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e present and evaluate three ranking-and-selection procedures for use in steady-state
Wsimulation experiments when the goal is to find which among a finite number of
alternative systems has the largest or smallest long-run average performance. All three
procedures extend existing methods for independent and identically normally distributed
observations to general stationary output processes, and all procedures are sequential. We
also provide our thoughts about the evaluation of simulation design and analysis proce-
dures, and illustrate these concepts in our evaluation of the new procedures.
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1. Introduction

The “steady-state simulation problem” is one of
the central challenges in the design and analysis
of stochastic simulation experiments, and it distin-
guishes simulation experiments from classical statis-
tical experiments. At a high level, the steady-state
simulation problem is to estimate some property of
a (perhaps vector-valued) random variable that is
defined by the limiting distribution of a stochastic
process, the limit being taken as the time index of
the process goes to infinity. Since the random vari-
able is defined in terms of a limit, realizations of it
cannot be obtained (except in special cases that are
rarely of practical interest). In operations research,
management science and industrial engineering con-
texts, steady-state simulation problems arise in the
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design of manufacturing, service and information sys-
tems when the planning horizons are long or time-
dependent behavior is not relevant.

In this paper we consider the problem of deter-
mining which of a finite number of simulated sys-
tems has the largest (or smallest) steady-state mean
performance. Our solutions are extensions of exist-
ing procedures that have proven performance for the
special case in which the observations from each sys-
tem are independent and identically distributed (i.i.d.)
data from a normal distribution. As we point out
in Section 2, few of the assumptions underlying the
existing procedures will be valid in steady-state sim-
ulation, particularly when only a single replication is
obtained from each system, as we assume. Section 2
also reviews the relevant literature. Section 3 contains
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our perspective on how a researcher can establish that
a new statistical procedure is useful. In Section 4 we
describe the new procedures, while in Sections 5 and
6 we evaluate them based on the ideas described in
Section 3. We conclude by offering our opinions about
key open research questions in Section 7.

2. Background

In this section we review two procedures, designed
originally for ii.d. normal data, that we will extend
and enhance for use in steady-state simulation prob-
lems. We also define what we mean by the “steady-
state simulation problem,” and review the literature
on ranking and selection (R&S) procedures designed
for this case.

2.1. Two Procedures for i.i.d. Normal Data
We describe two procedures that guarantee, with con-
fidence level at least 1 — ¢, that (under certain condi-
tions) the system ultimately selected has the largest
true mean when the true mean of the best system
is at least § better than the second best. When there
are inferior systems whose means are within 8 of the
true best, then the procedures guarantee to find one
of these “close enough” systems with the same prob-
ability. The parameter 8, which defines the indifference
zone, is set by the experimenter to the smallest abso-
lute difference in expected performance that is consid-
ered important to detect. Differences of less than 6 are
considered practically insignificant. Procedures of this
type are known as indifference-zone R&S procedures.
Comprehensive reviews of R&S can be found in Bech-
hofer et al. (1995), to which we henceforth refer as
BSG 1995, and Goldsman and Nelson (1998). Both
procedures studied here—one from Rinott (1978) and
the other from Kim and Nelson (2001a)—are sequen-
tial, by which we mean they typically require two or
more stages of simulation. When process variances
are unknown—which is almost always the case in real
problems—then at least two stages of sampling are
required to deliver a prespecified probability of cor-
rect selection.

Suppose that there are k > 2 systems, and let X
denote the jth independent observation from system
i. Both procedures assume that the X;; ~ N(u;, o?),
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with u; and ¢? unknown, and that the data across

systems are independent. Also let X;(r) = r~! Y Xy
denote the sample mean of the first r observations
from system 1i.

Rinott’s (1978) procedure requires at most two
stages of simulation; it is one of the simplest and most
well-known Ré&S procedures.

Rinott’s Procedure (%)

Setup: Select confidence level 1— «, indifference-
zone parameter 6 > 0 and first-stage sample size
ny > 2.

Initialization: Obtain Rinott’s constant h = h(n,
k,1—a) (for instance, from BSG 1995).

