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1. Introduction
Statistical procedures have been proposed to select the sim-
ulated system with the largest or smallest long-run average
performance from among a finite number of alternative sys-
tems. In this paper, we focus on the indifference-zone for-
mulation of the selection problem, meaning that we desire
procedures that are guaranteed to select the best system
with high probability when the long-run average perfor-
mance of the best is at least a given amount better than
the rest (see Chen et al. 2000 and Chick and Inoue 2001
for alternative formulations). Many of these procedures
have been constructed under the assumption that the out-
put data generated by each system are independent and
identically distributed (i.i.d.), and also marginally normal.
The assumption of independence within each system’s out-
put, which is appropriate for terminating simulations, is
the biggest barrier to applying these procedures directly to
steady-state simulation experiments. The outputs within a
single replication of a steady-state simulation are typically
dependent. For instance, the delays in queue of successive
parts processed at a work center may be dependent because
each part must wait for the ones ahead of it.
We can apply procedures for i.i.d. normal data to steady-

state simulation experiments if we make multiple replica-
tions of each alternative, use the within-replication averages
as the basic observations, and make the replications long
enough that the within-replication averages are approxi-
mately normally distributed. Or, we can generate a single
long replication of each alternative and use batch means of
many individual outputs as the basic observations. In typi-
cal simulation output processes, the batch means are much

less dependent and more nearly normally distributed than
the individual outputs if the batch size is large enough. See
Law and Kelton (2000) for a general discussion of repli-
cation versus batching, Goldsman and Nelson (1998) for a
presentation specialized to selection procedures, and Glynn
and Iglehart (1990) for conditions under which the batch
means method is asymptotically valid.
Unfortunately, both of these remedies for dependent data

have disadvantages. If we make replications, then we have
to discard the so-called warm-up period from each one; this
will be very inefficient if a large number of observations
need to be deleted. Batching within a replication may also
be inefficient for the following reason: Selection procedures
attempt to minimize the simulation data required to obtain
a “correct selection” by working sequentially—meaning
two or more stages of sampling—with decisions on how
much, if any, additional sampling is needed made at the
end of each stage. If a “stage” is defined by batch means,
rather than individual observations, then the simulation
effort consumed by a stage is a multiple of the batch size.
When a large batch size is required to achieve approximate
independence—and batch sizes of several thousand are
common—then the selection procedure is forced to make
decisions at long intervals, wasting observations and time.
These disadvantages have fostered efforts to develop

new procedures designed specifically for steady-state
simulation, procedures that can be applied to a sin-
gle replication from each alternative and that use
basic outputs rather than batch means. Goldsman and
Marshall (1999) extended Rinott’s (1978) procedure for
use in steady-state simulation. Nakayama (1997) presented
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single-stage multiple-comparison procedures, and Damerdji
and Nakayama (1999) developed two-stage multiple-
comparison procedures, to provide inference on the best
system for steady-state simulation. The procedures in all
three papers take a single replication of each system, keep
the number of sampling stages small (one or two), and do
not eliminate any alternatives until the final stage of sam-
pling is completed. The procedures by Nakayama (1997)
and Damerdji and Nakayama (1999) were shown to be
asymptotically valid.
The inefficiency of batching is particularly troublesome

when fully sequential procedures are employed. Fully se-
quential procedures use many stages of sampling, take only
a single basic observation from each alternative still in play
at each stage, and may eliminate alternatives that appear
(with high probability) to be inferior (see Siegmund 1985
for a general reference on fully sequential procedures).
Batching constrains these decisions to batch means, rather
than individual observations, partially defeating the benefits
of using a fully sequential procedure. This is unfortunate,
because Kim and Nelson (2001) showed that fully sequen-
tial procedures for i.i.d. normal data can be quite efficient.
We have empirical evidence that appropriate modifications
of Kim and Nelson’s procedure �� also work well in
the single-replication, steady-state simulation environment
(Goldsman et al. 2000, 2002). Unfortunately, proving that
these procedures, or any such procedures, provide a correct-
selection guarantee is hopeless unless we make assump-
tions that are clearly unrealistic for a single replication of
a steady-state simulation. Therefore, a goal of this paper
is to provide theoretical support, in terms of an appropri-
ate asymptotic analysis, for what we have observed empir-
ically. This is important because it establishes conditions
under which we can expect fully sequential procedures
to work, rather than just relying on anecdotal evidence
that they do. We also provide guidance for actual use,
because there are implementation choices that have a sub-
stantial impact on the performance of the procedures in
finite samples.
This paper is organized as follows: In §2, we set up

the key assumptions for output processes from steady-state
simulation and the variance estimators we will employ.
In §3, we introduce a framework for establishing the
asymptotic validity of fully sequential procedures. Sec-
tion 4 presents a new procedure in which variance esti-
mators are computed once from a first-stage sample, and
proves its asymptotic validity. In §5, we describe another
new procedure—one that allows variance updates—and
also establish its asymptotic validity. Section 6 contains an
illustrative example. We conclude by offering our opinion
about future research in §7.

2. Background
This section describes the key assumptions we make for
output processes from steady-state simulations. First, we

discuss a Functional Central Limit Theorem (FCLT) that
shows how to standardize the output data from steady-state
simulations to make them behave like Brownian motion
processes in the limit. Because we assume unknown vari-
ances, we need to estimate the variance of each system to
standardize the output. In §2.2, we discuss the properties
we require of variance estimators.

2.1. Functional Central Limit Theorem

Suppose that there are k systems. For system i = 1�
2� � � � � k, let Xi = �Xij
 j = 1�2� � � �� be a discrete-time
stochastic process representing the simulation output of
system i (although we work in discrete time, an entirely
analogous development can be done for continuous-
time output processes). We assume that the processes
X1�X2� � � � �Xk are mutually independent; this rules out the
use of common random numbers, an issue we discuss fur-
ther in §7. However, we allow the joint distribution of
each Xi to be different, and do not require any assumption
of normality.
The sample mean of the first r observations from sys-

tem i is represented by �Xi
r�, and the standardized partial
sum for system i, Ci
t� r�, is defined as

Ci
t� r�≡
∑�rt�

j=1Xij − rt�i

vi
√
r

� 0� t � 1� (1)

where �·� indicates truncation of any fractional part. For
any r � 1, the random function Ci
t� r� is an element
of the Skorohod space D�0�1� as defined in Chapter 3
of Billingsley (1968). To establish our results, we restrict
attention to processes that satisfy the following assumption,
called a Functional Central Limit Theorem (see Billingsley
1968, Chapter 4).

Assumption 1. There exist finite constants �i and v2i such
that the probability distribution of Ci
t� r� over D�0�1�
converges to that of a standard Brownian motion process,
� 
t�, for t on the unit interval, as r increases; i.e.,

Ci
·� r�=⇒� 
·�
as r →�, where =⇒ denotes convergence in distribution.
Further, we assume that for every t ∈ �0�1�, the family
of random variables �C2

i 
t� r�� r = 1�2� � � �� is uniformly
integrable.

