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Abstract

Many indifference-zone ranking-and-selection (R&S) procedures have been invented for choosing

the best simulated system. To obtain the desired probability of correct selection (PCS), existing proce-

dures exploit knowledge about the particular combination of system performance measure (e.g., mean,

probability, variance, quantile) and assumed output distribution (e.g., normal, exponential, Poisson). In

this paper we take a step toward general-purpose R&S procedures that work for many types of perfor-

mance measures and output distributions, including situations in which different simulated alternatives
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have entirely different output distribution families. There are only two versions of our procedure: with

and without the use of common random numbers. To obtain the required PCS we exploit intense compu-

tation via bootstrapping, and to mitigate the computational effort we create an adaptive sample-allocation

scheme that guides the procedure to quickly reach the necessary sample size. We establish the asymptotic

PCS of these procedures under very mild conditions, and provide a finite-sample empirical evaluation of

them as well.

1 Introduction

Although invented in the 1950’s and 60’s for biostatistics problems, the statistical methods of ranking and

selection (R&S) have been embraced by the stochastic simulation community as a standard tool for selecting

the best of a finite (and relatively small) number of alternative system designs. In fact, R&S procedures are

featured in several commercial simulation products. A common characteristic of selection-of-the-best pro-

cedures that have been used extensively in simulation is that “best” is defined to be smallest or largest mean

performance. Further, whether Bayesian or frequentist in philosophy, these procedures typically assume

that the simulation output data are normally distributed; even procedures that are shown to be asymptot-

ically valid under more general assumptions are derived based on normality. Later we provide a realistic

illustration in which the output data are highly non-normal.

There is also a literature on R&S problems that differ from the normal-mean case. For instance, there

are procedures that define “best” to be the largest or smallest probability, variance or qth quantile. And there

are also procedures designed for output data that are known to be non-normal, including Poisson, Bernoulli

and exponential. Procedures for these situations are customized for the particular performance measure or

type of data, exploiting mathematical-statistical properties of the relevant estimator or distribution.

Suppose, however, that the alternatives under consideration involve distinct technologies: manual vs.
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automated; in-house vs. outsourced; or synthetic vs. biological. The simulation output data may not only

be non-normal, but there is no a priori reason to believe that the alternatives even generate output data from

the same distribution family. The R&S literature provides no direct approach for such settings other than

batching the output data to achieve normality.

In this paper we take a big step toward general-purpose R&S, by which we mean procedures that work

for many types of performance measures (e.g., means, probabilities, variances or quantiles) and types of

data (discrete- or continuous-valued and almost arbitrary distributions); and not all systems need to have

the same output distribution family. We exploit intense computation—via bootstrapping—instead of clever

mathematical analysis. To do this we employ a connection between fixed-width confidence intervals (CIs)

and the desired probability of correct selection (PCS). Our approach is sequential, frequentist in philosophy

and incorporates an indifference zone. Finally, our procedures are fixed precision (as measured by PCS) not

fixed budget. Therefore, our first concern is to be able to deliver the desired PCS on virtually any problem,

and a secondary (but still important) concern is being able to do so efficiently. This means we simulate until

a specified PCS is achieved and stop, rather than trying to smartly allocate a fixed budget to achieve the best

PCS we can attain with it.

Because we substitute computation for analysis, our generic procedure will not be competitive when

simulation output data are so computationally cheap that we can simulate each alternative system until its

point estimator has effectively zero variance. We also will not beat procedures that directly exploit (correct)

distributional information; for instance, if we know our output data really are Poisson, then we expect that

a procedure based on that knowledge should be more efficient than ours, although in our empirical studies

we are surprisingly close (Lee and Nelson, 2014). On the other hand, we make only very mild assumptions

about the output data, and there are only two versions of our procedure: with or without common random

numbers (CRN). When CRN are employed we require no conservative inequalities to establish the validity
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of our procedure. The PCS guarantees are proven asymptotically, but because they bootstrap the actual

simulation output data our procedures work well in finite samples across a variety of situations.

Preliminary versions of the procedures described in this paper and a small empirical evaluation of them

were presented in Lee and Nelson (2014). Here we prove their asymptotic validity and supplement the

empirical results in Lee and Nelson (2014) with a more carefully chosen set of experiments. Also, we

introduce a significant computational speed-up that allows our methods to be applied very rapidly to small

problems (say 10 or fewer alternatives) and to be computationally feasible for larger problems.

The paper is organized as follows. In Section 2 we describe the related literature that supports our work.

Sections 3–4 present our R&S procedures and prove their asymptotic validity. A method for significantly

reducing the number of sequential steps required to reach a correct selection is introduced in Section 5.

Sections 6–7 contain experiment results. Conclusions are offered in the final section.

2 Background

Comprehensive treatments of R&S outside of computer simulation can be found in Bechhofer et al. (1995)

and Gupta and Panchapakesan (1979). Simulation focused surveys are provided by Kim and Nelson (2006b)

and Kim (2013). While this background is relevant, our approach to creating a R&S procedure is different

in that we exploit a connection between indifference-zone-δ selection of the best and fixed-width-δ CIs.

Let Xi j represent the jth observed output of system i, for i= 1,2, . . . ,k, so that X j =(X1 j,X2 j, . . . ,Xk j)
> is

a k×1 vector representing the jth observed output across all systems. Throughout the paper we assume that

Xi1,Xi2, . . . are independent and identically distributed (i.i.d.) with marginal distribution Fi(x) = Pr{Xi j ≤ x}.

When we employ CRN it will be useful to think of X1,X2, . . . as i.i.d. with common joint distribution

function F(x) = Pr{X1 j 6 x1, . . . ,Xk j 6 xk}, x = (x1, . . . ,xk)
> ∈ Rk. We neither assume nor fit any specific
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distribution to the simulation output. We use boldface type as in X j to indicate a vector of observations

across all k systems, and underlining as in Xin to indicate a vector of n observations from system i. A ̂
denotes an estimator, and we append a ∗ to quantities defined by bootstrapping.

Let Θ = (θ1,θ2, . . . ,θk)
> be a vector whose ith element is a statistical property of the marginal distribu-

tion Fi, such as its mean, variance, a quantile, or a probability. We are interested in finding the sample size

that allows us to select the system with the largest value of θi with a specified PCS by choosing the one with

the largest empirical estimate θ̂i of it. Notice that the objective is finding an (ideally small) sample size that

satisfies the PCS constraint.

For k ≥ 2 systems, suppose we can build fixed-width-δ CIs for all θi− θ j, i 6= j with simultaneous

coverage 1−α . As shown in Hsu (1996), if we have

Pr{θ̂i− θ̂ j− (θi−θ j)≤ δ , ∀i 6= j}> 1−α

then with probability greater than or equal to 1−α

θi−max
j 6=i

θ j ∈
[

θ̂i−max
j 6=i

θ̂ j−δ , θ̂i−max
j 6=i

θ̂ j +δ

]
(1)

for i = 1,2, . . . ,k. If M is the index of the system with the largest performance estimate, i.e., θ̂M > θ̂i for all

i 6= M, then it follows from (1) that with probability at least 1−α

θM−max
j 6=M

θ j > θ̂M−max
j 6=M

θ̂ j−δ >−δ

since θ̂M −max j 6=M θ̂ j > 0. This result implies that if we select the system with the largest performance

estimate θ̂M as the best system, the selected system will be the best system or a system within δ of the best

system with probability at least 1−α . Moreover, if the difference between the largest and the second-largest

parameter value is strictly greater than δ , then the selected system is the best system with probability at least

1−α . This is exactly the desired inference for an indifference-zone R&S procedure. In R&S, δ is a user-

specified parameter corresponding to the smallest practically significant difference worth detecting. Thus,
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if we have a procedure to create fixed-width-δ CIs for θi−θ j with overall coverage > 1−α , then we also

have a selection-of-the-best procedure.

Swanepoel et al. (1983) describe a sequential bootstrapping procedure for generating a single fixed-

width CI with a specified coverage probability 1−α when θ is either the mean or median. Given an i.i.d.

sample of size n, denoted Xn = {X1,X2, . . . ,Xn}, from a population with marginal distribution F having a

distribution property θ , let F̂n denote the empirical cumulative distribution function (ecdf) of Xn defined as

F̂n(x) =
1
n

n

∑
j=1

I{X j 6 x}.

Let θ̂n be the corresponding distributional property of F̂n. Further, let X∗n = {X∗1 ,X∗2 , . . . ,X∗n } denote a

random sample of size n from F̂n, F̂∗n the implied ecdf, and θ̂(X∗n) (also denoted by θ̂ ∗n ) the corresponding

distributional property of F̂∗n . The bootstrap estimator of the probability that θ is contained within the

interval [θ̂n−δ , θ̂n +δ ] is

P∗n = Pr
{

θ̂n ∈
[
θ̂
∗
n −δ , θ̂ ∗n +δ

]}
. (2)

Exact computation of P∗n is often difficult, but (2) can be estimated given B random samples of size n from

F̂n, say X∗nb = {X∗1b,X
∗
2b, . . . ,X

∗
nb}, b = 1,2, . . . ,B, by using

P∗nB =
1
B

B

∑
b=1

I
{

θ̂n ∈
[
θ̂
∗
nb−δ , θ̂

∗
nb +δ

]}
(3)

where θ̂ ∗nb, b = 1,2, . . . ,B, is the estimate of the distributional property of interest from the bth bootstrap

sample.