Obtain n, observations Xij, j=1,2,...,ny from
each systemi=1,2,... k.
Fori=1,2,...,k compute

§2 =

1

Xo:(Xij - Z(”o))z,
j=1

1’10—1

the sample variance of the data from system i.

Let
52s?
I\Ii = max{no, !V“:S_Z._—l }

where [.] indicates rounding up any fractional
part to the next larger integer. Here N; is the num-
ber of observations that will be taken from sys-
tem 1.

Stopping Rule: If 7y, > max; N; then stop and select
the system with the largest X;(11,) as the best.
Otherwise, take N, —n, additional observations
Xi, nos1r Xi ngs2s -+ + X; . from each system i for
which N; > ny.

Select the system with the largest X;(N;) as the
best.

The following fully sequential procedure is due to
Kim and Nelson (2001a). This procedure takes only
a single observation from the systems still in play at
each stage of simulation, and may choose to cease
sampling from systems that no longer appear to be
competitive.

Kim and Nelson’s Procedure (#ZN)
Setup: Select confidence level 1— e, indifference-
zone parameter 8 > 0 and first-stage sample size
1y > 2. Calculate

m= 320~ (1 - ) /D) Feod )
2
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Initialization: Let I = (1,2, ..., k} be the set of sys-
tems still in contention, and let h? = 2n(n, — 1).
Obtain n; observations X,.j, j=1,2,...,n, from
each system i=1,2,... k.

For all i # £ compute

1 1o _ _
Si2£ = 1 Z(Xij - Xej — [X;(110) — X (110)])?,
no—1,5

the sample variance of the difference between
systems i and £. Let

12S2
el

where || indicates truncation of any fractional
part, and let

N; =maxN,,.
et

Here N;+1 is the maximum number of obser-
vations that can be taken from system i. If n, >
max; N; +1 then stop and select the system with
the largest X;(n,) as the best.
Otherwise set the observation counter » = 1, and
go to Screening.

Screening; Set [°¢ = . Let

I={i:ieland X,(r) > X,(r) — W,(r),
Vel ¢£i)

8 (h%S,
M/ie(r)=max{0,§;< 5 —-r)}.

Stopping Rule: If |I| =1, then stop and select the
system whose index is in I as the best.
Otherwise, take one additional observation X ,;
from each system i € I and set r =r+1.

If r =max; N, +1, then stop and select the system
whose index is in I and has the largest X;(r) as
the best. Otherwise go to Screening.

where

Both # and /¥ terminate with a single system that
is reported as the best. They could be applied “as is”
to steady-state simulation experiments provided we
are willing to make multiple replications of each alter-
native and use the within-replication averages as the
basic observations. In the following section we dis-
cuss reasons why such an experiment design may not
be desirable.

2.2. Steady-State Simulation
Here we define what we mean by “steady-state sim-
ulation” and set up the key assumptions.

Now let X1, X;5, ... denote the simulation output
process from a single replication of the ith alterna-
tive system. For example, X;; could be the jth indi-
vidual waiting time in the ith queueing system under
consideration. These observations are typically nei-
ther independent—due to the natural dependence in
the process—nor identically distributed—due to ini-
tializing the process in other than long-run condi-
tions. They are also likely to be non-normal. However,
for many processes, appropriate initialization (selec-
tion of initial conditions and truncation of some ini-
tial data; see, for instance, Law and Kelton 2000) will
yield an output process that approximately satisfies
the following collection of assumptions:

Stationarity: X;;, X, ..
tic process.

(Strong) Consistency: X,(r) — u; as. (almost
surely) as r — oo.

Functional Central Limit Theorem (FCLT): There
exist constants u; and v? > 0 such that

. forms a stationary stochas-

2 ]L;tf (X — )
JT
for 0 <t <1, where W (t) is a standard Brownian

motion (Weiner) process and = denotes conver-
gence in distribution as r — co.