Under Assumption 1, �i can be identified as the steady-
state mean, and

v2i = lim
r→� rVar


�Xi
r��

is the asymptotic variance of system i.
We take Assumption 1 as a given; establishing condi-

tions under which it holds is not our goal. However, one set
of sufficient conditions for the FCLT is that Xi is station-
ary and �-mixing with appropriate mixing constants (see
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p. 166 of Billingsley 1968 for the exact definition). Roughly
speaking, in a �-mixing process the distant future is nearly
independent of the past and present. Many stochastic pro-
cesses are �-mixing; e.g., l-dependent processes and finite-
state, irreducible, and aperiodic Markov chains.
Our procedures observe the sum of differences between

two systems, however, so we need to establish that the
standardized partial sum of differences between two sys-
tems also behaves like � 
t�. We can show this by defining
Zi�
j�=Xij −X�j for j = 1�2� � � � � r , i �= �, and letting

Ci�
t� r�=
∑�rt�

j=1 Zi�
j�− rt
�i −���

vi�
√
r

� (2)

Lemma 1. For i �= �, if Xi and X� satisfy Assumption 1 and
are independent, then there exists a constant v2i� such that

Ci�
·� r�=⇒� 
·�
as r →�.

Proof. First, note that

v2i� = lim
r→� rVar


�Zi�
r��= v2i + v2�

because of the independence of Xi and X�. Let Ci
t� r�
and C�
t� r� be the standardized partial sums of Xi and X�,
respectively. Then,

Ci�
t� r�=
∑�rt�

j=1 Zi�
j�− rt
�i −���

vi�
√
r

=
∑�rt�

j=1
Xij −X�j�− rt
�i −���

vi�
√
r

=
∑�rt�

j=1Xij − rt�i

vi�
√
r

−
∑�rt�

j=1X�j − rt��

vi�
√
r

=
(
vi
vi�

)
Ci
t� r�−

(
v�
vi�

)
C�
t� r��

Because we assume that Xi and X� are independent, so are
Ci
t� r� and C�
t� r�. Assumption 1 implies Ci
·� r� =⇒
�i
·� and C�
·� r� =⇒ ��
·�, where �i
·� and ��
·�
are independent standard Brownian motion processes. By
Theorem 3.2 of Billingsley (1968), 
Ci
·� r��C�
·� r��=⇒

�i
·����
·��. If f 
t� and g
t� are elements of D�0�1�,
the mapping, h
f 
t�� g
t�� = 
vi/vi��f 
t� − 
v�/vi��g
t�,
0� t � 1, from D�0�1�×D�0�1�→D�0�1�, is continuous.
Thus, by the Continuous Mapping Theorem (CMT) (see
Theorem 5.5 of Billingsley 1968),

Ci�
·� r�=⇒
(
vi
vi�

)
�i
·�−

(
v�
vi�

)
��
·��

which is also a standard Brownian motion process. �

Lemma 1 is critical to establishing the validity of our
procedures because it provides a way to standardize the

output of a steady-state simulation so that it converges to a
known process. We then use properties of Brownian motion
to control the chance that our procedures incorrectly choose
an inferior system as the best.
The standardized partial sum contains v2i�, which is

unknown. Thus, we need an estimator of v2i�. In the next
subsection, we establish the conditions that variance esti-
mators should satisfy to be building blocks for asymptoti-
cally valid procedures.

2.2. Variance Estimators

There are several estimators for the asymptotic variance
of a stationary stochastic process that are based on the
concept of batching. In batching, we partition the r sim-
ulation outputs into b batches of m outputs each, so that
r = mb. Therefore, the jth (nonoverlapping) batch from
system i contains the outputs Xi� 
j−1�m+1�Xi� 
j−1�m+2� � � � �
Xi� jm. Although our selection procedures use individual
outputs to make elimination decisions, they use batching to
estimate the asymptotic variance.
Let mV 2 denote an estimator of the asymptotic vari-

ance v2 of either a single system or the difference between
two systems. To establish the validity of our procedures,
we need variance estimators with either the chi-squared
property or the strong consistency property. Variance esti-
mators mV 2 with the chi-squared property satisfy the
following:

Assumption 2.

mV 2 =⇒ v2!2d
d

as m→� with b fixed�

where !2d denotes a chi-squared random variable with
d degrees of freedom, and d is determined by the specific
variance estimator used.

The batch means estimator and area estimator are known
to have the chi-squared property (Schruben 1983, Chien
et al. 1997, Sargent et al. 1992). The batch means estimator
has degrees of freedom d= b−1, while the area estimator
has d = b. The overlapping batch means estimator does
not have this property, but Meketon and Schmeiser (1984)
showed that it is approximately chi-squared distributed for
large m. Meketon and Schmeiser (1984) also showed that
the overlapping batch means estimator has approximately
3/2 the degrees of freedom of the batch means estimator.
Some variance estimators can be shown to be strongly

consistent estimators of the asymptotic variance. To explain
this property, we need the concept of a batching sequence.
A batching sequence is denoted �
mr� br�� r = 1�2� � � ��,
where mr and br are the batch size and the number of
batches, respectively, as functions of the number of out-
puts r . Variance estimators with the strong consistency
property satisfy the following:

Assumption 3.

mrV
2 −→ v2 with probability 1 as r →��
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In the literature, conditions on 
mr� br� that guaran-
tee almost sure convergence (convergence with probabil-
ity 1) and mean-squared convergence have been established
(Damerdji 1994, 1995; Damerdji and Goldsman 1995;
Chien et al. 1997). In all cases, both mr and br are nonde-
creasing functions of r and go to infinity as r increases.
For our procedure that estimates variances only once

(denoted ��+), we establish asymptotic validity based
on variance estimators satisfying Assumption 2. The valid-
ity of our procedure with variance updates (denoted
��++) is proved based on variance estimators satisfying
Assumption 3.

