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ABSTRACT

Risk measurement involves estimating some functional
of a loss distribution. This calls for nested simulation,
in which risk factors are sampled at an outer level of
simulation, while the inner level of simulation provides
estimates of loss given each realization of the risk factors.
We present a general method for providing a confidence
interval for the risk measurement. It involves combining
a confidence region for the losses with the confidence
interval that would be used if the losses were known.
This method could be very time-consuming, so we dis-
cuss ways of improving its efficiency. One is to choose
the structure of the confidence region for the losses in
a way that is tailored to the particular risk measure.
Another involves varying the simulation effort expended
on estimating the losses associated with different risk
factors, even screening out many of the risk factors after
slight simulation effort has revealed them to be unlikely
to have much impact on the estimated risk measure.
We will discuss two-level simulation in general and a
specific procedure for estimating a confidence interval
for tail conditional expectation.

1 INTRODUCTION

Every night, institutions trading in derivative securities
measure the risk of their portfolios of derivatives. The
Basel II regulatory framework (Bank of International
Settlements 2004) encourages the calculation of capital
requirements for banks on the basis of banks’ internal
risk assessments. These capital requirements against
possible losses are a crucial aspect of regulatory efforts
to prevent a cascade of defaults that could paralyze
the global financial system. Risk measurement also
allows firms to impose risk management policies that
prevent limits on risk from being breached, helps to
guide efforts to mitigate risk by hedging, and enables
a policy of charging individual business units for risk

capital, thus providing incentives for risks to be taken
only when the expected rewards are sufficiently large.

Anumber of difficulties attend the practice of nightly
firmwide risk management. One is data aggregation: a
large financial institution may have positions in thou-
sands of derivative securities, involving hundreds of un-
derlying variables. Another is the difficulty of modeling
future risks on the basis of presently available informa-
tion. A third difficulty is purely computational and can
be addressed by improved simulation methodology.

Risk measurement involves computing something
about the distribution of possible losses on the portfolio
over some time horizon. For example, the one-day 1%
value at risk (VaR) is the quantity such that the proba-
bility of having a loss larger than this VaR tomorrow is
1%. VaR is recommended in the Basel II framework as
the basis for capital requirements against market risk.
A sound way to estimate VaR would be:

1. Simulate many replications of a vector of risk
factors that determine tomorrow’s price for the
derivative securities.

2. Simulate conditional on each vector of risk fac-
tors to estimate the price of all of the derivatives
in that scenario, and thus the associated loss.

3. Estimate the VaR by making it the quantity
such that in 1% of the scenarios, the portfolio’s
estimated loss is larger than VaR.

The difficulty is that simulation is required to price many
of the derivatives, and one might need to generate, for
each of one thousand scenarios, ten thousand paths of
one hundred time steps and one hundred state variables,
for a total of one hundred billion primitive simulation
operations.

Despite advances in computing technology, it is not
yet affordable to do this in one night, and consequently
financial institutions rely on methodologies of question-
able soundness for computing VaR. One of the most
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well-known is the delta-gamma approximation of the
portfolio’s value as a quadratic function of the risk fac-
tors. The “Greeks” delta and gamma are derivatives of
the securities’ prices with respect to risk factors. The
approximation tends to be accurate only locally, which
is unfortunate because large losses (with which VaR
is concerned) usually involve large moves in financial
markets.

Furthermore, one might hope to use firmwide risk
measurement to guide hedging. At present, hedging is
conducted primarily by individual traders and usually
on the basis of Greeks, in part because of the difficulty
of computing an optimal hedge for a large portfolio.
There is an opportunity for better and cheaper hedging.
However, it will be even more expensive than to esti-
mate a risk measure to solve a simulation-optimization
problem to find the optimal hedge that minimizes the
risk measure (or some function involving a risk-reward
tradeoff).

For these reasons, it would help risk managers to
have very efficient simulation procedures for estimating
risk measures. Of course, one of the major benefits of
Monte Carlo simulation as a tool for numerical com-
putation is that it tends to provide extremely helpful
statistical error estimates. We would like to see sim-
ulation procedures that efficiently provide confidence
intervals for risk measures.