In their procedure, Swanepoel et al. (1983) sequentially increase the number of observations of X until

the stopping time N∗ = inf{n> n0 : P∗n > 1−α}, when the desired bootstrap coverage probability is 1−α .

The asymptotic properties of N∗ were shown when θ is the mean or median of X , as stated in the following

theorem:

6
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Theorem (Swanepoel et al. (1983)). Under some mild assumptions, as δ ↓ 0,

(a) δ 2N∗→ c a.s.

(b) Pr
{
|θ̂N∗−θ | ≤ δ

}
→ 1−α.

The limit c depends on the distributional property of interest: c = E(X−θ)2z2
1−α/2 when θ is the mean

and c = z2
1−α/2/(4 f (θ)2) when θ is the median, where f is the density function of X and z1−α/2 is the

1−α/2 quantile of the standard normal distribution.

Building from this foundation, we establish similar, but significantly more difficult, asymptotic results

for fixed-width-δ simultaneous CIs for k(k− 1)/2 pairs of differences θi− θ j. This in turn provides an

indifference-zone R&S procedure. Further, we propose a method to more quickly jump to the stopping time

N∗, avoiding many costly evaluations of P∗nB.

There are, of course, parametric (in particular normal-theory) methods to construct fixed-width CIs.

See, for instance, Hochberg and Tamhane (1987). More closely related to this research, Aerts and Gijbels

(1993) and Hlávka (2003) proposed three-stage procedures that use bootstrapping to estimate the critical

constant that determines sample size (e.g., z-value in the normal-theory case): the first stage provides a

crude estimate; the second stage refines it; and the third stage jumps to the stopping time N∗. These methods

do not directly estimate the PCS, but more importantly seem difficult to generalize beyond a single CI.

3 Procedures

In this section we describe algorithms for performing R&S for k > 2 systems using the bootstrap-based

fixed-width confidence interval approach. We present two versions of the algorithm, one that exploits CRN

and one without CRN. The algorithm without using CRN has been presented in Bekki et al. (2010) when

the sample size is incremented one at a time. We generalize the algorithm here to allow ∆n ≥ 1 additional
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observations on each iteration; this has the effect of speeding up the algorithm at the possible cost of taking

more observations than necessary to guarantee a correct selection. Later we present a method for adaptively

choosing ∆n that provides a substantial computational speed-up without noticeable overshoot of PCS.

First we describe the procedure without using CRN. Let Xin = {Xi1,Xi2, . . . ,Xin} be a sample of size

n from a system with output distribution Fi having distribution property θi, and F̂in the ecdf based on Xin

for system i = 1,2, . . . ,k. Let θ̂(Xin) be an estimate of θi based on Xin for i = 1,2, . . . ,k and θ̂i j(Xn) =

θ̂(Xin)− θ̂(X jn) for all i 6= j. We want to build simultaneous fixed-width-δ confidence intervals for all pairs

of differences θi−θ j for i 6= j by finding n such that

Pr
{

θi j ∈
[
θ̂i j(Xn)−δ , θ̂i j(Xn)+δ

]
, ∀i 6= j

}
> 1−α (4)

where θi j = θi− θ j. The value of n will be the smallest one for which the estimated coverage probability

using bootstrapping is at least 1−α . Specifically, given B random samples of size N from F̂iN , X∗iNb =

{X∗i1b,X
∗
i2b, . . . ,X

∗
iNb}, b = 1,2, . . . ,B, the bootstrap coverage probability is estimated by

P∗NB =
1
B

B

∑
b=1

∏
(i, j|i6= j)

I
{

θ̂i j(XN) ∈
[
θ̂i j(X∗Nb)−δ , θ̂i j(X∗Nb)+δ

]}
(5)

where θ̂(X∗iNb) is an estimate of θ̂(XiN) based on X∗iNb, and θ̂i j(X∗Nb) = θ̂(X∗iNb)− θ̂(X∗jNb) for all i 6= j. The

procedure without CRN described below starts with a sample of size N = n0 from each system i= 1,2, . . . ,k,

a desired PCS 1−α , a half width (indifference-zone parameter) δ for the CIs, and a sample-size increment

∆n.

Bootstrap R&S procedure without CRN

1. Specify N = n0, set 1/k < 1−α < 1, δ > 0, and ∆n≥ 1.

2. Obtain XiN = {Xi1,Xi2, . . . ,XiN} a sample of size N from the distribution Fi for i = 1,2, . . . ,k.
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3. Compute θ̂i j(XN) = θ̂(XiN)− θ̂(X jN) for all i 6= j where θi is a distributional property of Fi and

θ̂(XiN) is an estimate of θi based on XiN ; and form the ecdf F̂iN of Fi for system i = 1,2, . . . ,k.

4. Obtain B bootstrap samples of size N from F̂iN : X∗iN1, . . . ,X
∗
iNB, i = 1,2, . . . ,k.

5. Compute θ̂i j(X∗Nb) = θ̂(X∗iNb)− θ̂(X∗jNb), b = 1,2, . . . ,B for all i 6= j.

6. Estimate the PCS as

P∗NB =
1
B

B

∑
b=1

∏
(i, j|i6= j)

I
{
|θ̂i j(X∗Nb)− θ̂i j(XN)|6 δ

}
.

7. If P∗NB > 1−α , report argmaxi=1,...,k θ̂(XiN) as the best system.

Else

Obtain Xi∆n a sample of size ∆n from the distribution Fi for i = 1,2, . . . ,k.

Set XiN = XiN ∪Xi∆n for i = 1,2, . . . ,k and N = N +∆n.

Go to Step 3.

End If

We next present the bootstrap R&S procedure that exploits CRN. The goal of CRN is to induce a positive

covariance between θ̂(XiN) and θ̂(X jN), which reduces the variance of the difference θ̂i j(XN). This in turn

tends to reduce the sample size N required to achieve a given PCS. Therefore, the sample size required to

attain the desired PCS when employing CRN is expected to be reduced relative to independent sampling, as

shown later in Section 6. We recommend using CRN wherever it can be effectively employed.

In the algorithm with CRN, a sample will be taken from each of the k systems using CRN across systems

to induce a joint distribution on {F1,F2, . . . ,Fk}; we denote that distribution by F . Correspondingly, we draw

bootstrap samples from the empirical joint ecdf F̂N , rather than from each marginal ecdf F̂iN . Below we list

only the steps that change from the Bootstrap R&S procedure without CRN:

9

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

Pr
of

es
so

r 
B

ar
ry

 N
el

so
n]

 a
t 1

8:
26

 1
3 

Ja
nu

ar
y 

20
16

 



Bootstrap R&S procedure with CRN

2. Obtain N samples X j = (X1 j,X2 j, . . . ,Xk j)
> j = 1,2, . . . ,N from the joint distribution F .

3. Compute θ̂i j(XN) = θ̂(XiN)− θ̂(X jN) for all i 6= j where θi is a distributional property of Fi, and

θ̂(XiN) is an estimate of θi based on XiN ; and form the ecdf F̂N based on XN = {X1,X2, . . . ,XN} as

F̂N(x) =
1
N

N

∑
j=1

I{X1 j 6 x1, X2 j 6 x2, . . . , Xk j 6 xk}.

4. Obtain B bootstrap samples of size N from F̂N : {X∗1b,X
∗
2b, . . . ,X

∗
Nb} for b = 1,2, . . . ,B, where X∗jb =

(X∗1 jb,X
∗
2 jb, . . . ,X

∗
k jb)

> for j = 1,2, . . . ,N.

7. If P∗NB > 1−α , report argmaxi=1,...,k θ̂(XiN) as the best system.

Else

Obtain X∆n = {X j, j = 1,2, . . . ,∆n} a sample of size ∆n from the distribution F .

Set XN = XN ∪X∆n and N = N +∆n.

Go to Step 3.

End If

Remark. Although our algorithms state that we form the ecdfs of the output data, we do not need to actually

create the ecdfs since bootstrapping simply requires random sampling from the data with replacement.

However, the ecdfs are needed for the proofs in Section 4 below.

4 Asymptotic Analysis

This section provides theoretical support for the R&S procedures introduced in the previous section. Recall

that our goal is to achieve the desired PCS on virtually any problem, taking only as many observations as

10
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needed. For an indifference-zone R&S procedure, the most difficult case is when the true differences (which

are unknown in practice) are small, and we demand to be able to detect small differences. Recall that δ is

a fixed quantity representing the smallest difference that is practically important to the user. Therefore, we

employ an asymptotic regime in which we let the indifference-zone parameter δ go to 0. This drives the

required sample size N∗ (obtained from the procedures) to infinity, and hence, we show that the procedures

achieve the desired PCS asymptotically.

The theorems stated below, and proved in the Appendix, extend Swanepoel et al. (1983) from a CI for

a univariate mean or median, to simultaneous CIs for the means or any quantile from k ≥ 2 systems. We

then show in the corollaries that these results justify our use of bootstrap R&S for either mean or quantile

performance measures by providing simultaneous CIs for all pairwise differences.

We first review the key notation. Let Xn = {X1,X2, . . . ,Xn} be a random sample of size n from distribu-

tion F (in Rk) with a k×1 vector of marginal distribution properties Θ, where X j = (X1 j,X2 j, . . . ,Xk j)
>, j =

1,2, . . . ,n. Further, let F̂n(x) be the ecdf based on Xn defined in two different ways for use in the procedure

without CRN, as in (6), and with CRN, as in (7):

F̂n(x) =
k

∏
i=1

(
1
n

n

∑
j=1

I
{

Xi j 6 xi
})

(6)

F̂n(x) =
1
n

n

∑
j=1

I
{

X1 j 6 x1, X2 j 6 x2, . . . , Xk j 6 xk
}

(7)

where x = (x1,x2, . . . ,xk)
> ∈ Rk. The results below are valid in either case.