3. A Framework for Establishing
Asymptotic Validity

Goldsman et al. (2002) discuss different ways to evaluate
the “goodness” of a ranking-and-selection procedure. For
an indifference-zone procedure designed to find the best
among a finite number of systems, the most important mea-
sure of performance is the probability of correct selection
(PCS). If there is more than one procedure for the same
purpose that satisfies the PCS requirement, then the most
efficient procedure is superior. However, if there is no pro-
cedure that can guarantee a prespecified PCS—which is
the case in our context—then a procedure that is likely to
come close to the desired PCS is needed.
Mathematical analysis of finite-sample performance is

the ideal way to establish the PCS. Unfortunately, if
assumptions such as normality and independence of the
simulation output processes are relaxed, then bounding the
PCS is typically impossible and we are forced to consider
other approaches. In this section, we propose a framework
for asymptotic analysis: showing that a procedure achieves
at least the desired PCS in an appropriate limit. Our defini-
tion of asymptotic PCS is similar to Dalal and Hall (1977)
and Mukhopadhyay and Solanky (1994). Sections 4 and 5
apply the framework to procedures ��+ and ��++,
while §6 and Goldsman et al. (2002) report on an empir-
ical evaluation of the finite-sample performance of both
procedures.
Our selection procedures are based on the concept of

an indifference zone, which is defined by a parameter
# > 0 that can be interpreted as the smallest difference
in steady-state mean performance that is worth detecting.
More precisely, we would like our procedures to provide a
guaranteed PCS when the best system’s steady-state mean
is at least # better (smaller or larger, depending on the
problem) than the second-best system’s mean. If there are
systems whose means are within # of the best, then we
are indifferent as to which one of these good systems is
selected.
For simplicity, we discuss the case of only two systems,

denoted k and i. We assume that a larger mean is better
and that �k � �i + #. Once we show the validity of our
procedures for k= 2, it is not difficult to extend the result
to k� 2 systems.

To be more specific, let S
r� = ∑r
j=1
Xkj − Xij�. Our

procedures are based on tracking the partial sum S
r�, r =
n0� n0+1� � � � �N , as long as it stays within a “continuation
region” R
r� of finite length r = 1�2� � � � �N . Depending on
how S
r� exits R
r�, we either select system k (if it exits
the region going up) or system i (if it exits the region going
down) as best. If the length of the continuation region is
proportional to mV 2/#2—as it is in our procedures—then
as #→ 0, we have N →�.
To make probability statements about how S
r� will exit

R
r�, we consider how a standardized version of S
r� exits
a correspondingly modified version of R
r�. Specifically,
we standardize S
r� over the range 0 � r � N as in (2);
this yields Cki
t�N �+ 
�k−�i� ·)
N� · t over the interval
0� t � 1. The “leftover” term )
N� is positive and a func-
tion of both # and mV 2 (through N ). The term �k−�i > 0
tends to push the process toward exiting the continuation
region going up, which is the correct direction. Therefore,
to bound the PCS, we replace �k − �i by #, which is no
larger than the true difference. As #→ 0, we employ the
FCLT (and other arguments that depend on the specific pro-
cedure) to show that Cki
t�N �+# ·)
N� · t =⇒� 
t�+)t,
a standard Brownian motion process with positive drift ).
We then show that the PCS is attained for the limiting
process, which gives us some hope that it will be approx-
imately attained for realistic, finite-sample-size problems
(although this cannot be guaranteed).
To show the asymptotic validity of our procedures, we

let the parameter that defines the indifference zone, #, go to
zero, which drives the sample size to infinity. Of course, if
the true difference �k−�i > 0 is fixed, then as the sample
size goes to infinity, the PCS→ 1 (which is clearly greater
than 1−*, as claimed, but is not very meaningful). There
are at least two ways to view an asymptotic analysis where
# → 0 that provide insight into when the procedure will
work well in practice:
(1) In reality, we do not know the true differences

between the steady-state means. The most important case
for an indifference-zone ranking-and-selection procedure is
when the true differences are small and we demand to be
able to detect small differences (when the true differences
are small but # is large, or the true differences are large
but # is small, we are unlikely to make a mistake). The
asymptotic validity of the proposed procedures shows that
if the true, unknown differences are small, even vanishingly
small, then the procedures will achieve approximately the
desired PCS when we also require them to detect small
differences.
(2) Let

Xkj =�k + +kj�

Xij =�i + +ij (3)

represent the output processes from systems k and i, where
�+kj � j = 1�2� � � �� and �+ij � j = 1�2� � � �� are indepen-
dent, mean-zero, stationary stochastic processes satisfying
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Assumption 1 (this is the model adopted by Schruben 1983,
for instance). Then, let �k − �i = # so that as #→ 0 the
true difference between the systems’ means goes to zero
also. Under this regime, the PCS does not go to one, and
our analysis shows that as the problem becomes more and
more difficult (the true differences in the means, and the
differences we desire to distinguish, become smaller and
smaller), the procedure’s PCS becomes at least as large as
the desired PCS. See Lehmann (1999, §3.3) for an in-depth
justification of this type of analysis.
Model (3) has the convenient feature that properties of

the standardized difference process Cki
t�N � are not func-
tions of �k and �i because they are only location parame-
ters. In general, properties of a stochastic process, such as
its dependence structure, may be linked to its mean. Our
point is not to actually change the means of the processes
of interest, however, but rather to demonstrate that the pro-
cedures can be expected to work in an appropriate asymp-
totic sense, as analysis under model (3) does. To make the
development unambiguous, we will assume that model (3)
holds throughout the remainder of the paper.
We now present two fully sequential procedures for

steady-state simulation and prove the validity of each one
using the framework discussed here.

4. ��+ Procedure
In this section, we describe ��+, a procedure that does
not update the variance estimators after the first stage of
sampling. We also prove the asymptotic validity of ��+.
The procedure is formulated with the goal of finding the
system with the largest steady-state mean, but can be modi-
fied in the obvious way to select the system with the small-
est mean.

��+ Procedure

Setup. Select confidence level 1/k < 1 − * < 1, in-
difference-zone parameter # > 0, first-stage sample size
n0 � 2, and batch size m0 < n0. Calculate - and c as
described below.
Initialization. Let I = �1�2� � � � � k� be the set of systems
still in contention, and let h2 = 2c-d, where the degrees
of freedom d is determined by which variance estimator is
used.
Obtain n0 observations Xij , j = 1�2� � � � � n0, from each

system i= 1�2� � � � � k.
For all i �= �, compute the estimator m0V

2
i�, the sample

asymptotic variance of the difference between systems i
and �. Note that m0V

2
i� is based only on the first n0 obser-

vations. Let

Ni� =
⌊
h2m0V

2
i�

#2

⌋

and let

Ni =max
��=i

Ni��

Here, Ni + 1 is the maximum number of observations that
will be taken from system i. If n0 �maxi Ni + 1, then stop
and select the system with the largest �Xi
n0� as the best.
Otherwise, set the observation counter r = n0 and go to

Screening.
Screening. Set I old = I . Let

I=�i� i∈ I old and �Xi
r�> �X�
r�−Wi�
r��∀�∈ I old� � �= i��

where

Wi�
r�=max
{
0�

#

2cr

(
h2m0V

2
i�

#2
− r

)}
�

Stopping Rule. If �I � = 1, then stop and select the system
whose index is in I as the best.
Otherwise, take one additional observation Xi� r+1 from

each system i ∈ I , set r = r + 1, and go to Screening.
Constants. The constant c may be any nonnegative integer.
The constant - is the solution to the equation

g
-�=
c∑

�=1

−1��+1

(
1− 1

2
�
�= c�

)

·
(
1+ 2-
2c−���

c

)−d/2
=1−
1−*�1/
k−1�� (4)

where � is the indicator function.