2 PROBLEM STATEMENT

Monte Carlo simulation is often used to estimate the
mean of a random variable. It is not necessary for the
simulation analyst to possess an explicit expression for
the distribution FV of the random variable V whose
mean is to be estimated. All that is required is to be
able to sample from its distribution by sampling some
basic random vector Z and evaluating a function that
maps it to V . Abusing notation slightly, let V (·) also
represent this function: V = V (Z). The mean

E[V ] =
∫

V (z) dFZ(z)

where FZ is the distribution of Z; again, FZ need not
be known, but one must be able to sample from it. This
enables one to sample from FV : when Z is sampled
from FZ , V (Z) ∼ FV .

Therefore one can also design simulation procedures
to estimate functionals T , other than the mean, of the
distribution FV . Where Vi = V (Zi) and Z1, . . . , Zk are
sampled from FZ , let F̂V be the empirical distribution of
V1, . . . , Vk, and T (F̂V ) is a point estimate of T (FV ), the
quantity of interest. One can also derive (asymptotically
valid) confidence intervals for T (FV ).

Some interesting examples of such functionals are:

• The probability FV (v) that V is less than some
value v. This could be useful in studying the
rare event of system failure or in evaluating
service level agreements.

• For similar reasons, quantiles are of interest.
For value at risk, −VaRp is the p-quantile of
FV .

• Tail conditional expectation

TCEp := E[−V |V ≤ −VaRp]

is used as a risk measure by the insurance in-
dustry (Manistre and Hancock 2005).

• Expected shortfall

ESp := −1
p

(
E

[
V 1{V≤−VaRp}

]
+VaRp(p− Pr[V ≤ −VaRp]))

is a coherent risk measure (Artzner et al. 1999,
Acerbi and Tasche 2002).

In the definition of ES, VaR must involve the lower p-
quantile if the quantile is not unique. If FV is continuous
and increasing at its p-quantile, TCE and ES are the
same (Acerbi and Tasche 2002).

When T (FV ) is related to a quantile of FV , the bi-
nomial distribution of the number of samples exceeding
T (FV ) can be used to construct a confidence interval.
Confidence intervals for expected shortfall or tail con-
ditional expectation have been derived by Baysal and
Staum (2007), based on empirical likelihood, bootstrap-
ping, or on the work of Manistre and Hancock (2005)
which makes use of the influence function concept from
robust statistics.

Let’s call V the value of interest and Z the risk
factor. Examples:

1. Z contains interarrival and service times in a
queueing system, and V (Z) is the waiting time
of the nth job.

2. Z is a vector of parameters such as interarrival
and service rates for a queueing system, whose
distribution arises from input modeling, e.g., as
a Bayesian posterior distribution. V (Z) is the
mean of the stationary distribution of jobs in
the system.

3. Z contains financial variables such as stock
prices and interest rates at a future date T ,
and V (Z) is the gain on a financial portfolio
over the time interval [0, T ].
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4. Z describes the characteristics of a disaster,
and V (Z) is the expected loss sustained after a
response to mitigate the disaster is chosen once
Z has been observed.

In the first example, V (Z) can be evaluated: it is a
matter of the logic describing the flow of jobs in the
queueing system. In the second example, V (Z) can
usually not be evaluated directly; it would have to be
estimated by simulation of the queueing system, with
sampling done conditional on Z. In the third example,
if the portfolio contains only securities whose prices at
time T are known as a function of Z, then V (Z) can be
evaluated; usually, it has to be estimated by simulation
of the discounted payoffs of the securities, conditional on
the risk factor Z. In the fourth example, V (Z) usually
has to be estimated by simulation optimization.