;W ()

We will base comparisons on the steady-state means,
M1, Mo, ..., . Our consistency assumption implies
that it is reasonable to estimate u; by X;(r) for some
suitably large r. What we need to make statistically
valid selections in the steady-state simulation envi-
ronment is a good estimator for the sample mean’s
variance. This is relatively easy if we make replica-
tions, rather than a single long run, but then we have
to solve the initialization problem on each replication.
This can be very inefficient if large chunks of data
need to be deleted from each replication. But worse, if
we do a poor job of initializing then we can allow sub-
stantial bias to creep into our estimator. By making a
single long replication, we mitigate the bias problem.

Rather than directly estimating the var[X,(r)], we
can instead seek a good estimator of the wvari-
ance parameter (or asymptotic variance constant), v? =

4 INFORMS JourNAL oN ComPUTING/ Vol. 14, No. 1, Winter 2002
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lim,_, . rvar[X;(r)]. A number of relevant variance
estimation techniques for doing this will be discussed
in Section 2.3. We incorporate these estimators into
extended versions of % and W in Section 4.

2.3. Variance Estimators

In this subsection we will review a few of the pop-
ular estimators for the variance parameter v?. These
include batch means, overlapping batch means, and
various standardized time series estimators. All of
the methods rely on the FCLT assumption (and other
moment conditions) to produce asymptotically con-
sistent estimators of the variance parameter. In all
cases, we will work with batches of observations.
What will differ among the variance estimators is how
the estimation techniques process the batched data.

2.3.1. Batch Means. We can divide n observations,
X, X, ..., X, into b contiguous batches, each of
length m (where we assume for convenience that n =
bm); the observations X; _1us1, Xi, (j—ymear -+« + Xi,jm
comprise the jth batch, j=1,2,...,b. The quantity

1 m

Xi,j,m =— ZXi,(j—l)m+p
m.

is called the jth batch mean from system i. Under mild
conditions (e.g., Glynn and Whitt 1991, Steiger and
Wilson 2001), it is known that with b > 1 fixed,

m —_
ng = bTiZ( i,j,m Xz(n))z
j=1
XA -1)
b—1 7

as n — oo (implying that m — o). The symbol y*(d)
denotes a chi-squared random variable with d degrees
of freedom. We refer to mV? as the batch means (BM)
estimator. It can be shown that if the batch size m and
the number of batches b both become large in a certain
way (Damerdji 1994), then mV; — v? almost surely
(that is, mV} is strongly consistent for v%; see Chien
et al. 1997 for complementary mean-square consis-
tency results).

2.3.2. Overlapping Batch Means. Instead of work-
ing with asymptotically independent batch means as

we did above, we now consider all batch means of

the form 1 m-1

Z(]' m) = m > Xi jspr
p=0

for i=1,2,...,k and j=1,2,...,n—m+1. The
observations X; ;, X; j;1, -+ , Xj j;,-1 comprise the jth
(overlapping) batch from alternative i.
The overlapping batch means (OBM) estimator for
the variance parameter v? is simply
n—m+l _
> (Xi(j, m)—Xi(m)?*.

j=1

VZE nm
o= A ) (n—m)

It can be shown that as the batch size m and the
ratio b = n/m become large, the OBM estimator is con-
sistent for v? (Damerdji 1994). Further, Meketon and
Schmeiser (1984) find that the distribution of this esti-

mator is well approximated by
2.2
2, Vix“(d)
mvV§ 7
where d = [3(b—1)/2].

2.3.3. Standardized Time Series. We now look at
a completely different methodology for estimating v?
known as standardized time series.

Fori=1,2,...,k j=1,2,...,b,and h=1,2,...,
m, the hth cumulative mean from batch j of system i is

_ 1l
Xi,j, n= A Z Xi, (j—Dym+p*
p=1

Fori=1,2,...,k,j=1,2,...,b,and 0 <t <1, the
standardized time series from batch j of system i is
given by

Lt (Xi, j, = X5, j, ey
/MM .

Schruben (1983) showed that if X;;, Xj,,..., X,, is a
stationary sequence satisfying certain mild moment
and mixing conditions, then as m — o we have
T ;m(t) = 9B(t),0 <t <1, a standard Brownian
bridge process.