In our procedures, r ·Wi�
r� defines a continuation region
for the partial sum,

∑r
j=1
Xij − X�j�. Figure 1 shows the

continuation region for ��+. If c <�, this region is a
triangle, as shown in the figure. As c increases the triangle
becomes longer, but narrower, and in the limit becomes par-
allel lines. As long as the partial sum stays within the con-
tinuation region, sampling continues; sampling stops when
it exits the region.

Figure 1. Continuation region for the fully sequential,
indifference-zone procedure when c <�.
The horizontal axis represents the current
sample size (stage) r and the vertical axis
represents

∑r
j=1
Xij −X�j ).

Σj=1(Xij – X�j)
r

h2m0Vi�

2cδ

–
h2m0Vi�

2cδ

rh2m0Vi�

δ2

2

2

2
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To guarantee a unique solution to (4), c = 1 should
be chosen. Kim and Nelson (2001) suggest that c = 1 is
the best compromise choice when the experimenter has
no idea if there are a few dominant systems or a num-
ber of close competitors. Also, it is easy to compute -
when c= 1. Goldsman et al. (2000, 2002) present empiri-
cal results when c = 1, and we will also use c = 1 in our
example.
To prove the validity of the procedure, we need a result

due to Fabian (1974).

Lemma 2 (Fabian 1974). Let � 
·�)� be a Brownian
motion process on �0�+��, with E�� 
t�)�� = ) · t and
Var�� 
t�)��= t, where )> 0. Let

L
t�=−�+�t�

U 
t�=�−�t

for some � > 0 and � = )/
2c� for some positive inte-
ger c. Let R
t� denote the interval 
L
t��U
t�� and let T ∗

be the first time that � 
t�)� � R
t�. Finally, let � be the
event that � 
T ∗�)�� L
T ∗�. Then,

Pr���=
c∑

�=1

−1��+1

(
1− 1

2
�
�=c�

)
exp�−2��
2c−�����

Remark. The event � will correspond to an incorrect
selection (incorrectly eliminating the best system from con-
sideration by exiting the region going down).

Without loss of generality, suppose that the true steady-
state means of the systems are indexed so that �k �

�k−1 � · · ·��1. Now we present our main result:

Theorem 1. If X1�X2� � � � �Xk are independent, each sat-
isfies Assumption 1 and Equation (3), and m0V

2
i� is dis-

tributed as v2i�!
2
d/d and is asymptotically independent of

Ci�
·� r�, then lim inf#→0 Pr���+ selects k�� 1− * pro-
vided �k ��k−1+ #.

Remark. The requirement that m0V
2
i� is asymptotically

independent of Ci�
·� r� is plausible because the variance
estimator m0V

2
i� is based on a fixed initial sample of n0

observations from each system. Asymptotic independence
implies that as r →� (that is, more and more observations
are collected), the behavior of the standardized partial sum
Ci�
·� r� depends less and less on the initial sample.
Proof. We begin by considering the case of only two sys-
tems, denoted k and i, with �k � �i + #. Select a value
of - such that g
-�= 1− 
1−*�1/
k−1� from Equation (4).
With probability 1, there exists #0 such that Nik � n0

for all # � #0 because m0V
2
ik is finite and positive with

probability 1. For # smaller than #0, let

T 
#�=min�r� r � n0 and � �Xk
r�− �Xi
r���Wik
r���

Thus, T 
#� is the stage at which the procedure terminates
by leaving the continuation region. Let ICS denote the
event that an incorrect selection is made. Then,

Pr�ICS�

= Pr��Xk
T 
#��− �Xi
T 
#���−Wik
T 
#���
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}]
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(5)

The inequality arises because we replace �k − �i with #,
which is no larger. To establish the result, we will show
that lim sup#→0 Pr�ICS�� 1− 
1−*�1/
k−1�. To do so, let

Cki
t� #�=
∑�
Nik+1�t�

j=1 
Xkj −Xij�− 
Nik + 1�
�k −�i�t

vik
√
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for 0 � t � 1, where we express Cki as a function of #,
instead of Nik + 1, because Nik is a function of #. Further,
define
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Clearly, �T 
#�= T 
#�/
Nik + 1�. Also, define the stopping
time of the corresponding continuous-time process as
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Note that for fixed #, Cki
�T 
#��#� corresponds to the right-
hand limit of a point of discontinuity of Cki
·� #�. We can
show that �T 
#�→ �T 
#� with probability 1 as #→ 0, mak-
ing use of the fact that 1/
Nik+1�→ 0 with probability 1.
Thus, in the limit, we can focus on Cki
 �T 
#��#�.
Now, condition on m0V

2
ik. Then, Assumption 1, Lem-

ma 1, and the CMT imply that
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vik

√
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t�)�

as #→ 0, where

)= lim
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Still conditional on m0V
2
ik, let
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Note that the stopping time �T 
#� is the first time t at which
the event
{∣∣∣∣Cki
t� #�+


Nik + 1�#t
vik

√
Nik + 1

∣∣∣∣−�
#�+�
#�t � 0
}

occurs. Define the mapping s#� D�0�1� → � such that
s#
Y �= Y 
TY �#�, where

TY �# = inf�t� �Y 
t�� −�
#�+�
#�t � 0�

for every Y ∈ D�0�1� and # > 0. Similarly, define s
Y �=
Y 
TY �, where

TY = inf�t� �Y 
t�� −�+�t � 0�

for every Y ∈D�0�1� and #> 0. Note that
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We need to show that

s#
	ki
·� #��=⇒ s
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·�)��

as #→ 0, where

	ki
t� #�≡Cki
t� #�+

Nik + 1�#t
vik

√
Nik + 1

for t ∈ �0�1� and # > 0. This follows from Proposition 2
of Kim et al. (2005), which establishes that the extended
CMT (Theorem 5.5 of Billingsley 1968) applies.
Now, unconditioning on m0V

2
ik gives

lim sup
#→0
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where we make use of the fact that m0V
2
ik and Cki
t�

are asymptotically independent, and that the argument of
expectation (5) is bounded by one for all #, so it is uni-
formly integrable. The final equality follows from the way
we choose - and the chi-squared property of m0V

2
ik.