3 WHEN AND HOW TO DO TWO-LEVEL
SIMULATION

We now focus on situations where V (Z) = E[X|Z], and
it is possible to sample from the conditional distribution
FX|Z=z of X given Z = z. To estimate a functional
T (FV ), one can use a two-level simulation. At the
outer level, risk factors Z1, . . . , Zk are sampled from
FZ . At the inner level, for each i = 1, . . . , k, payoffs
Xi1, . . . , XiNi are sampled from FX|Z=Zi

, and one may
estimate Vi = V (Zi) by X̄i :=

∑Ni

j=1 Xij/Ni. In the
financial context, the total cost of sampling risk factors is
usually negligible compared to the total cost of sampling
payoffs, so we regard the computational cost of the two-
level simulation as

∑k
i=1 Ni. Let F̂X̄ be the empirical

distribution of X̄1, . . . , X̄k. Then T (F̂X̄) is a point
estimate of T (FV ).

If the functional of interest T is the mean, a sim-
plification occurs: the mean

T (FV ) = E[V ] = E[E[X|Z]] = E[X]

is ∫
v dFV (v) =

∫ ∫
x dFX|Z=z(x) dFZ(z).

In this case, the two levels collapse, and it suffices to do
an ordinary one-level simulation in which one samples
X by first sampling Z from FZ , then X from FX|Z .

If the function V (·) is known, then only the outer
level of simulation is required.

If FZ is a discrete distribution over a small number
k of outcomes whose probabilities are known, then only
the inner level of simulation is required. An example of
such a situation is estimation of the value of the best of
k systems. This is related to ranking and selection, but

the difference is that here we are interested in estimating
the value of the best system, not finding the identity of
the best system or estimating the value of the selected
system. This special case fits into our framework when
FZ is a uniform distribution over k systems. Hence
in the absence of ties, FV is a uniform distribution
over k values, the functional T finds the distribution’s
maximum value, and stratification is used in sampling
from FZ . This problem is studied by Lesnevski et al.
(2005, 2006), who develop procedures which, applied to
risk management, allow for the efficient simulation of
coherent risk measures based on generalized scenarios.

If T is not the mean, the function V (·) is unknown,
and the statistical error associated with sampling from
FZ can not be entirely removed, then a two-level sim-
ulation is required. In what remains, we assume that
this is so and we focus on the third example of a fi-
nancial portfolio. For this example, X is the sum of
the discounted payoffs of the securities in the portfo-
lio. To evaluate such a payoff given the risk factor Z
representing the market at time T , one must simulate
the market’s evolution from time T until the security’s
maturity, when it makes its last payment.

4 CONFIDENCE INTERVALS

How does statistical uncertainty at the inner level com-
bine with statistical uncertainty at the outer level? This
question must be answered to create a confidence interval
after a two-level simulation.

One sign of the difficulties is that uncertainty at the
inner level can lead to bias in the obvious point estimates
of T (FV ). This was seen already in the work of Lesnevski
et al. (2005), in which there was no uncertainty at the
outer level (hence T (FV ) = T (F̂V )). Let V[1], . . . , V[k]

represent the (increasing) order statistics of the sample
V1, . . . , Vk. For TCEp, where kp is an integer, T (F̂V ) =
−

∑kp
i=1 V[i]/kp. The inner level provides an estimate

X̄i of each Vi, but it does not reveal with certainty the
identity of [i], that is, which risk factor results in the ith
smallest value. Where X̄(1), . . . , X̄(k) represent the order
statistics of the sample X̄1, . . . , X̄k, the obvious point
estimate of T (F̂V ) is −

∑kp
i=1 X̄(i)/kp. Its expectation

is −
∑kp

i=1 V(i)/kp < −
∑kp

i=1 V[i]/kp, so it is a biased
estimate of T (F̂V ).