We denote the weighted area under the standard-
ized time series formed by the jth batch of observa-
tions from system i by

Ti,j, m(t) =

Ai,j

Il

=Y we/m)T, ; (e/m),
=1
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where w(:) is a pre-specified weighting function that
is continuous on [0, 1], not dependent on m, and nor-
malized so that

Var( fo () dt)
- 2[01 /0 w(u)w(t)E(1 - u)dt du =1,

The weighted area (A) estimator for v? is

2 _
mVy =

S e

b
AL
j=1

02 x2(b)
b

for fixed b > 1 as m — oo.

One may ask: Why bother with the complication of
a weighting function? The answer stems from a closer
analysis of the small-sample bias of the variance esti-
mators for different choices of the weights. It can be
shown (Goldsman et al. 1990 and Song and Schmeiser
1995) that, as estimators of v?,

Bias(mV?) = % +o(1/m),

Bias(mV2) = Yn-;l+o(1 Jm), and

Bias(mV?) = f—(;"%y— +o(1/m),

where v, is a constant that depends only on the auto-
correlation structure of the stochastic process under-
lying the ith system; o(1/m) indicates convergence
to zero more quickly than 1/m as the batch size m
becomes large; and f(w) is a function of the area
estimator’s weighting. A judicious choice of w(t) can
result in the disappearance of the area estimator’s
first-order bias term, e.g., w(t) = +/840(3t2 -3t +1/2),
which we use in this paper.

2.4. R&S for Steady-State Simulation

The question at hand is how to adapt R&S proce-
dures to steady-state simulation problems. There have
been a number of attempts to do so, primarily extend-
ing two-stage procedures such as %. Key to any such
extension is a way to characterize the underlying
variability of the stochastic output process from each

system, typically via an estimator of the asymptotic
variance constant v?. Goldsman (1983) and Nakayama
(1995) suggest estimating v? using the batch means
method, while Goldsman (1985) proposes methods
based on standardized time series. These papers are
closest in spirit to our extension of %.

Iglehart (1977) estimated v? using the regenerative
method, a method that is less generally applicable
than the ones we employ. Dudewicz and Zaino (1977)
based their estimator of v? on the assumption that
the simulation output process is well represented by
an autoregressive order-1 (AR(1)) process, which is
clearly not true in general. Sullivan and Wilson (1989)
used an estimator of the simulation output spectrum
at frequency 0.

Some of these procedures are heuristics, but oth-
ers have provable asymptotic validity as § — 0, which
is a strategy that we also employ. Of course, in a
real problem & is a fixed quantity. However, estab-
lishing that a procedure is valid in this limiting sense
shows that, as we become more and more demand-
ing of the procedure in terms of its ability to dis-
tinguish small differences, then we can be more and
more confident that the procedure works. This seems
like a useful assurance, since selecting the best is most
difficult when even tiny differences matter. See also
Nakayama (1997) and Damerdji and Nakayama (1996,
1999) for related asymptotic analysis of multiple com-
parison procedures. However, our limiting argument,
which is applied to #., is fundamentally different
from their argument.

3. Perspectives on

Evaluating Procedures

When new procedures for the design and analysis
of simulation experiments are proposed, the inventor
has a fundamental obligation to establish the “good-
ness” of the procedures. There are many techniques
for doing this, and in most cases multiple approaches
are required. In this section we provide our perspec-
tives on this important task, and illustrate them by
our evaluation of the R&S procedures proposed in
this paper.

Suppose that there is a new procedure, which
we denote by %, that is under review. We vaguely
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define “procedure” to be anything from an experi-
ment design strategy to an output analysis method,
or a combination of the two. We assume only that %,
when applied to a simulation, is supposed to provide
some information about the simulation model.

Why is it necessary to evaluate & separately from
its actual use? Typically, @ is proposed because the
researcher has some mathematical, empirical or intu-
itive justification for believing that it is useful. If we
can show mathematically—by formal statement of
conditions and proof of the claims—that % performs
as desired under all conditions for which it will be
employed, then the evaluation is complete and the
user can apply & with confidence. We refer to this
as an exhaustive mathematical analysis because it must
cover all conditions of interest.