Let X∗n = {X∗1,X∗2, . . . ,X∗n} denote a random sample of size n from F̂n. Let Pr and Pr∗ denote proba-

bilities under F and F̂n; and E and E∗ denote expectations under F and F̂n, respectively. Probabilities and

expectations under ∗ are equivalent to estimating them using B→ ∞ bootstrap samples.

The bootstrap stopping variable N∗ is given by

N∗ = inf
{

n> n0 : Pr∗
{
|Θ̂(X∗n)− Θ̂(Xn)|6 δ ·1k

}
> 1−α

}
(8)
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where 1k is the k×1 column vector of ones. The inequality between vectors used in (8) is defined as x6 y if

xi 6 yi for i = 1,2, . . . ,k, where x = (x1,x2, . . . ,xk)
> and y = (y1,y2, . . . ,yk)

>. When Θ = E(X), then Θ̂(Xn)

and Θ̂(X∗n) are the sample mean vectors based on Xn and X∗n, respectively. That is Θ̂(Xn) = X̄n = ∑
n
j=1 X j/n

and Θ̂(X∗n) = X̄∗n = ∑
n
j=1 X∗j/n. Notice that the “mean” case includes probabilities as they are expected

values of indicator outputs. We assume that n0 in (8) grows as δ ↓ 0, as in Swanepoel et al. (1983).

Before we state our theorems, we introduce the following definitions:

Definition 1. (a) For any c > 0 and positive-definite covariance matrix Σ, let ΓΣ : R+ 7→ (0,1] be

ΓΣ(c) =
∫
[−c,c]k

(2π)−k/2|Σ|−1/2e−y>Σ−1y/2 dy.

(b) For η ∈ (0,1), let aη = Γ
−1
Σ
(η); that is

ΓΣ(aη) = η .

From here on, whenever we raise a vector or matrix to a power, as in X2, we mean element-by- element

exponentiation. Matrix multiplications are written explicitly, as in XX>.

Theorem 1. Let Θ = E[X]. Suppose that E[|X−Θ|3] < ∞ and that Σ = E
[
(X−Θ)(X−Θ)>

]
is a positive

definite matrix. Consider N∗ as defined in (8).

(a) As δ ↓ 0, we have

δ
2N∗→ a2

1−α a.s.

where a1−α = Γ
−1
Σ
(1−α).

(b) As δ ↓ 0, we have

Pr
{
|X̄N∗−Θ| ≤ δ ·1k

}
→ 1−α.
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Proof See Appendix A.2. �

Notice that the assumptions are very weak when Θ = E[X] and the statistic is a sample average of i.i.d.

outputs. Suppose next that Θ is the set of variances of the k marginal distributions, where the ith element

is θi = E(Xi− µi)
2, i = 1,2, . . . ,k. Unless µi is known, θi is not the expected value of the average of i.i.d.

observations. Instead, Θ̂(Xn) and Θ̂(X∗n) are the sample variances based on Xn and X∗n, respectively, where

the ith element of Θ̂(Xn) (denoted by S2
in) is the sample variance of Xi1,Xi2, . . . ,Xin and the ith element of

Θ̂(X∗n) (denoted by S∗2in ) is the sample variance of X∗i1,X
∗
i2, . . . ,X

∗
in; i.e.,

S2
in =

∑
n
j=1 (Xi j− X̄i)

2

n−1
and S∗2in =

∑
n
j=1 (X

∗
i j− X̄∗i )

2

n−1
.

Nevertheless, we can establish analogous asymptotic results for the sample variance in a manner very similar

to Theorem 1, so we omit the proof.

Corollary 1. Let Θ = [Var(X1),Var(X2), . . . ,Var(Xk)]
>. Suppose E[|X−E(X)|4] < ∞, and let N∗ be as

defined in (8).

(a) As δ ↓ 0, we have

δ
2N∗→ a2

1−α a.s.

where a1−α = Γ
−1
Σ
(1−α) with covariance matrix

Σ = E
[(
(X−E[X])2−Θ

)(
(X−E[X])2−Θ

)>]
.

(b) As δ ↓ 0, we have

Pr
{
|Θ̂(XN∗)−Θ| ≤ δ ·1k

}
→ 1−α.

13
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Next let Θ be a set of specific quantiles of the k marginal distributions where the ith element is

θi = F−1
i (q) = inf{x : Fi(x)> q}, 0 < q < 1, i = 1,2, . . . ,k.

Then Θ̂(Xn) and Θ̂(X∗n) are the sample qth quantiles based on Xn and X∗n, respectively, where the ith element

of Θ̂(Xn) is the sample qth quantile of Xi1,Xi2, . . . ,Xin and the ith element of Θ̂(X∗n) is the sample qth quantile

of X∗i1,X
∗
i2, . . . ,X

∗
in. Stronger assumptions on the distributions Fi are required to obtain similar asymptotic

results for quantiles.

Theorem 2. Let Fi be twice continuously differentiable in a neighborhood of θi and ξi = fi(θi) > 0, for

i = 1,2, . . . ,k, where fi is the density associated with Fi. Further, let Fi j be (i, j)th bivariate marginal

distribution function. Consider N∗ as defined in (8). Suppose that the covariance matrix

Σ =



q(1−q)
ξ 2

1

σ12

ξ1ξ2
· · · σ1k

ξ1ξk

...
... · · ·

...

σk1

ξkξ1

σk2

ξkξ2
· · · q(1−q)

ξ 2
k


with

σi j = Fi j(θi,θ j)−q2

is positive definite.

(a) As δ ↓ 0, we have

δ
2N∗→ a2

1−α a.s.

where a1−α = Γ
−1
Σ
(1−α).

(b) As δ ↓ 0, we have

Pr
{
|Θ̂(XN∗)−Θ| ≤ δ ·1k

}
→ 1−α.

14
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Proof See Appendix A.3. �

The results above justify simultaneous fixed-width-δ CIs for k means or quantiles based on bootstrap-

ping. They establish the asymptotic validity of our generic R&S procedure when we extend them to all pairs

of difference estimates using the linear transformation A defined as

A = [ai j], i = 1,2, . . . ,
(

k
2

)
; j = 1,2, . . . ,k (9)

where

ai j =



1, ( j−1)
(

k− j
2

)
+16 i6 j

(
k− j+1

2

)
; j = 1,2, . . . ,k−1

−1, i = hk− h(h+1)
2

− (k− j); j = 2,3, . . . ,k; 16 h6 j−1

0, otherwise.

The linear transformation A transforms vectors in Rk into vectors that correspond to all pairs of differences

in R(
k
2). We are now prepared to state the asymptotic validity of our generic R&S procedures in Corollaries 2

and 3. The stopping time used in our procedures is

N∗A = inf
{

n> n0 : Pr∗{|(AΘ̂(X∗n)−AΘ̂(Xn)|6 δ ·1(k
2)
}> 1−α

}
. (10)

Corollary 2. Under the same assumptions as in Theorem 1, consider N∗A as defined in (10).

(a) As δ ↓ 0, we have

δ
2N∗A→ a2

1−α a.s.

where a1−α = Γ
−1
AΣA>(1−α) and Σ is defined as in Theorem 1.

(b) As δ ↓ 0, we have

Pr
{
|AΘ̂(X∗N∗A)−AΘ| ≤ δ ·1(k

2)

}
→ 1−α.

15
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Proof See Appendix A.4 �

Next let Θ̂ be the sample quantiles defined in Theorem 2.

Corollary 3. Under the same assumptions as in Theorem 2, consider N∗A as defined in (10).

(a) As δ ↓ 0, we have

δ
2N∗A→ a2 a.s.

where a1−α = Γ
−1
AΣA>(1−α) and Σ is defined as in Theorem 2.

(b) As δ ↓ 0, we have

Pr
{
|AΘ̂(X∗N∗A)−AΘ| ≤ δ ·1(k

2)

}
→ 1−α.

Proof See Appendix A.5 �

The assumptions that support our theorems are comparatively weaker than those that support other

δ → 0 analysis in R&S. For instance, Robbins et al. (1968) assumed that output data from each system are

independent and have common, finite variance. Damerdji et al. (1996) also assumed that output data from

each system are independent, and further that their variances are known, along with other conditions on the

distribution mean, variance, and absolute centered moments. Similarly, Kim and Nelson (2006a) assumed

that the output data from each system are mutually independent, and that the standardized partial sum of

each system’s output converges to a Brownian motion process.

Remark. Notice that means (which includes probabilities), variances and quantiles cover much of what is

used in practice. One possible extension of our asymptotic results is when the performance measure θ is a

16

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

Pr
of

es
so

r 
B

ar
ry

 N
el

so
n]

 a
t 1

8:
26

 1
3 

Ja
nu

ar
y 

20
16

 



function, like a cost, associated with (say) the mean performance measure: θ = g(µ), and we can estimate

µ . Then our procedure can still be shown to be asymptotically valid for continuously differentiable g using

a delta-method argument.

