
whose payoffs are nonlinear functions of underlying
financial variables, is usually quite far from normal.
The coverage guarantees hold in the basket put exam-
ple for some simpler procedures without CRN or CV
(Lesnevski et al. 2004). Table 3 supports the conclu-
sion that the multistage procedures with CRN, either
with early stopping or with restarting, also provide
confidence limits with the required coverage for both
of our examples.
The experiments reported in Table 3 contain 5,000

independent simulations. For each experiment, we
report (in bold) the fraction of these 5,000 simula-
tions in which ��k� <maxi∈I �̂i − a as a point estimate
of the lower error probability Pr���k� <maxi∈I �̂i − a�,
and similarly for the upper error probability Pr���k� >
maxi∈I �̂i + b�. We also give 95% confidence limits for
the error probabilities, based on a binomial distribu-
tion for the observed number of errors.
We present experiments at confidence level 95%

and precision 5% because this results in relatively low
sample sizes. Large sample sizes create sample aver-
ages with distributions closer to normal, making it
easier for the procedures to attain the nominal cov-
erage. The nominal error probabilities are &b = 1%
for the upper limit and &a = 4% for the lower limit.
Entries less than these values show that the procedure
is conservative in this case, attaining coverage greater
than nominal.
Table 3 shows that the multistage procedure with

early stopping and CRN is very conservative. Its con-
servatism is due to allocating an equal amount of
error to each system in inequality (9), even those that
are screened out. This was the motivation for the pro-
cedure with restarting, which is indeed much less
conservative.

6. Conclusions
In this paper, we propose procedures for construct-
ing a two-sided, fixed-width confidence interval for
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the maximum of k systems’ means. The motivation
is financial applications in which the “systems” cor-
respond to generalized scenarios, and we are inter-
ested in the mean value of the worst-case scenario.
The procedures exploit the advantages that computer
simulation provides: the ability to perform sequen-
tial experiments and to implement variance-reduction
techniques.
Under normal-theory assumptions, our procedures

are exact, that is, they deliver at least the nominal
coverage probability. Although these assumptions are
reasonable in many situations, they are never pre-
cisely correct. However, it is comforting to know that
our screening procedures, which are usually applied
when the sample sizes are small, are protected by the
use of very conservative probability inequalities (such
as the Bonferroni inequality) in their derivation. Our
estimation procedures, on the other hand, will typi-
cally require large sample sizes. As we become more
demanding, requiring a smaller confidence interval
width or higher confidence, the final sample size
becomes larger, making normality of mean estimators
more plausible. In fact, the procedures provided ade-
quate or even conservative coverage in experiments.
These new procedures are far more efficient than

existing ones, and make difficult simulation problems
tractable. One might fear that the time to estimate
the maximum of k means would be on the order of
k times as long as the time to estimate a single mean,
and this is true for the standard procedure. Our mul-
tistage procedures using screening with CRN improve
speed greatly, even when the demand for precision is
very low. In examples with k = 64 and 256 systems,
our procedures take not 64 or 256 times as long to
estimate the maximum mean than to estimate a sin-
gle mean, but usually only about twice as long or
less, sometimes only a few percent longer. This makes
simulation of coherent risk measures based on gener-
alized scenarios affordable, enabling better risk man-
agement and innovative derivative security pricing
techniques.

7. Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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