More often, the best that we can do is show that
2 has some desirable properties under conditions that
are more restrictive than we can be certain we will
encounter in practice. For example, the new Ré&S pro-
cedures in this paper work as advertised if the out-
put data from each of the simulated systems are i.i.d.
normal. Obviously this condition is never precisely
true in real applications; in fact, we hope that these
procedures can be used when the ii.d. normal con-
dition is violated. Here “work as advertised” means
that the procedures select the system with the largest
true mean, or one that is close to the best (in a pre-
cisely defined way), with a prespecified probability.

Further complicating the matter, the “goodness” of
% is rarely captured by a single performance mea-
sure, and we may be interested in 9’s performance
relative to other procedures, not just in an absolute
sense. A R&S procedure, for instance, is supposed
to provide an absolute guarantee of achieving the
desired probability of correct selection (PCS). If, how-
ever, there are other procedures that may be applied
to the same problem, then the value of % could be
that it is more efficient in terms of its expected sam-
ple size than the competing procedures. In simulation
methodology research it is rare that the performance
of a procedure can easily be evaluated on all dimen-
sions of interest, and also rare that a new procedure
dominates all existing procedures on every relevant
performance measure.

When an exhaustive mathematical analysis is not
possible, then there are at least four other forms
of analysis that are appropriate: mathematical analysis
under idealized conditions; analysis under surrogate mod-
els; asymptotic analysis; and empirical analysis. We do
not claim that these categories include all possible
approaches, nor that they are mutually exclusive. But
we do believe that they cover the key techniques.
In the remainder of this section we comment on
each one.

We can sometimes perform the analysis we want,
restricted to idealized conditions, when exhaustive
mathematical analysis is not possible. This might also
be called “evaluating special cases,” but more broadly
it means that we examine the procedure exhaustively
over either a limited list of performance measures or
under restrictive assumptions.

For instance, in Kim and Nelson (2001a) we stud-
ied the impact of batching on #.. The idealized
condition we assumed was that a sufficient condi-
tion to guarantee the desired PCS—the batch means
being i.i.d. normal—holds at all batch sizes. By doing
this we could perform an exhaustive analysis of the
impact of batch size on the efficiency of the procedure
(number of observations until termination). Specifi-
cally, we determined whether or not it is important
to find the smallest possible batch size that works in
the first-stage sample. The answer is that it is not crit-
ical as long as a certain minimal number of batches
are obtained. The result is useful, even though based
on idealized conditions, because the fact that it is not
necessary to obtain the smallest allowable batch size
when conditions are most favorable for that strategy
suggests that it is not essential when the conditions
are unfavorable.

In simulation research there is a long history of
employing relatively simple models as surrogates for
the simulation model itself; for this reason we sep-
arate surrogate models from analysis under idealized
conditions. These models, while simple, are chosen
because they share some important characteristics
with the real simulations they represent. In simulation
output analysis the M/M/1 queue and autoregressive
moving-average (ARMA) time-series models are often
used for this purpose. The primary reasons for using
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surrogate models are that they share key character-
istics with real simulations (e.g., statistically depen-
dent output data) while also allowing some control
of these characteristics (e.g., different settings for an
ARMA model’s parameters lead to different levels
of dependence).

Asymptotic analysis typically means analysis as the
simulation effort (run length, number of replications,
or perhaps both) increases (conceptually) without
bound. The power of asymptotic analysis is that many
of the problem-specific details that thwart mathemat-
ical analysis in the finite-sample case wash out in the
limit. Asymptotic analysis, done appropriately, can
cleanly establish the large-sample validity of a pro-
cedure, or the asymptotic superiority of one proce-
dure over another. Further, asymptotic analysis can
sometimes lead to modifications that improve small-
sample performance.

There are at least two tricky aspects of asymptotic
analysis, one technical and one practical. First, there
are a number of ways in which the simulation effort
can “get large,” and a number of ways to look at
what happens when it does. For instance, the vari-
ance of any sensible point estimator will go to zero
as the sample size goes to infinity, but that does not
mean that all point estimators are equally good. Scal-
ing up the variance at the same rate at which it is
going to zero can sometimes reveal important differ-
ences among estimators.