Now consider k� 2 systems and let CS be the event that
k is selected (correct selection) and let ICSi be the event
that an incorrect selection is made when systems k and i
are considered in isolation. Then,

1−Pr�CS�= Pr
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i=1

(system i eliminates k)
}

�
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i=1
Pr�ICSi��

which implies that
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(by DeMorgan’s law)
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= E
[
lim inf
#→0

k−1∏
i=1
Pr
{
system k eliminates system i

�Xk1� � � � �Xk
Nk+1��m0V
2
ik

}]
(6)

because the events {system k eliminates system i} are
asymptotically conditionally independent given Xk1� � � � �
Xk
Nk+1� and m0V

2
ik. Thus, by applying the same argument

that we used to bound the probability of correct selection
for the pair 
i� k�, and noting that the conditional proba-
bility is a bounded, continuous function of the condition,
we get

lim inf
#→0

Pr�CS�

� E
[
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{
system k eliminates system i∣∣Xk1� � � � �Xk
Nik+1��m0V
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ik
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�
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(by Jensen’s inequality)�

As a result,

lim inf
#→0

Pr�CS��
(
1− lim sup

#→0
Pr�ICSi�

)k−1

and lim inf#→0 Pr�CS�� 1−*. �

Remark. Note that we assume a chi-squared distribution
for the first-stage variance estimator, rather than converging
to it as the sample size increases (in ��+ the first-stage
sample size is fixed). Is it reasonable to make this assump-
tion? There are at least two ways that it can fail. If the
initial sample size is not large enough, then the distribution
of m0V

2
ik may not be well approximated by a scaled chi-

squared distribution. Even if the chi-squared distribution is
appropriate, the scaling constant may not be v2ik in finite
samples, meaning that m0V

2
ik is biased. Goldsman et al.

(2002) looked at the impact of both deviations from the chi-
squared assumption. When the output data actually come
from an AR(1) process, they showed that the bias in m0V

2
ik

does not seriously degrade PCS as long as there are a small
number of large batches in the first stage. They also found
this to be true in an extensive empirical study. Theorem 1
shows that if we can get n0 right, then making elimination
decisions one observation at a time can be justified, in a
limiting sense. In the next section, we present a procedure
that overcomes the need to get n0 “right.”

5. ��++ Procedure
The variance estimators employed in ��+ depend only
on the first-stage data. In this section, we present a refine-
ment of ��+ in which we update the variance estima-
tors as more data are obtained. The asymptotic validity

of ��++ depends on having variance estimators with
the strong consistency property. Thus, ��++ requires a
batching sequence 
mr� br� that ensures that the strong con-
sistency property holds. There are several different batching
sequences that achieve almost sure convergence or mean-
square convergence. Goldsman et al. (2000, 2002) modified
existing batching sequences to introduce more updates for
��++ and performed experiments to examine the perfor-
mance of these batching sequences. We use one of them
in §6. It is also worth noting that weak (convergence in
probability) consistency of variance estimators is not suf-
ficient to prove the asymptotic validity of ��++ (Theo-
rem 2 below); see Glynn and Whitt (1992).
In this section, we highlight the differences between

��+ and ��++ and defer the full details of the pro-
cedure to the appendix. The primary differences are that
��++ does not use the same critical values h2 and
-, and the batch size in ��++ becomes a function of
r rather than being a fixed constant. Therefore, when-
ever mr changes value (due to an increase in r), the
variance estimators mrV

2
i�
r� and all other quantities that

depend on them—including Ni�
r�, Ni
r�, and Wi�
r�—are
recomputed in a new step called Update. The Initializa-
tion, Screening, and Stopping Rule steps are essentially
unchanged.
In the appendix we prove the following theorem:

Theorem 2. If X1�X2� � � � �Xk are independent, each satis-
fies Assumption 1 and Equation (3), and mr is an integer-
valued nondecreasing function of r such that mrV

2
i�
r�−→

v2i� with probability one (thus it satisfies Assumption 3),
then, lim inf#→0 Pr���++ selects k� � 1 − * provided
�k ��k−1+ #.

The continuation region that is defined by r ·Wi�
r� is
critical to achieving the desired PCS. If it is too wide,
then a fully sequential procedure loses its ability to detect
inferior systems. On the other hand, if it is too narrow,
then the likelihood of eliminating good systems is greater
than desired. After choosing a batching sequence, a vari-
ance estimator and a value of c, the continuation region is
completely determined by h2 and mrV

2
i�
r�.

The strong consistency property of variance estimators
leads to a proof of asymptotic validity that is similar to a
known-variances case, and the value of h2 used in ��++
is the same as if the asymptotic variances were known.
Not surprisingly, h2 in ��++ is smaller than h2 in ��+
which treats the variances as unknown. As a result, the con-
tinuation region for ��++ is narrower than the continu-
ation region for ��+. Although asymptotically valid, this
narrower continuation region could cause early elimination
of good systems, and the performance of ��++ for finite
samples might suffer (see Goldsman et al. 2000). We can
overcome this disadvantage by using a larger value of h2

than is required to prove asymptotic validity. Goldsman
et al. (2002) used h2 computed as in ��+ with c= 1, and
their experiments showed that ��++ works better with
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this adjustment. Procedure ��++ is still asymptotically
valid with the larger value of h2.

6. Example
In this section, we illustrate the performance of our new
procedures using an example based on the M/M/1 queue,
and from these experiment results we glean guidelines for
choosing m0 and the variance estimator to use in practice.
Goldsman et al. (2002) present an extensive empirical eval-
uation based on a larger, but different, collection of exam-
ples, and our recommendations are also influenced by their
results. As a baseline, we compare our procedures to pro-
cedure 
+, due to Goldsman and Marshall (1999), which
modifies Rinott’s (1978) procedure by replacing the usual
sample variance of each system with an estimator of the
asymptotic variance. Procedure 
+ has two stages: In the
first stage, an initial sample of size n0 is taken from each
system and used to estimate the asymptotic variance and
compute the second-stage sample size. In the second stage,
additional observations are taken from each system and the
system with the largest or smallest sample mean is selected
as the best. Procedure 
+ has no elimination step.
The performance measure in our example is wi, the

expected waiting time in the queue of system i. Thus,
smaller wi is better. We set the parameters of the systems
so that system 1 is always the best.
The number of systems in each experiment varied over

k = 2�5�10. Three variance estimators were tested: the
nonoverlapping batch means (BM) estimator, the overlap-
ping batch means (OBM) estimator, and a weighted area
(A) estimator. Detailed specifications may be found in
Goldsman et al. (2000, 2002).
We chose the first-stage sample size n0 such that the ratio

of the variance of n0 observations 
v
2
n0�= n0Var��X
n0���

and the asymptotic variance is approximately equal to 1;
more specifically, �1− v2
n0�/v

2� ≈ 0�01. This guarantees
that enough data are available to estimate the asymptotic
variance, but not so much data that it is easy to estimate v2.

Table 1. Sample average of the total number of basic observations when M/M/1 processes are
tested under the MDM configuration, k= 5, 7= 0�9, and n0 = 24�000.