The problem can be viewed as follows. If V (·) were
known, a confidence interval [L(V), U(V)] for T (FV )
could be computed from the sample V := (V1, . . . , Vk).
In simulation applications, we are generally unable to
place FV in a parametric family and use parametric
hypothesis testing to construct a confidence interval
with small-sample validity, but the sample size k is
large. Therefore we rely on nonparametric methods to



Lan, Nelson, and Staum

construct a confidence interval satisfying

lim
k→∞

Pr{T (FV ) ∈ [L(V), U(V)]} = 1− αo. (1)

For example, in the ordinary case where T is the mean,
the central limit theorem justifies a confidence interval
based on asymptotic normality of the sample average of
T (F̂V ); it requires computing the sample average and
sample standard deviation. For other suitable T , includ-
ing TCE (Manistre and Hancock 2005), computing what
is called the “influence function” of T in the theory of
robust statistics justifies a confidence interval centered
on T (F̂V ), whose width is proportional to an estimate of
the asymptotic standard deviation of T (F̂V ). Alterna-
tive nonparametric methods include bootstrapping and
empirical likelihood (Baysal and Staum 2007). Because
V (·) is not known, V and hence L(V) and U(V) are
unobservable.

Instead we construct L̂ and Û from the observable
sample of payoffs to satisfy, for all V,

lim
N→∞

Pr
{

[L(V), U(V)] ⊆
[
L̂, Û

]}
≥ 1− αi (2)

where N := (N1, . . . , Nk). Applying the Bonferroni
inequality to Inequalities (1) and (2),

lim
k,N→∞

Pr
{

T (FV ) ∈
[
L̂, Û

]}
≥ 1− α (3)

where α = αo + αi, an error spending decomposition
which expresses the fact that error arises in one of
two ways: the unknown outer-level confidence interval
[L(V), U(V)] fails to cover the true value due to unlucky
sampling of risk factors, or the known confidence interval
[L̂, Û ] fails to cover the unknown outer-level confidence
interval due to unlucky sampling of payoffs at the inner
level. The way to construct L̂ and Û so that Inequal-
ity (2) can be established depends on the functions L and
U providing the outer-level confidence interval, which
in turn depend on the functional T and the method of
justifying the outer-level confidence interval.

Suppose that sampling is done so the risk factors
Z1, . . . , Zk are independent and Xi1j1 , Xi2j2 are inde-
pendent of each other conditional on Zi1 and Zi2 for
i1 6= i2. As N → ∞, X̄ converges to multivariate nor-
mal with independent components. Each (X̄i−Vi)/

√
Ni

converges to a normal random variable with mean 0 and
variance which can be estimated by the sample variance
S2

i of Xi1, . . . , XiNi . Define ε := 1− (1−αi)1/k and let
ti be the quantile at the 1− ε/2 level of the Student t
distribution with Ni − 1 degrees of freedom. Let V be
the random k-dimensional box formed as the Cartesian

product over i = 1, . . . , k of the intervals[
X̄i −

tiSi√
Ni

, X̄i +
tiSi√

Ni

]
. (4)

Then V is an asymptotically valid confidence region for
V:

lim
N→∞

Pr {V ∈ V} ≥ (1− ε)k = 1− αi.

Consequently, Inequality (2) is satisfied with

L̂ = inf
v∈V

L(v) and Û = sup
v∈V

U(v). (5)

It would also be possible to construct V in different
ways, e.g., as an ellipsoid based on the limiting χ2

k

distribution of 1
k

∑k
i=1(X̄i − Vi)2/S2

i Ni. The ease of
performing the optimizations in Equation (5) and the
size of the resulting confidence interval are relevant
considerations in choosing how to construct V. These
optimizations are trivial when L and U are monotone
and V has a least and a greatest element with respect
to the usual partial ordering on <k, as it does when
defined as the k-dimensional box.

For example, to use empirical likelihood (Owen
2001) at the outer level, let

S :=

{
w ∈ W

∣∣ k∏
i=1

(kwi) ≥ exp
(
−1

2
χ2

1,1−αo

)}

where W := {w ∈ <k|w ≥ 0,
∑k

i=1 wi = 1}. Define
T̂ (w, v) := T (Fw,v) where Fw,v is the discrete distribu-
tion putting probability mass wi on the value vi. Then
L(V) = infw∈S T̂ (w,V) and U(V) = supw∈S T̂ (w,V).
If T is monotone (as is true of mean, quantile, TCE,
and ES), then L and U are monotone.