5 Jump-ahead Procedure

In the generic procedures described in Section 3, the number of observations N obtained from each simulated

system is increased until the estimated PCS is at least 1−α . The sample-size increment on each iteration,

∆n, can be made larger than 1 to speed up the procedure, and this is important because estimating the PCS is

a non-trivial calculation for large k. In Lee and Nelson (2014) we suggested ∆n = 10, but this could be too

aggressive in some problems, and unnecessarily conservative (small) when the stopping time N∗ is in the

hundreds or thousands. Recall our primary goal is to provide a PCS guarantee, but we also want to attain

it efficiently in the sense of keeping both the required sample size N∗ and the computational overhead from

bootstrapping small. Bootstrapping occurs after we collect each increment ∆n of additional output data.

When variances are unknown, the minimal number of stages or “jumps” that an indifference-zone R&S

procedure can have is two, and this is only possible if we know the distributions of the outputs. Since we

assume no distributional information, the best we can hope for is an approximation that keeps the number

of jumps small.

Here we outline an adaptive method for selecting ∆n that is aggressive when P∗NB is far from 1−α , but

cautious as we approach it. The idea is straightforward: From any intermediate observed (N,P∗NB < 1−α)

pair, fit a simplified normal-theory approximation for PCS as a function of N and use it to project what the

stopping time N∗ will be; call this projection N̂∗. Then set ∆n = c(N̂∗−N), where c is a fraction such as 0.8,

to avoid overshoot. Now simulate the additional observations, estimate the new PCS and new projection,
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and repeat until P∗NB ≥ 1−α .

To simplify notation, let θ̂i = θ̂(X iN) be the point estimator of θi, i = 1,2, . . . ,k, where the sample size

N will be clear from the context. Our approximation will assume that (θ̂1, θ̂2, . . . , θ̂k) are jointly normally

distributed with means (θ1,θ2, . . . ,θk), common variance σ2/N and common correlation ρ (which is 0

unless CRN are employed). We would like to approximate the sample size N∗ for which

Pr{|θ̂i− θ̂ j− (θi−θ j)| ≤ δ ,∀i 6= j} ≥ 1−α

by fitting this simplified model to the observed PCS.

Let Zi j = (θ̂i− θ̂ j−(θi−θ j)). Then Z = {Zi j,∀i 6= j}, appropriately organized and under our simplified

model, has a multivariate normal distribution with mean vector 0 and variance-covariance matrix

σ2(1−ρ)

N
AIA>

where A is as defined in (9) and I is the k× k identity matrix. Notice that only the term σ2(1− ρ) is

unknown, since A and I depend only on k, and N is given. For 0 < β < 1, let h(β ) = Γ
−1
AIA>(β ); h(β ) is the

β quantile of the maximum of the absolute values of the components of a mean-zero multivariate normal

distribution with covariance matrix AIA>. Given β , h(β ) is also only a function of k. Then for any such β ,

Pr

{
|Zi j| ≤

√
σ2(1−ρ)

N
h(β ),∀i 6= j

}
= β .

Suppose we have run our procedure for N observations and obtained estimated PCS P∗NB < 1−α . Recall

that P∗NB is also the estimated coverage probability; that is, for the current value of N,

Pr{|Zi j| ≤ δ ,∀i 6= j} ≈ P∗NB.

We can calibrate our approximation to this observed probability by selecting ̂σ2(1−ρ) so that√
̂σ2(1−ρ)

N
h(P∗NB) = δ .
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Here we are treating the entire term ̂σ2(1−ρ) as a single parameter to match the observed PCS, and not

worrying about separating σ2 and ρ .

Given this parameter, the target sample size to obtain PCS of at least 1−α satisfies

N̂∗ ≥


√

̂σ2(1−ρ) ·h(1−α)

δ

2

= N ·
(

h(1−α)

h(P∗NB)

)2

and the ̂σ2(1−ρ) terms cancel. The intuition is that the critical value h(1−α)2 is the scale-free sample-

size multiplier to attain PCS 1−α . Thus, the ratio (h(P∗NB)/h(1−α))2 is the fraction of the curve we have

climbed if the current sample size N corresponds to a PCS of only P∗NB.

Unfortunately, calculating h(β ) = Γ
−1
AIA>(β ) is a difficult root-finding problem for large k, but we have

straightforward empirical solution: Let M = maxi6= j |Z′i j|, where the {Z′i j,∀i 6= j} have a mean-zero mul-

tivariate normal distribution with variance AIA>. Then h(β ) is the β quantile of M, whose distribution

depends only on k. Therefore, from an i.i.d. Monte Carlo sample M1,M2, . . . ,Mt , h(β ) can be estimated by

the order statistic M(dβ te), and only one sample is needed for any fixed k since M(dβ te) is a function of β once

the data are sorted.

The jump-ahead approximation moves our procedure from theoretically interesting to practically useful

because, as we illustrate in Section 6, it allows us to find N∗ in a small number of jumps, thereby avoiding

the computational overhead of repeatedly evaluating P∗NB, while not overshooting and being inefficient.

6 Empirical Evaluation

In this section we present an empirical evaluation of the algorithms described in Section 3 combined with

the jump-ahead procedure of the previous section. We consider k = 2,4,10 and 20 systems. For one set of

results, the output data have a mix of exponential and normal marginal distributions, and the performance
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measures include the mean and 0.8 quantile. For a second set of experiments the output data have negative

binomial distributions and the performance measure is the mean.

In preliminary work, favorable empirical results for a single distribution family (normal or Poisson),

θ being the mean or various quantiles, and k up to 10, were presented in Bekki et al. (2010) and Lee and

Nelson (2014). Lee and Nelson (2014) also contains results when varying the initial sample size n0, the

indifference-zone parameter δ , and the number of bootstrap resamples B; they also compared the efficiency

of the algorithm with Poisson outputs to procedures designed specifically for Poisson data. In all cases

the algorithms performed very well. Therefore, we focus here on the mixed distribution case, on a second

discrete case (both highly-skewed and less-skewed instances), larger numbers of systems k, and the use of

the jump-ahead procedure. We show below and in Appendix A.6 that the algorithms achieve the desired

PCS in 5–10 jumps provided n0 is large enough. They can be more or less efficient than the normal-theory

procedure of Rinott (1978), depending on the initial sample size, but they retain their PCS guarantee for

nonnormal data while Rinott’s procedure may not.

6.1 Selecting the Best Mean

All results presented here are averaged over 100 macro-replications of the entire experiment. Tables 1–3

contain results for selecting the system with the largest mean when using of CRN with induced correla-

tion ρ = 0.9. We varied the initial sample size n0, the number of systems k and the configuration of the

means. The number of bootstrap samples is B = 200, the desired confidence level is 1−α = 0.95 and the

indifference-zone parameter is δ = 0.1 for all experiments. We present only CRN results because we recom-

mend using CRN whenever possible. Corresponding results without CRN are presented in Tables A.1–A.3,

respectively, of Appendix A.6, and we compare them to the results with CRN at the end of this section.

In Tables 1–2, the simulation outputs have a mix of distributions; specifically, half of the systems have
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normally distributed output and the other half have exponentially distributed output with the means either

in a slippage configuration or a monotone decreasing means configuration. The true mean vector in Table

1 is the slippage configuration Θ = (5,5, . . . ,5,5+δ )>, so system k is the best. The true mean vector used

in Table 2 has θi = 5+(i− 1)δ for i = 1,2, . . . ,k, so system k is again the best system. In the monotone

decreasing means configuration, we alternated exponentially distributed systems and normally distributed

systems; for example, when k = 4, systems 1 and 3 have normally distributed outputs, while systems 2 and

4 have exponentially distributed outputs; we then reverse the assignments. The normally distributed outputs

have variance 1, while the exponentially distributed outputs have variance θ 2
i . In the tables, “n” or “e”

indicate that the best system has normally or exponentially distributed outputs, respectively.

In Table 3 negative binomial output data are used; there are two parameters, the target number of suc-

cesses r and the probability of success p; these imply that the mean is θ = r(1− p)/p. We used p = 0.5

(therefore, θ = r) for all experiments. The true mean vector used in Table 3 is the slippage configura-

tion (θ ,θ , . . . ,θ ,θ + δ )> with θ = 1 or 10 implying system k is the best system. The negative binomial

distribution is highly skewed when θ = 1 whereas it is less-skewed when θ = 10.

To induce correlation representing the effect of CRN for the mixed-distribution case, we used the

NORTA method described in Nelson (2013), inducing a common correlation of 0.9 between all pairs of

systems. To represent CRN for negative binomial (NB) distributions, we set Xi = Z +Wi where the Wi’s are

independent NB(βi, p) for i = 1,2, . . . ,k, and Z is NB(β0, p). Then the correlation between Xi and X j for

i 6= j is

Corr(Xi,X j) =
β0√

β0 +βi
√

β0 +β j
.

With p = 0.5, when θi = θ j = 1, we have Corr(Xi,X j) = β0; when θi = θ j = 10, we have Corr(Xi,X j) =

β0/10. In Table 3, β0 = 0.9 is used to induce a common correlation 0.9 when θ = 1; similarly we set β0 = 9

when θ = 10.
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The PCS is the fraction of the 100 macroreplications in which a system whose mean is within δ of the

true best mean was selected. The estimated coverage probability is P∗NB from Step 6 of the algorithm, and the

true coverage probability is the fraction of the macroreplications in which the
(k

2

)
CIs simultaneously cover

all pairwise differences θi−θ j for all i 6= j. The average number of jumps that the jump-ahead procedure

generates until P∗NB ≥ 1−α is denoted by “Ave jumps”.