+ ��+ ��++
m0 BM OBM AREA BM OBM AREA BM OBM AREA

24,000 389�23 13�878�83
12,000 391�24 158�52 150�61 1�329�52 65�49 67�85 7.89 7.99 7.44
8,000 154�15 82�62 81�59 66�38 27�27 27�74 6.91 6.98 6.61
6,000 82�40 50�97 57�49 26�68 18�03 17�60 6.48 6.51 6.19
4,800 60�04 44�70 46�48 18�04 14�10 13�24 6.04 6.05 5.68
4,000 50�18 38�81 40�12 14�22 12�00 10�82 5.85 5.85 5.36
3,000 39�58 33�27 30�90 10�44 9�73 8�36 5.44 5.43 4.80
2,400 35�32 31�31 25�79 8�94 8�48 6�78 5.15 5.12 4.25
2,000 32�39 28�69 21�59 8�00 7�70 5�76 4.92 4.93 3.99
1,600 28�86 26�20 17�07 7�07 6�86 4�60 4.70 4.72 3.51
1,000 22�76 21�48 10�51 5�48 5�40 2�82 4.11 4.11 2.49

Note. All numbers are in units of 105.

After n0 was determined empirically, all divisors of n0 were
employed as batch sizes m0, implying n0/m0 batches for
BM and A, and n0−m0+ 1 batches for OBM.
The indifference-zone parameter was set to #= v1/

√
n0,

where v21 is the asymptotic variance of the best system.
Thus, # is approximately the standard deviation of the first-
stage sample mean of the best system.
In all cases the service rate for system 1 was set to one,

and the service rates of the other systems were set to obtain
different configurations of the means, wi. The arrival rate
is the same for all systems in a particular experiment, but
varied over 8= 0�3�0�6�0�9 in different experiments. This
allowed us to obtain traffic intensities for system 1 of 7=
0�3�0�6�0�9. However, because larger 7 implies stronger
dependence, a procedure that works well for a large value
of 7 will do so for smaller values. For this reason, we only
present experiment results for 7= 0�9 here.
For configurations of wi, we considered the slip-

page configuration (SC)—which was not considered in
Goldsman et al. (2002)—and monotonically decreasing
means (MDM). In SC, w1 = 72/8
1−7�, while w2 = · · · =
wk =w1+ #. In MDM, wi =w1+ 
i− 1�#.
For ��++, the modified batching sequence in

Goldsman et al. (2002) and the value of h2 computed as
in ��+ were used. This batching sequence is essentially
mr =

√
r , but with more frequent updates of the number of

batches when r is small.
For each configuration, 1,000 macroreplications of the

entire experiment were performed. In all experiments,
the nominal probability of correct selection was set to
1−*= 0�95.
Tables 1–4 give results for the average number of obser-

vations and estimated PCS when there are k = 5 sys-
tems, traffic intensity is 7= 0�9, and the initial number of
observations from each system is n0 = 24�000. Tables 1
and 3 show that the sample average of the total number of
basic observations decreases as m0, the initial batch size,
decreases. Tables 2 and 4 show that the estimated PCS also
decreases as m0 decreases. Thus, a large initial batch size
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Table 2. Estimated PCS whenM/M/1 processes are tested under the MDM configuration, k= 5,
7= 0�9, and n0 = 24�000.


+ ��+ ��++
m0 BM OBM AREA BM OBM AREA BM OBM AREA

24,000 0.986 0.987
12,000 0.984 0.994 0.971 0.979 0.997 0.979 0.975 0.982 0.959
8,000 0.976 0.982 0.957 0.992 0.990 0.979 0.970 0.987 0.967
6,000 0.968 0.967 0.962 0.985 0.984 0.974 0.961 0.979 0.967
4,800 0.970 0.959 0.952 0.978 0.981 0.972 0.958 0.965 0.955
4,000 0.957 0.956 0.951 0.974 0.975 0.956 0.966 0.971 0.959
3,000 0.956 0.950 0.949 0.965 0.969 0.962 0.967 0.972 0.957
2,400 0.953 0.948 0.940 0.961 0.970 0.959 0.971 0.971 0.960
2,000 0.956 0.945 0.934 0.965 0.965 0.941 0.963 0.970 0.943
1,600 0.949 0.941 0.934 0.959 0.958 0.942 0.948 0.946 0.915
1,000 0.936 0.938 0.911 0.946 0.950 0.896 0.959 0.958 0.909

helps to achieve the nominal PCS, but at the cost of a larger
total number of observations. Note that 
+ outperforms
��+ only when we have just one degree of freedom for
the variance estimator. Note also that ��++ is much less
sensitive to the choice of initial batch size m0 because mr

and br increase as more data are obtained, which helps to
correct a poor initial variance estimate.
The fully sequential procedures are more efficient under

MDM than under SC. The SC is a difficult configuration for
procedures that eliminate systems because all inferior sys-
tems are exactly # from being the best. Comparing Table 1
and Table 3, we find that 
+ consumes more observations
under MDM than under SC; this is simply because larger
means yield larger variances in our M/M/1 example, and
the total sample size for
+ depends only on the variances,
not on the means. On the other hand, ��+ and ��++
consume fewer observations under MDM than under SC,
because under MDM it is relatively easy to detect and elim-
inate inferior systems.
Tables 1 and 3 show that ��+ and ��++ can effec-

tively eliminate inferior systems while maintaining the
desired PCS when implemented with appropriate choices

Table 3. Sample average of the total number of basic observations when M/M/1 processes are
tested under the SC configuration, k= 5, 7= 0�9, and n0 = 24�000.


+ ��+ ��++
m0 BM OBM AREA BM OBM AREA BM OBM AREA

24,000 371�16 1�684�48
12,000 374�40 109�54 105�43 1�700�85 83�66 82�67 8.89 9.10 8.64
8,000 109�01 52�46 52�61 90�80 36�10 35�42 7.93 8.11 7.71
6,000 52�04 30�86 35�29 34�47 24�26 24�14 7.38 7.44 7.09
4,800 36�56 26�40 29�19 22�39 19�09 17�88 7.02 7.01 6.69
4,000 29�57 22�95 24�66 18�31 16�27 14�49 6.77 6.81 6.41
3,000 23�82 20�29 20�07 13�86 12�94 10�96 6.26 6.29 5.59
2,400 20�91 18�74 16�85 11�86 11�20 8�87 5.95 6.01 5.30
2,000 19�10 17�52 14�71 10�35 10�15 7�64 6.00 6.00 4.96
1,600 17�75 16�64 12�40 9�13 9�02 6�23 5.51 5.51 4.17
1,000 14�23 13�95 8�02 7�08 6�98 3�58 4.90 4.91 2.92

Note. All numbers are in the units of 105.

of variance estimator and batching strategy. These results
(and others not reported) give us insight into how to make
the choices. OBM appears to be the best variance estima-
tor for our purposes. For good performance of all of the
procedures, we need the initial batch size m0 large enough
to achieve the nominal PCS, while not being so large that
it implies a huge total sample size. For 
+ and ��+,
we suggest setting m0 to produce at least five degrees of
freedom for the variance estimator. For ��++, we rec-
ommend choosing a very large batch size, such as n0/4,
because updating allows the variance estimator to improve
as the procedure progresses. Procedure 
+ should only be
used if implementing a fully sequential procedure is infea-
sible. Similarly, ��+ should be chosen only if variance
updating is too difficult. Because Procedure ��++, com-
bined with the OBM variance estimator, is highly efficient
and robust, it should be used if possible.