We have constructed a procedure that produces a
confidence interval forTCEbased on empirical likelihood
and proved that it satisfies Inequalities (1) and (2). This
procedure uses an inner-level confidence regionV tailored
to TCE, different from the box and ellipsoid mentioned
above.

5 EFFICIENCY ENHANCEMENT

Efficiency is important for two-level simulation, which
can be very computationally expensive, as discussed in
Section 1. Efficiency enhancement for two-level sim-
ulation is interesting for several reasons. It may not
be straightforward to get a confidence interval by the
methods described in Section 4 when using variance
reduction. The shape of the inner-level confidence re-
gion V greatly influences efficiency. There are questions
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about how to allocate computational resources between
the outer and inner levels, and how to allocate compu-
tational resources within the inner level.

5.1 Confidence Region Construction

A good choice of inner-level confidence region V de-
pends on the risk measure that is being estimated and
the method of constructing an outer-level confidence
interval, that is, on the functions L and U that pro-
vide the lower and upper confidence limits in Equa-
tion (1). The construction of the two-level confidence
interval as specified in Equation (5) tends to be too
conservative and have an excessive coverage probabil-
ity: Inequality (3) is not tight. The same confidence
interval [infv∈V L(v), supv∈V U(v)] can be generated by
more than one inner-level confidence region. The largest
V ′ satisfying[

inf
v∈V

L(v), sup
v∈V

U(v)
]

=
[

inf
v∈V′

L(v), sup
v∈V′

U(v)
]

is

V ′ =
{

v′ | L(v′) ≥ inf
v∈V

L(v), U(v′) ≤ sup
v∈V

U(v)
}

,

which can have Pr{V ∈ V ′} significantly larger than
1 − αi. To increase efficiency, choose V such that
[infv∈V L(v), supv∈V U(v)] is narrow and Pr{V ∈ V ′}
is near 1− αi.

5.2 Computational Resource Allocation

Given a fixed computational budget C, what number k of
risk factors minimizes the width Û− L̂ of the confidence
interval? Roughly, we suppose that

∑k
i=1 Nk = C:

nearly all of the cost is inner-level simulation. Lee (1998)
answers a related question: he takes N1 = · · · = Nk = N
and finds that k ∝ C2/3 minimizes the asymptotic MSE
of an estimate of VaR. The answer to our question may
differ, and it depends on the risk measure and on how
the confidence interval [L̂, Û ] is constructed.

Given k, how should N1, . . . , Nk be chosen?
Lesnevski et al. (2005, 2006) provide several techniques
for increasing the efficiency of the inner-level simulation
when T (F̂V ) = V[k].

One technique that is widely applicable is the use
of multi-stage simulation at the inner level. After a first
stage in which n0 observations are simulated conditional
on each of the risk factors, one can set Ni proportional
to a sample variance S2

i (n0). This can help when T
is TCE: much as in stratified sampling, when Ni is
not proportional to Var[X|Zi], there is a difference in

the marginal benefit of sampling payoffs conditional on
different risk factors.

Screening is another technique for increasing ef-
ficiency. It is applicable to TCE or whenever L(V)
and U(V) do not depend on all of the order statistics
V[1], . . . , V[k]. For TCE, after the first stage, those risk
factors whose sample means

∑n0
j=1 Xij/n0 are too large

compared to those of other risk factors are “screened
out.” Let I ⊆ {1, . . . , k} contain the indices of those that
are not screened out. Only for i ∈ I do we then simulate
Xi,n0+1, . . . , Xi,Ni

. This creates a great savings, but at
a cost, familiar from ranking and selection procedures
that use screening. The error spending structure must
be modified: αi = α′I + αS , where αS is spent on the
possibility of an error in screening, while α′i must replace
αi in Inequality (2). The details are not as straightfor-
ward as in Lesnevski et al. (2005) where the goal was to
get [k] ∈ I. However, we have constructed a procedure
that satisfies this modified error spending structure for
TCE and empirical likelihood, where correct screening
means {[1], . . . , [`]} ⊆ I.
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