We discovered quickly that P∗NB is often 0 when N is small and k is large, such as when N = n0 and

k ≥ 10, which provides no information to the jump-ahead procedure. Therefore, we adjusted the procedure

to use max{1/k,P∗NB}, since pure guessing provides PCS 1/k. Figure 1 shows the sample sizes generated by

the jump-ahead procedure with this adjustment for a case with k = 20 systems in the slippage configuration

and having a mix of distribution types; the left-hand figure is the result of one macro replication, while the

right-hand figure is the result of 10 macro replications. Notice that the observed PCS values are zero initially,

but after a couple of jumps the procedure is able to make rapid progress without significant overshoot. For

the left-hand plot in Figure 1, each dot denotes a pair of sample size N (starting from N = n0) and its

corresponding estimated PCS P∗NB at each jump; for this example, the procedure stops at the 7th jump as

P∗NB ≥ 0.95, which results in N∗=50,824. Recall that in the best case with unknown variance R&S requires

2 jumps, and that fully sequential procedure uses ∆n = 1 (i.e., N∗ jumps). We observe that 5–10 jumps were

made for c = 0.8 in all experiments; however, if the user wants to make the procedure less conservative

(fewer jumps), the constant c can be set closer to 1.

The results from all tables show that the number of jumps and the required terminal sample size N∗

increases as the number of systems increases, as expected. The desired PCS is achieved in all but one

case, and the desired CI coverage is attained except in a few cases when n0 = 50. It seems clear that using

CRN implies that we should start with a larger initial sample size n0. This makes sense because when we

employ CRN we bootstrap entire vectors, rather than each marginal ecdf individually, and 50 vectors is a
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Figure 1: N̂∗ vs. estimated PCS for one macroreplication (left) and 10 macroreplications (right) of the

jump-ahead procedure for k = 20 systems in the slippage configuration.

small number to represent a joint distribution, particularly when k is large. As we have observed in previous

papers, n0 should be larger for bootstrap R&S than for distribution-specific procedures because we need the

bootstrap distribution, even at n0, to be a good representation of the true distribution.

Notice that when the best system has exponentially distributed outputs the required sample size N∗

tends to be larger than when the best system has normally distributed outputs because the variances of the

exponentially distributed outputs are much higher than the normal case. The required sample size N∗ for the

monotone decreasing means configuration is larger than the slippage configurations for the same reason.

For both output distribution cases, the use of CRN greatly reduces the required sample size, with savings

of as much as 90%. As a specific instance, in the case of half-normal and half-exponential distributions when

k = 20 and the best system is exponentially distributed, the required sample size obtained from the algorithm

with CRN is 11,437 (Table 1) while the required sample size without CRN is 50,257 (Table A.1 in Appendix
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A.6); when k = 2, the required sample size obtained from the algorithm with CRN is 7466 (Table 1) while

the required sample size without CRN is 11,061 (Table A.1 in Appendix A.6). For the case of negative

binomial distributions, the sample size savings obtained from the use of CRN are all close to 90% (compare

Tables 3 and A.3).

6.2 Selecting the Best 0.8 Quantile

Next we presents results for selecting the system with the largest 0.8-quantile, with or without CRN when

we have a mix of output distributions. In all cases we used the slippage configuration.

The best 0.8 quantile was set as the 0.8 quantile of a normal distribution with mean 5+δ and variance

1; that is, θk = 5+ δ +Φ−1(0.8). The inferior systems had 0.8 quantile θi = 5+Φ−1(0.8). When the

distribution was exponential, we solved for the distribution’s mean so that it had the desired value θk or θi

for its 0.8 quantile. To incorporate CRN, we used the NORTA method cited earlier. The results with CRN

(with induced correlation ρ = 0.9) are in Table 4, and are without CRN in Table A.4 of Appendix A.6.

The PCS values are all greater than or equal to 0.95, and the CI simultaneous coverage probabilities are

mostly greater than or equal to 0.95. As expected, CRN greatly reduces the required sample size.

6.3 Comparison with Rinott’s Procedure

In this section we consider four different output distributions, normal, Poisson, negative binomial, and a mix

of half-normal & half-exponential distributions to compare the PCS and efficiency of our bootstrap R&S

algorithm without CRN to Rinott’s procedure. Rinott’s procedure is a two-stage, normal-theory procedure

for which the sample size from each system is proportional to its sample variance; it does not exploit CRN,

but does guarantee the desired PCS when the output data are normally distributed.

The results in Table 5 show the required sample sizes denoted by NB and NR obtained from our bootstrap
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Table 1: Empirical results for means from 100 macroreplications for half exponential and half normal dis-

tributions in slippage configuration with CRN (ρ = 0.9).

k n0 Ave N∗ PCS Est Coverage True Coverage Ave Jumps

2(n) 100 7186 0.96 0.96 0.93 4.83

2(e) 100 7466 0.95 0.96 0.94 4.86

4(n) 100 8307 0.97 0.96 0.94 6.64

4(e) 100 8447 0.99 0.96 0.95 6.54

10(n) 100 9974 0.98 0.96 0.96 8.92

10(e) 100 9994 0.95 0.96 0.92 8.56

20(n) 100 11221 0.97 0.96 0.91 10.05

20(e) 100 11437 1.00 0.96 0.96 10.13

Table 2: Empirical results for means from 100 macroreplications for half exponential and half normal dis-

tributions in the monotone decreasing means configuration with CRN (ρ = 0.9).

k n0 Ave N∗ PCS Est Coverage True Coverage Ave Jumps

4(n) 100 8647 0.98 0.96 0.95 6.53

4(e) 100 9079 1.00 0.96 0.97 6.55

10(n) 100 12086 1.00 0.96 0.96 8.84

10(e) 100 12575 1.00 0.96 0.93 8.98

20(n) 100 17745 0.99 0.96 0.96 10.82

20(e) 100 18421 1.00 0.96 0.95 10.80
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Table 3: Empirical results for means from 100 macroreplications for negative binomial distributions in the

slippage configuration with CRN (ρ = 0.9).

k θ β0 Average N∗ PCS Est. Coverage True Coverage Ave Jumps

2 1 0.9 240 0.94 0.97 0.93 3.21

2 10 9 1680 0.99 0.96 0.98 4.27

4 1 0.9 336 0.93 0.96 0.93 4.28

4 10 9 2815 1.00 0.96 0.94 5.36

10 1 0.9 482 1.00 0.96 0.98 5.12

10 10 9 4144 1.00 0.96 0.95 6.27

20 1 0.9 590 0.99 0.96 0.97 5.48

20 10 9 5147 0.99 0.96 0.95 7.02
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Table 4: Empirical results for quantiles (q = 0.8) from 100 macroreplications for half exponential and half

normal distributions in the slippage configuration with CRN (ρ = 0.9).

k n0 Ave N∗ PCS Est. Coverage True Coverage Ave jumps

2(n) 100 16936 0.97 0.97 0.94 5.24

2(e) 100 17584 0.96 0.96 0.95 5.12

4(n) 100 22408 0.99 0.96 0.97 6.60

4(e) 100 22904 0.97 0.96 0.91 6.48

10(n) 100 30454 1.00 0.96 1.00 8.03

10(e) 100 30703 0.99 0.96 0.95 8.32

20(n) 100 38102 0.99 0.96 0.95 9.37

20(e) 100 38553 0.99 0.96 0.96 9.36
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R&S algorithm and Rinott’s procedure, respectively, and their corresponding estimated PCS values denoted

by PCSB and PCSR for each output distribution. For this table, we consider k = 10 systems with the slippage

configuration of the means (5,5, . . . ,5,5.1) for all distributions. The results show that the attained PCS

values (0.33 and 0.27) from Rinott’s procedure are far from the desired PCS 0.95 for half-normal and half-

exponential distributions; the sample sizes 12,619 and 12,354 from Rinott’s procedure are much smaller

than the sample sizes 37,383 and 37,745 obtained from our procedure, showing that Rinott’s procedure

under-samples in this case.

For the case of negative binomial distributions, the attained PCS from Rinott’s procedure is 0.83 when

n0 = 10, which is significantly under the desired PCS of 0.95, while our bootstrap R&S algorithms achieved

the desired PCS for all cases.

Rinott’s procedure is more sensitive to the initial sample size than our bootstrap R&S procedure; for

example, when n0 = 10 and 50, NR < NB for all distributions, whereas NR > NB when n0 = 5, even when

the output data are normal as assumed by Rinott’s procedure. For instance, the sample size obtained from

applying our procedures for normal distributions when n0 = 5 is 2030, which is much smaller than the

sample size 3494 from Rinott’s procedure. Moreover, our procedure achieves the desired PCS in this case.

This is because Rinott’s procedure is a two-stage procedure, and hence with a small initial sample size in the

first stage, the procedure becomes conservative in the second stage to guarantee the desired PCS. However,

our jump-ahead procedure takes several stages to estimate the PCS, and stops as soon as it is achieved.

7 Illustration

This section illustrates using our procedure in a difficult R&S problem that Goldsman et al. (1991) employed

to demonstrate methods for selecting the best system. The goal is to find the airline-reservation system
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Table 5: Comparison results from 100 macroreplications for four different output distributions in the slip-

page configuration (5,5, . . . ,5,5.1) without CRN for k = 10 systems; 1−α = 0.95.