7. Conclusion and Future Work
In this paper, we proved the asymptotic validity of two
new fully sequential selection procedures for steady-state
simulation, and also provided a general framework for such



Kim and Nelson: On the Asymptotic Validity of Fully Sequential Selection Procedures for Steady-State Simulation
Operations Research 54(3), pp. 475–488, © 2006 INFORMS 485

Table 4. Estimated PCS when M/M/1 processes are tested under the SC configuration, k = 5,
7= 0�9, and n0 = 24�000.


+ ��+ ��++
m0 BM OBM AREA BM OBM AREA BM OBM AREA

24,000 0.959 0.971
12,000 0.958 0.984 0.928 0.982 0.989 0.956 0.910 0.949 0.892
8,000 0.937 0.940 0.888 0.958 0.968 0.938 0.905 0.932 0.894
6,000 0.911 0.891 0.869 0.942 0.943 0.920 0.899 0.914 0.896
4,800 0.894 0.878 0.867 0.928 0.932 0.913 0.901 0.920 0.895
4,000 0.878 0.864 0.854 0.931 0.927 0.905 0.889 0.894 0.878
3,000 0.866 0.849 0.839 0.910 0.908 0.880 0.891 0.904 0.863
2,400 0.863 0.831 0.826 0.897 0.898 0.874 0.895 0.900 0.863
2,000 0.847 0.834 0.817 0.892 0.890 0.848 0.879 0.889 0.826
1,600 0.832 0.835 0.803 0.870 0.878 0.837 0.878 0.882 0.816
1,000 0.825 0.817 0.753 0.840 0.845 0.746 0.825 0.844 0.719

proofs. Even though asymptotic validity does not imply that
PCS � 1 − * for finite samples, it does suggest that our
procedures will work well under difficult situations, such
as when our indifference level is small.
The procedures presented here are asymptotically valid

under very general conditions, including variances that are
unknown and unequal, output data that are nonnormal, and
output data from within each system that are dependent in
series. However, they do not account for dependence across
the outputs from different systems due to the use of com-
mon random numbers (CRN). Although we suspect that our
procedures are still valid when CRN is employed, they do
not exploit it. Our experience with procedures for i.i.d. data
that do incorporate CRN leads us to believe that further
gains in efficiency are possible, making the development
of such procedures for steady-state simulation an important
open research problem.

Appendix
In this appendix, we give full details of ��++ and prove
Theorem 2.

��++ Procedure

Setup. Select confidence level 1/k < 1 − * < 1, in-
difference-zone parameter # > 0, first-stage sample size
n0 � 2, and initial batch size m0 <n0. Calculate - and c as
described below.
Initialization. Let I = �1�2� � � � � k� be the set of systems
still in contention, and let h2 = 2c-.
Obtain n0 observations Xij , j = 1�2� � � � � n0, from each

system i= 1�2� � � � � k.
Set the observation counter r = n0 and mr =m0.

Update. If mr has changed since the last update, then for
all i �= �, i� � ∈ I , compute estimator mrV

2
i�
r�, the sample

asymptotic variance of the difference between systems i
and � based on br batches of size mr . Let

Ni�
r�=
⌊
h2mrV

2
i�
r�

#2

⌋

and let

Ni
r�=max
��=i

Ni�
r��

If r �maxi Ni
r�+ 1, then stop and select the system in I
with the largest �Xi
r� as the best.
Otherwise go to Screening.

Screening. Set I old = I . Let

I=�i� i∈ I old and �Xi
r�> �X�
r�−Wi�
r� ∀�∈ I old� � �= i��

where

Wi�
r�=max
{
0�

#

2cr

(
h2mrV

2
i�
r�

#2
− r

)}
�

Stopping Rule. If �I � = 1, then stop and select the system
whose index is in I as the best.
Otherwise, take one additional observation Xi� r+1 from

each system i ∈ I , set r = r + 1, and go to Update.
Constants. The constant c may be any nonnegative integer.
The constant - is the solution to the equation

g
-�=
c∑

�=1

−1��+1

(
1− 1

2
�
�= c�

)
exp

(
−-

c

2c− ���

)

= 1− 
1−*�1/
k−1�� (7)

where � is the indicator function.

For proof of the validity of ��++, we need a lemma
from Billingsley (1968, Theorem 4.4, p. 27), in addition to
Lemma 2.

Lemma 3. If Yn =⇒ Y and Zn

P−→ a, where a is a con-
stant, then 
Yn�Zn�=⇒ 
Y �a�.

Proof of Theorem 2. We begin by considering the case
of only two systems, denoted k and i, with �k � �i + #.
We also assume that v2ik is known, so that

Nik
r�=Nik =
⌊
h2v2ik
#2

⌋
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for all r , where we select the value of - so that g
-�= 1−

1−*�1/
k−1� from Equation (7). We relax the assumption
of known asymptotic variance later.
Let

T 
#�=min�r� r � n0 and � �Xk
r�− �Xi
r���Wik
r���

Thus, T 
#� is the stage at which the procedure terminates
by leaving the continuation region.
Let ICS denote the event that an incorrect selection is

made. Then,

Pr�ICS�

= Pr��Xk
T 
#��− �Xi
T 
#���−Wik
T 
#���

= Pr
{T 
#�∑
j=1


Xkj −Xij��−T 
#� ·Wik
T 
#��

}

= Pr
{T 
#�∑
j=1


Xkj −Xij��min
{
0�

−h2v2ik
2#c

+ #T 
#�

2c

}}

= Pr
{∑T 
#�

j=1 
Xkj −Xij�− 
�k −�i�T 
#�

vik
√
Nik + 1

+ 
�k −�i�T 
#�

vik
√
Nik + 1

�min
{
0�

−h2v2ik
2#cvik

√
Nik + 1

+ #T 
#�

2cvik
√
Nik + 1

}}

� Pr
{∑T 
#�

j=1 
Xkj −Xij�− 
�k −�i�T 
#�

vik
√
Nik + 1

+ #T 
#�

vik
√
Nik + 1

�min
{
0�

−h2v2ik
2#cvik

√
Nik + 1

+ #T 
#�

2cvik
√
Nik + 1

}}
� (8)

The inequality arises because we replace �k − �i with #,
which is no larger. To establish the result, we will show
that lim sup#→0 Pr�ICS�� 1− 
1−*�1/
k−1�� To do so, let

Cki
t� #�=
∑�
Nik+1�t�

j=1 
Xkj −Xij�− 
Nik + 1�
�k −�i�t

vik
√
Nik + 1

for 0 � t � 1, where we express Cki as a function of #,
instead of Nik + 1, because Nik is a function of #. Further,
define