Distributions n0 NR PCSR NB PCSB

Normal 5 3494 1.00 2030 1.00

Normal 10 1835 0.94 2029 1.00

Normal 50 1364 0.97 2042 1.00

Poisson 5 17558 0.94 10129 1.00

Poisson 10 9280 0.97 10183 0.99

Poisson 50 6714 0.96 10130 1.00

Negative binomial 10 55916 0.83 61106 1.00

Negative binomial 50 41155 0.98 61315 1.00

Half-normal&half-exponential (n) 50 12619 0.33 37383 1.00

Half-normal&half-exponential (e) 50 12354 0.27 37745 0.99
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Table 6: Empirical results from 100 macroreplications for the TTF example without and with CRN; the

results with CRN are indicated by †.

µµµ> n0 Ave N∗ PCS Est Coverage True Coverage Ave Jumps

(19,19,19,20) 50 6131 0.98 0.96 0.97 5.47

(19,19,19,20) 100 5992 0.98 0.96 0.96 5.11

(19,19,19,20) 200 6027 0.98 0.96 0.96 4.44

(19,19,19,20)† 50 122 0.73 0.98 0.91 2.35

(19,19,19,20)† 100 158 1.00 0.97 1.00 2.16

(19,19,19,20)† 200 233 1.00 0.98 1.00 1.56

with the largest expected time to failure (TTF). In the experimental setup, each system works if either of

two computers works. Assuming that the two computers are identical, E[TTF] will be dependent on two

parameters, a failure rate λ and a repair rate µ . In our experiment k = 4 airline-reservation systems are

considered, λ = 1 for all systems but we vary the repair rates µ as shown in Table 6. Clearly the system

with the fastest repair rate will be the best, but we apply the procedures as if we do not know this.

Note that computer failure is rare, repair times are fast, and hence the resulting E[TTF] is large. The

replication outputs are highly variable and non-normal (closer to exponential), so much so that Goldsman

et al. (1991) batched the data before applying the two-stage R&S procedure created for normally distributed

output data from Rinott (1978). We apply our procedure directly without any pre-processing of the data.

Table 6 shows the results without and with CRN; the CRN cases are indicated by †. Notice that the

desired PCS of 0.95 is attained, provided n0 is not too small, and the required sample sizes are reduced

significantly by using CRN.
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8 Conclusions

In this paper we have provided essentially generic R&S procedures for computer simulation. Under very

mild conditions on the simulation output data they provide asymptotically correct selection for all of the

typical performance measures: means, probabilities, variances and quantiles. The distribution families of

the simulation outputs need not be known, or even the same across systems, and there are only two versions

of the procedure: without or with CRN.

We achieve this generality by using bootstrapping to estimate the PCS at the current sample size, and

we sequentially increase the sample size until the bootstrap PCS is ≥ 1−α . Thus, the generality comes at

the cost of data storage (we need to retain the output data to bootstrap it) and calculation of the estimated

PCS. To mitigate the computational expense, particularly as the number of systems k increases, we provide

a procedure that jumps to the required sample size N∗ quickly.

To derive and prove the correctness of our procedures we exploit a connection between PCS and the

coverage of simultaneous CIs for all pairs to differences. Since coverage of all pairwise differences is a

more demanding objective than correct selection of the best (see, for instance, Hsu (1996)), there is clearly

room to make the procedures more efficient. And while our procedure is sequential, it is not an eliminating

procedure, meaning that all k systems receive N∗ replications. This provides another opportunity for savings

as reducing k reduces both the simulation and bootstrap computation effort required.
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This appendix provides the mathematical proofs of the main theorems and the experiment results of the

algorithms in the paper.

A.1 Auxiliary Results

The following theorem in Bergström (1945) provides a Berry-Esseen type bound in Rk.

Theorem A.1. (Bergström (1945)) Let F(x) be a distribution function in Rk with the mean values µ , finite

third moments and the translated second order moments σi j, such that Q = ∑i, j=1,...,k σi jtit j is a positive

definite form with the determinant ∆. Further let ΦΣ(x) be a normal distribution function which has the

mean values 0 and the same translated second order moments as F(x). Then we have for all x,

∣∣∣Pr
{

n1/2(X̄n−µ)6 x
}
−ΦΣ(x)

∣∣∣6C(k)ρn−1/2 max
i, j=1,...,k

|[Σ−1](i, j)|3/2

A–1
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where C(k) is a constant only depending on k, ρ = ∑
k
i=1 ρ(i) with ρ(i) =

∫
R |xi−E(Xi)|3dFi(x), Σ = E(X−

EX)(X−EX)>.

This type of the uniform bound also holds on the probability of any measurable convex set in Rk, as

shown in Gotze (1991), Sazonov (1968), and Bergström (1969). Although they present different bounds,

they imply the following which we state as Theorem A.2.

Theorem A.2. For all x ∈ R+,

∣∣∣Pr
{

n1/2|X̄n−µ|6 x ·1k

}
−ΓΣ(x)

∣∣∣6Cb(k)ρF f1(n) (A.1)

where Cb(k) is a constant only depending on k, ρF is a function of several moments of the distribution F,

and f1(n) is a function depending only on n, which tends to zero as n→ ∞.

Note that ρF in Gotze (1991), Sazonov (1968), and Bergström (1969) is finite when the third moment of

F is finite.

Theorem A.3. Pólya’s Theorem (Chow and Teicher (1988)). If Xn converges in distribution to X, and FX is

everywhere continuous, then

sup
x
|FXn(x)−FX(x)| → 0.

Definition A.1. Uniform continuity in probability of {Yn} (Anscombe (1952)). Given any small positive ε

and η , there is a large ν and small positive c such that, for any n > ν ,

Pr{|Yn′−Yn|< εwn for all n′ such that |n−n′|< cn}> 1−η (A.2)

where {wn} is a sequence of positive numbers.

Remark. We use Definition A.1 with wn = n−1/2 throughout this paper.

Lemma A.1. Suppose that θ̂1n, θ̂2n, . . . , θ̂kn are k estimators that are individually uniformly continuous in

probability. Then Yn = maxi θ̂in and Y ′n = maxi |θ̂in| are also uniformly continuous in probability.

A–2
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Proof If θ̂1n, θ̂2n, . . . , θ̂kn are k estimators that are individually uniformly continuous in probability, then

given ε and η , we can find νi and small positive ci such that

Pr
{
|θ̂in′− θ̂in|< εwn for all n′ such that |n−n′|< cin

}
> 1−η/(k+1)

for any n > νi, i = 1, . . . ,k. Let ν = maxi νi and c = mini ci. Then we have

Pr
{
|Yn′−Yn|< εwn for all n′ such that |n−n′|< cn

}
> Pr

{
|θ̂in′− θ̂in|< εwn for all n′ such that |n−n′|< cin, i = 1,2, . . . ,k

}
> 1− kη/(k+1)> 1−η .

The first inequality is easily verified using the definition of Yn and the second inequality holds by the Bon-

ferroni inequality. Therefore, Yn is uniformly continuous in probability. Now let νi,ν ,ci, and c be defined as

above. Then we have

Pr
{
|Y ′n′−Y ′n|< εwn for all n′ such that |n−n′|< cn

}
> Pr

{∣∣|θ̂in′ |− |θ̂in|
∣∣< εwn for all n′ such that |n−n′|< cin, i = 1,2, . . . ,k

}
> Pr

{∣∣θ̂in′− θ̂in
∣∣< εwn for all n′ such that |n−n′|< cin, i = 1,2, . . . ,k

}
> 1− kη/(k+1)> 1−η .

�

Remark. Anscombe (1952) shows that θ̂in is individually uniformly continuous in probability when θ̂in is a

sample quantile or average.

Proposition A.1. Under assumptions stated in Theorem 2, given X1,X2, . . . ,Xn, as n→ ∞,

sup
y
|Pr∗{Gn(q)≤ y}−ΦΣ(y)| → 0

A–3
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where

Gn(q) =
(√

n(F̂∗−1
1n (q)− F̂−1

1n (q)), . . . ,
√

n(F̂∗−1
kn (q)− F̂−1

kn (q))
)>

and Σ is defined as in Theorem 2.

Proof We first consider the univariate case and extend it to the multivariate case. WLOG, suppose that

r−1
n

< q6
r
n

which implies that r = dnqe. To simplify notation, let Fn = F̂n and F∗n = F̂∗n . For the univariate case, given

X1,X2, . . . ,Xn (∈ R), we want to show

Pr∗
{√

n(F∗n
−1(q)−Fn

−1(q))6 y
}
→ΦΣ(y) (A.3)

where Σ = q(1−q)/( f (F−1(q)))2. Note we have

Pr∗
{√

n(F∗n
−1(q)−Fn

−1(q))6 y
}
= Pr∗

{
F∗n
−1(q)≤ y√

n
+F−1

n (q)
}

and let

xn =
y√
n
+F−1

n (q).

On the other hand,

Pr∗
{

F∗n
−1(q)6 x

}
= Pr∗

{
n

∑
i=1

I{X∗i 6 x}> r

}
(A.4)

= Pr∗
{√

n(F∗n (x)−Fn(x))>
√

n
( r

n
−Fn(x)

)}
.

It can be shown from Theorem 2.1 in Bickel and Freedman (1981) that
√

n(F∗n (x)−Fn(x)) converges in

distribution to N(0,Σ′) as n→ ∞ where Σ′ = F(x)(1−F(x)). After plugging x = xn into (A.4), we have

Pr∗
{

F∗n
−1(q)6 xn

}
= Pr∗

{√
n(F∗n (xn)−Fn(xn))>

√
n
( r

n
−Fn(xn)

)}

A–4
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where

√
n
( r

n
−Fn(xn)

)
=

√
n
(

Fn(F−1
n (q)))−Fn(

y√
n +F−1

n (q))
)

y

y

noting that Fn(F−1
n (q)) = r/n. In Reiss (1989), it has been shown that

Fn(F−1
n (q))−Fn(

y√
n +F−1

n (q))
y√
n

→− f (F−1(q))

a.s. for any y 6= 0 ( ∈ R). As n→ ∞, F(xn)(1−F(xn)) converges to q(1−q) a.s. This completes the proof

for the univariate case. Note that (A.3) has been presented by Bickel and Freedman (1981).

We now extend this result to the multivariate case. Let

Y j =
(

I{X1 j≤x1}, . . . ,I{Xk j≤xk}

)>
(A.5)

and

Y∗j =
(

I{X∗1 j≤x1}, . . . ,I{X∗k j≤xk}

)>
defined for x ∈ Rk such that Var(Y j) is positive definite, which implies that xi, i = 1,2, . . . ,k are not all too

small or large. By defining Z j = λ
>Y j for non-zero λ ∈ Rk, we have λ

>√n(Ȳ∗− Ȳ) =
√

n(Z̄∗− Z̄) where

we can apply Theorem 2.1 in Bickel and Freedman (1981). Therefore,
√

n(Z̄∗− Z̄) converges in distribution

to N(0,λ>τττxλ ) where τx(i, j) = Fi j(xi,x j)− Fi(xi)Fj(x j). As this holds for each λ ∈ Rk,
√

n(Ȳ∗ − Ȳ)

converges in distribution to Nk(0,τττx) by the Cramér-Wold theorem (Billingsley (1995)) as n→ ∞. Let

Hn(x) = (
√

n(F∗1n(x1)−F1n(x1)), . . . ,
√

n(F∗kn(xk)−Fkn(xk)))
>,

tn(x) =
√

n
( r

n
−F1n(x1), . . . ,

r
n
−Fkn(xk)

)>
,

y = (y1, . . . ,yk) ∈ Rk and x = (x1, . . . ,xk) ∈ Rk. Then by the result shown above, we know that Hn(x)

converges in distribution to Nk(0,τττx) as n→ ∞. From this definition, note that we have

Pr∗{Gn(q)≤ y}= Pr∗ {Hn(xn)≥ t(xn)}

A–5

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

Pr
of

es
so

r 
B

ar
ry

 N
el

so
n]

 a
t 1

8:
26

 1
3 

Ja
nu

ar
y 

20
16

 



where xn = (y1/
√

n+F−1
1n (q), . . . ,yk/

√
n+F−1

kn (q))>. Let x̃ = (F−1
1 (q), . . . ,F−1

k (q))> and Y j in (A.5) de-

fined on x̃. Then its covariance matrix is τττ x̃ where τττ x̃(i, j)=Fi j(F−1
i (q),F−1

j (q))−Fi(F−1
i (q))Fj(F−1

j (q))=

Fi j(θi,θ j) − q2 = σi j as defined in Theorem 2. Therefore, as n → ∞, Hn(xn) converges in distri-

bution to Nk(0,τττ x̃) as τττxn converges to τττ x̃ a.s. And as n → ∞, t(xn) converges to (− f1(F−1
1 (q))y1

. . . ,− fk(F−1
k (q))yk)

> a.s. since marginal convergence implies joint convergence in this case. Now it follows

that as n→ ∞,

Pr∗{Gn(q)≤ y}→ΦΣ(y).

Thus as n→ ∞, we have

sup
y
|Pr∗{Gn(q)≤ y}−ΦΣ(y)| → 0

by Theorem A.3. �

Lemma A.2. Let FXk be the cdf of Xk where Xk = (X1,X2, . . . ,Xk)
> is a random vector in Rk; for xk =

(x1,x2, . . . ,xk)
> and xk+1 ∈ R, let

FXk(xk) = Pr{Xk ≤ xk}

and

FXk,Xk+1(xk+1) = Pr{Xk ≤ xk,Xk+1 ≤ xk+1}.

Let L = (x11,x21, . . . ,xk1)
> and U = (x12,x22, . . . ,xk2)

>. Then for xi1 < xi2, i = 1,2, . . . ,k,

Pr{L < Xk ≤ U}=
2

∑
i1=1
· · ·

2

∑
ik=1

(−1)i1+···+ik FXk(x1i1 ,x2i2 , . . . ,xkik). (A.6)

Proof For k = 1, Pr{x11 < X1 ≤ x12}= FX1(x12)−FX1(x11). If (A.6) holds for k = t, we show that it holds

for k = t +1 in the following:

Pr{(x11, . . . ,xt1)
> < (X1, . . . ,Xt)

> ≤ (x12, . . . ,xt2)
>,xt+1,1 < Xt+1 ≤ xt+1,2}
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=
2

∑
i1=1
· · ·

2

∑
it=1

(−1)i1+···+it FXt ,Xt+1(x1i1 , . . . ,xtit ,xt+1,2)

−
2

∑
i1=1
· · ·

2

∑
it=1

(−1)i1+···+it FXt ,Xt+1(x1i1 , . . . ,xtit ,xt+1,1)

=
2

∑
i1=1
· · ·

2

∑
it=1

2

∑
it+1=1

(−1)i1+···+it+it+1FXt ,Xt+1(x1i1 , . . . ,xtit ,xt+1,it+1).

�

Note that when X is a continuous random vector, Pr{L < X≤U}= Pr{L≤X≤U}. If X is discrete valued,

then there exists a vector εεε > 0 small enough that Pr{L ≤ X ≤ U} = Pr{L−εεε < X ≤ U}. Then we can

apply (A.6) with L′ = L−εεε replacing L. Therefore, for both cases, Pr{L ≤ X ≤ U} can be written as a

linear combination of a finite number of orthant probabilities.

A.2 Proof of Theorem 1

Part (a): It follows from Theorem A.2 for all x ∈ R+ that

|Pr∗{n1/2(X̄∗n− X̄n)≤ x ·1k}−ΓΣn(x)| 6 Cb(k)ρFn f1(n) (A.7)

where Cb(k) is a constant only depending on k, Σn = ∑
n
j=1(X j − X̄)(X j − X̄)>/n, and ρFn < ∞ when

E∗|X̄∗n− X̄n|
3
< ∞ with large enough n. Let P∗n denote the probability used in the bootstrap stopping variable

as follows,

P∗n = Pr∗{|X̄∗n− X̄n|6 δ ·1k}.

Applying (A.7) with x = δn1/2 we obtain

P∗n = ΓΣn(δn1/2)+o(1) (A.8)
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a.s. as n→∞. The inequalities P∗N∗ > 1−α and P∗N∗−1 < 1−α hold with the bootstrap stopping variable N∗

given by

N∗ = inf{n> n0 : P∗n > 1−α}. (A.9)

Note that as δ → 0, we have N∗→ ∞ since N∗ > n0 and n0 grows as δ → 0. It follows from (A.8), (A.9),

and the fact that N∗→ ∞ as δ → 0 that

P∗N∗ = ΓΣN∗ (δN∗1/2)+o(1)> 1−α

P∗N∗−1 = ΓΣN∗−1(δ (N
∗−1)1/2)+o(1)< 1−α

a.s. as δ → 0; equivalently,

δN∗1/2 > Γ
−1
ΣN∗

(1−α +o(1)), (A.10)

δ (N∗−1)1/2 < Γ
−1
ΣN∗−1

(1−α +o(1)). (A.11)

Since ΣN∗ → Σ as δ → 0, it follows from (A.10), (A.11) and the continuous mapping theorem (Billingsley

(1995)) that we have

δN∗1/2→ a1−α = Γ
−1
Σ
(1−α) a.s.

as δ → 0.

Part(b): Under our assumptions about X, as n→ ∞, we have

Pr
{

n1/2(X̄n−Θ)6 x ·1k

}
→ΦΣ(x ·1k)

from the multivariate central limit theorem. Let Yn = maxi |X̄in−θi|. Then by continuous mapping theorem,

we have

n1/2Yn→ Z in distribution (A.12)
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where Z = max{|Z1|, . . . , |Zk|} and the distribution of Z = (Z1, . . . ,Zk)
> is ΦΣ. As δ → 0, we are interested

in Pr{YN∗ 6 δ} and show that it can be stated in the form of Theorem 1 of Anscombe (1952) as follows:

Pr{YN∗ 6 δ} = Pr


√

a2
1−α

δ 2 ·YN∗ ≤

√
a2

1−α

δ 2 ·δ


= Pr

{a1−α

δ
·YN∗ ≤ a1−α

}
→ ΓΣ(a1−α)

where da2
1−α

/δ 2e = nr, N∗ = Nr, and wnr = δ/a1−α in Anscombe’s result. Then it follows from Lemma

A.1 and (A.12) that

Pr
{
|X̄N∗−Θ|6 δ ·1k

}
→ 1−α (A.13)

as δ ↓ 0. �

A.3 Proof of Theorem 2

Part (a): Let P∗n denote the probability used in the bootstrap stopping variable as follows,

P∗n = Pr∗{|Θ̂(X∗n)− Θ̂(Xn)|6 δ ·1k}.

where Θ̂(X∗n) and Θ̂(Xn) are the sample qth quantiles based on X∗n and Xn, respectively. Analogous to the

Proof of Theorem 1, it follows from Lemma A.2 and Proposition A.1 that

sup
x
|Pr∗(Gn(q)6 x ·1k)−ΦΣ(x ·1k)| → 0.