�T 
#�=min
{
t ∈

{
n0

Nik + 1
�
n0+ 1
Nik + 1

� � � � �1
}
�

∣∣∣∣Cki
t� #�+

Nik + 1�#t
vik

√
Nik + 1

∣∣∣∣
�

h2v2ik
2#cvik

√
Nik + 1

− 
Nik + 1�#t
2cvik

√
Nik + 1

}
�

Clearly, �T 
#�= T 
#�/
Nik + 1�. Also, define the stopping
time of the corresponding continuous-time process as

�T 
#�=min
{
t �

n0
Nik + 1

�

∣∣∣∣Cki
t� #�+

Nik + 1�#t
vik

√
Nik + 1

∣∣∣∣
�

h2v2ik
2#cvik

√
Nik + 1

− 
Nik + 1�#t
2cvik

√
Nik + 1

}
�

Note that for fixed #, Cki
�T 
#��#� corresponds to the right-
hand limit of a point of discontinuity of Cki
·� #�. We can
show that �T 
#�→ �T 
#� with probability 1 as #→ 0, mak-
ing use of the fact that 1/
Nik+1�→ 0 with probability 1.
Thus, in the limit, we can focus on Cki
 �T 
#��#�.
Then, Assumption 1, Lemma 1, and the CMT imply that

Cki
t� #�+

Nik + 1�#t
vik

√
Nik + 1

=⇒� 
t�)�

as #→ 0, where

)= lim
#→0


Nik + 1�#
vik

√
Nik + 1

= h�

Let

�
#�= h2v2ik
2#cvik

√
Nik + 1

#→0−→ h

2c
≡��

�
#�= 
Nik + 1�#
2cvik

√
Nik + 1

#→0−→ h

2c
≡�� (9)

Note that the stopping time �T 
#� is the first time t at which
the event{∣∣∣∣Cki
t� #�+


Nik + 1�#t
vik

√
Nik + 1

∣∣∣∣−�
#�+�
#�t � 0
}

occurs. Define the mapping s#� D�0�1� → � such that
s#
Y �= Y 
TY �#�, where

TY �# = inf�t� �Y 
t�� −�
#�+�
#�t � 0�

for every Y ∈ D�0�1� and # > 0. Similarly, define s
Y �=
Y 
TY �, where

TY = inf�t� �Y 
t�� −�+�t � 0�

for every Y ∈D�0�1� and #> 0. Note that

s#

(
Cki
t� #�+


Nik + 1�#t
vik

√
Nik + 1

)

=Cki
 �T 
#��#�+

Nik + 1�# �T 
#�
vik

√
Nik + 1

�

s
� 
·�)��=� 
T� 
·�)��)��

We need to show that

s#
	ki
·� #��=⇒ s
� 
·�)�� (10)

as #→ 0, where

	ki
t� #�≡Cki
t� #�+

Nik + 1�#t
vik

√
Nik + 1

for t ∈ �0�1� and # > 0. This follows from Proposition 2
of Kim et al. (2005), which establishes that the extended
CMT (Theorem 5.5 of Billingsley 1968) applies.
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Therefore, by Lemma 1 and (10),

lim sup
#→0

Pr�ICS�

� Pr�� 
t�)� exits continuation region through the

lower boundary�

=
c∑

�=1

−1��+1

(
1− 1

2
�
�= c�

)

· exp
{
−2 h2


2c�2

2c− ���

}
(by Lemma 2)

=
c∑

�=1

−1��+1

(
1− 1

2
�
�= c�

)

· exp
{
−-

c

2c− ���

}
= 1− 
1−*�1/
k−1��

where the equality follows from the way we choose -.
Now consider k� 2 systems and let CS be the event that

k is selected (correct selection) and let ICSi be the event
that an incorrect selection is made when systems k and i
are considered in isolation. Thus, by applying the same
argument that we used to bound the probability of correct
selection for the pair 
i� k�, we get

lim inf
#→0

Pr�CS��
(
1− lim sup

#→0
Pr�ICSi�

)k−1
�

Thus,

lim inf
#→0

Pr�CS�� 1−*�

This argument establishes the asymptotic validity of a
special case of ��++ in which v2ik is known. To prove the
validity of ��++ in general, we replace v2ik by a strongly
consistent estimator of it. Therefore—considering again the
case k= 2—at termination we have

Nik
T 
#��=
⌊
h2mT 
#�V

2
ik
T 
#��

#2

⌋
�

To establish the result, we note the following:
(1) With probability 1, T 
#� goes to infinity as #→ 0.

This is because the continuation region implied by #′ con-
tains the continuation region implied by # if #′ <#.
(2) As a consequence of 1, the number of sam-

pling stages goes to infinity as # → 0, insuring that
mT 
#�V

2
ik
T 
#�� converges to v

2
ik with probability 1. Because

strong consistency implies convergence in probability,
Lemma 3 can be applied to 
Cik
T 
#��#��mT 
#�V

2
ik
T 
#���.

(3) As a consequence of 2, Nik
T 
#�� goes to infinity
with probability 1 as #→ 0.
(4) As a consequence of 3, and an application of the

random-change-of-time theorem (Billingsley 1968, Theo-
rem 17.1), the standardized difference still converges in
distribution to � 
t�)� with )= h. The terms in (9) also
converge as in the known variance case.

A subtle point in the derivation is that in a finite sample
we may have T 
#� > Nik
T 
#�� + 1 if a variance update
occurs at time T 
#�. However, in the limit �T 
#�� 1 because
it is not possible for� 
t�)� to exit the continuation region
for the first time beyond the end of the region. �

Remark. That item 1 is correct might not be immediately
obvious. To simplify the exposition, let v ≡ v2ik = 1, and
represent the output process Xkj − Xij under the slippage
configuration by Zj + #, where Zj is a mean-zero, station-
ary process satisfying our assumptions. Then, the upper
boundary of the continuation region is defined by the inter-
cept h2/
2c#� and slope −#/
2c�. Let T 
#� be the first
time

∑r
j=1Zj+#r leaves the region. We consider paths that

leave the region going up; an entirely analogous argument
applies for paths that leave going down.
Consider a sample path (going up) for which

lim sup#→0 T 
#� = T ∗ <�. For this event to occur, there
must exist #∗ > 0 (that may depend on the sample path)
such that for all #� #∗,

T ∗∑
j=1

Zj + T ∗#�
h2

2c#
− #T ∗

2c
� (11)

which can be rewritten as

T ∗∑
j=1

Zj +
(
2c+ 1
2c

)
T ∗#�

h2

2c#
� (12)

Note that for T ∗ finite,
∑T ∗

j=1Zj is finite with probability 1,
but T ∗# goes to 0 while h2/
2c#� goes to infinity as #→ 0.
Thus, (12) has probability 0.
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