By letting x = δn1/2, we obtain

P∗n = ΓΣ(δn1/2)+o(1) (A.14)

a.s. as n→ ∞. From here on, the argument follows that of Theorem 1 (a). The inequalities P∗N∗ > 1−α and

P∗N∗−1 < 1−α hold with the bootstrap stopping variable N∗ given by

N∗ = inf{n> n0 : P∗n > 1−α}. (A.15)
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It follows from (A.14), (A.15), and the fact that N∗→ ∞ as δ → 0 that

P∗N∗ = ΓΣ(δN∗1/2)+o(1)> 1−α

P∗N∗−1 = ΓΣ(δ (N∗−1)1/2)+o(1)< 1−α

a.s. as δ → 0; equivalently,

δN∗1/2 > Γ
−1
Σ
(1−α +o(1)), (A.16)

δ (N∗−1)1/2 < Γ
−1
Σ
(1−α +o(1)). (A.17)

As δ → 0, it follows from (A.16), (A.17) that

δN∗1/2→ a1−α = Γ
−1
Σ
(1−α) a.s.

as δ → 0.

Part (b): As n→ ∞, we have

Pr{n1/2(Θ̂(Xn)−Θ)≤ x ·1k}→ΦΣ(x ·1k),

as shown in Babu and Rao (1988). Let Yn = maxi |θ̂(X in)−θi|. Then by the continuous mapping theorem,

we have

n1/2Yn→ Z in distribution (A.18)

where Z = max{|Z1|, . . . , |Zk|} and the distribution function of Z = (Z1, . . . ,Zk)
> is ΦΣ. Then using the same

argument as in the proof of Part (b) of Theorem 1, we have

Pr{YN∗ 6 δ}→ ΓΣ(a1−α)

as δ ↓ 0. Then it follows from Lemma A.1 and (A.18) that

Pr
{
|Θ̂(XN∗)−Θ|6 δ ·1k

}
→ 1−α (A.19)

as δ ↓ 0. �
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A.4 Proof of Corollary 2

Let Y j = AX j and P∗n denote the probability used in the bootstrap stopping variable in (10) as follows,

P∗n = Pr∗
{
|AX̄∗n−AX̄n|6 δ ·1(k

2)

}
= Pr∗

{
|Ȳ∗n− Ȳn|6 δ ·1(k

2)

}
.

It follows from Theorem A.2 for all x ∈ R+ that

∣∣∣Pr∗
{

n1/2(Ȳ∗n− Ȳn)≤ x ·1(k
2)

}
−ΓAΣnA>(x)

∣∣∣ 6 Cb(k)ρFn f1(n) (A.20)

where Cb(k) is a constant only depending on k, Σn = ∑
n
j=1(X j − X̄)(X j − X̄)>/n, and ρFn < ∞ when

E∗|Ȳ∗n− Ȳn|
3
< ∞ with large enough n. Applying (A.20) with x = δn1/2 we obtain

P∗n = ΓAΣnA>(δn1/2)+o(1)

a.s. as n→ ∞. The inequalities P∗N∗A > 1−α and P∗N∗A−1 < 1−α hold with the bootstrap stopping variable

N∗A given by

N∗A = inf{n> n0 : P∗n > 1−α}.

Using the same arguments as in the proof of Theorem 1 (a) and (b), we have

δ
2N∗A→ a2

1−α a.s.

where a1−α = Γ
−1
AΣA>

(1−α) and

Pr
{
|AΘ̂(X∗N∗A)−AΘ| ≤ δ ·1(k

2)

}
→ 1−α

as δ ↓ 0. �
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A.5 Proof of Corollary 3

Proof As shown in Proposition A.1, we have

Pr∗{n1/2(Θ̂(X∗n)− Θ̂(Xn))6 x}→ΦΣ(x)

for all continuity points x as n→ ∞. It follows that

Pr∗{n1/2(AΘ̂(X∗n)−AΘ̂(Xn))6 x}→ΦAΣA>(x)

by the continuous mapping theorem. Therefore, as n→ ∞

sup
x
|Pr∗{AΘ̂(X∗n)−AΘ̂(Xn)≤ x}−ΦAΣA>(x)| → 0

by Theorem A.3. We redefine P∗n as follows,

P∗n = Pr∗
{
|AΘ̂(X∗n)−AΘ̂(Xn)|6 δ ·1(k

2)

}
.

Using the same arguments as in the proof of Theorem 2 (a) and (b), we have

δ
2N∗A→ a2

1−α a.s.

where a1−α = Γ
−1
AΣA>

(1−α) and

Pr
{
|AΘ̂(X∗N∗A)−AΘ| ≤ δ ·1(k

2)

}
→ 1−α

as δ ↓ 0. �

A.6 Results for Selecting the Best Mean or the Best 0.8 quantile without CRN

This section contains the experiment results of the bootstrap R&S procedure without CRN combined with

the jump-ahead procedure, which have been referred in Section 6. The corresponding results with CRN are

presented in Tables 1–4 of Section 6.
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Table A.1: Empirical results for means from 100 macroreplications for half exponential and half normal

distributions in the slippage configuration without CRN.

k n0 Ave N∗ PCS Est Coverage True Coverage Ave Jumps

2(n) 50 10550 0.99 0.96 0.92 5.18

2(n) 100 10306 0.94 0.96 0.92 5.11

2(e) 50 10971 1.00 0.97 0.99 5.22

2(e) 100 11061 1.00 0.96 0.99 5.27

4(n) 50 20138 1.00 0.96 0.89 7.11

4(n) 100 20501 1.00 0.96 0.94 6.88

4(e) 50 20752 0.97 0.96 0.93 7.31

4(e) 100 20723 0.97 0.96 0.95 6.94

10(n) 50 37383 1.00 0.96 0.98 9.03

10(n) 100 37510 1.00 0.96 0.94 8.62

10(e) 50 37745 0.99 0.96 0.96 8.91

10(e) 100 37717 1.00 0.96 0.95 8.58

20(n) 50 50217 1.00 0.96 0.93 10.2

20(n) 100 50029 1.00 0.96 0.97 9.21

20(e) 100 50257 1.00 0.96 0.97 9.36

20(e) 50 50229 1.00 0.96 0.95 9.99
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Table A.2: Empirical results for means from 100 macroreplications for half exponential and half normal

distributions in the monotone decreasing means configuration without CRN.

k n0 Ave N∗ PCS Est Coverage True Coverage Ave Jumps

4(n) 50 21276 1.00 0.96 0.92 7.54

4(n) 100 21239 1.00 0.96 0.96 6.95

4(e) 50 21974 1.00 0.96 0.95 7.38

4(e) 100 21760 1.00 0.96 0.94 6.76

10(n) 50 43913 1.00 0.96 0.98 0.35

10(n) 100 44056 1.00 0.96 0.97 8.68

10(e) 50 45917 1.00 0.96 0.95 9.38

10(e) 100 45349 1.00 0.96 0.98 8.51

20(n) 50 72426 1.00 0.96 0.96 10.43

20(n) 100 72471 1.00 0.96 0.90 10.03

20(e) 50 74808 1.00 0.96 0.95 10.72

20(e) 100 73802 1.00 0.96 0.98 9.69
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Table A.3: Empirical results for means from 100 macroreplications for negative binomial distributions in

the slippage configuration without CRN.

k θ Average N∗ PCS Est. Coverage True Coverage Ave Jumps

2 1 1729 0.98 0.97 0.97 4.47

2 10 15842 0.99 0.96 0.97 5.24

4 1 2757 0.96 0.96 0.93 5.36

4 10 26980 1.00 0.96 0.97 6.29

10 1 4064 0.99 0.96 0.95 6.09

10 10 40837 0.99 0.96 0.95 7.72

20 1 5125 1.00 0.96 0.93 6.80

20 10 51189 1.00 0.96 0.97 8.98
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Table A.4: Empirical results for quantiles (q = 0.8) from 100 macroreplications for half exponential and

half normal distributions in the slippage configuration without CRN.

k n0 Ave N∗ PCS Est Coverage True Coverage Ave Jumps

2(n) 50 22355 0.97 0.97 0.92 5.72

2(n) 100 23156 0.99 0.97 0.95 5.01

2(e) 50 22304 0.97 0.96 0.94 5.82

2(e) 100 24103 0.96 0.96 0.95 5.14

4(n) 50 43351 1.00 0.96 0.95 7.72

4(n) 100 42708 1.00 0.96 0.95 7.31

4(e) 50 44194 0.95 0.96 0.93 7.84

4(e) 100 43824 0.99 0.96 0.99 7.38

10(n) 50 80487 1.00 0.96 0.97 9.56

10(n) 100 79610 1.00 0.96 0.98 9.14

10(e) 50 79611 1.00 0.96 0.97 9.48

10(e) 100 79276 1.00 0.96 0.97 8.84

20(n) 50 107071 1.00 0.96 0.98 10.61

20(n) 100 106991 1.00 0.96 0.97 10.07

20(e) 50 108670 1.00 0.96 0.98 10.93

20(e) 100 107608 1.00 0.96 0.94 9.98
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