In Kim and Nelson (2001b) we establish the asymp-
totic validity of our new fully sequential procedures.
In Section 5 of this paper, we will use asymptotic anal-
ysis, in conjunction with surrogate models, to assess
the impact of bias in our variance estimators on the
performance of the fully sequential procedure. We
drive the run length to infinity by letting the indiffer-
ence zone § and the true differences among the sys-
tems” means go to 0. Therefore, we can interpret the
asymptotic results as telling us what will happen as
the problem becomes more and more difficult, which
is what we would like to know (few errors occur in
easy problems where the means are widely different).

The second tricky point is determining what the
large-sample performance tells us about how a pro-
cedure will perform when it is actually applied in
less-than-infinite samples. In other words, how large

is “large enough” for asymptotic performance to be
representative of actual performance? Sometimes con-
vergence rates can be determined, but even then there
may be unknown constants involved that prevent us
from saying much about a specific sample size. Thus,
some other form of analysis is needed to support the
asymptotic results, and this is often empirical.

Empirical analysis is perhaps the most general tech-
nique at our disposal. We make a distinction between
empirical analysis and illustrative examples. Illustra-
tive examples play an important role because they
demonstrate how a procedure is implemented and
how the results might be interpreted; what they lack
is control of the factors that might affect procedure
performance, and control of the error in the eval-
uation itself. Control is a key feature of empirical
analysis, because the goal of empirical analysis is
to make statements about cases we do not examine
based on cases that we do. Without control, empirical
results can rarely be generalized beyond the specific
instances that were evaluated.

Controlled experimentation is a topic that is well
known in statistical experiment design. The idea is
to identify the factors that might affect the perfor-
mance of &, both favorably and unfavorably, and
vary them in a systematic fashion. The same is true,
for instance, in industrial experiments. However, in
industrial experiments the range for each experimen-
tal factor, such as temperature, pressure, speed, etc.,
is often determined by the physical nature of the
process. This is not necessarily true when evaluat-
ing a design and analysis procedure that is supposed
to apply to any problem within a rather large and
diverse class. The solution to this dilemma is to link
factors in meaningful ways.

For instance, when evaluating R&S procedures, fac-
tors such as the indifference-zone size, spacing of the
true means and standard deviation of the output data
affect procedure efficiency. Rather than set the levels
of these three factors independently, we can fix the
standard deviation of the data from the best system,
measure the width of the indifference zone in units
of this standard deviation, and measure the spacings
of the means in units of the indifference zone. This
allows us to draw general conclusions about how the
procedures perform when the indifference zone or
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spacings are large or small relative to the variability of
the data, and to avoid tying results to specific values
of any of these.

Control over the key factors often comes at a price:
models that allow for a great deal of control are usu-
ally idealized and may (unknown to us) lack some
features of real problems that have a profound impact
on performance. For instance, in the empirical evalu-
ation in Section 6 of this paper we use ARMA models
as surrogates for the simulation output data. This has
the advantage of giving us control over the means,
variances and strength of autocorrelation in the sim-
ulation output processes. And while we can argue
that these time-series models share some character-
istics with real problems, we cannot be certain that
they include all of the characteristics we might find,
say, in the cycle times generated by a complex manu-
facturing simulation. For this reason, including a few
models that are perhaps less controllable, but a step
closer to realism, is often appropriate.

Just controlling the key factors is not enough, how-
ever, when empirical evaluation of performance is
estimated through repeated trials. For instance, we
will evaluate the ability of our Ré&S procedures to pro-
vide a prespecified PCS by applying them repeatedly
to a situation in which the identity of the best sys-
tem is known to us. Our estimate of the true PCS is
simply the number of times the procedure is correct
divided by the number of trials. The number of trials
we perform then determines how precise our estimate
of PCS is, and it should be chosen to insure adequate
precision.

Selecting the number of trials or “macroreplica-
tions” is relatively easy when estimating PCS because
an unbiased estimator of the standard error of a
proportion is readily available. Unfortunately, this is
not always the case. When the error associated with
a performance estimate is not easy to evaluate, we
can add another layer of macroreplications whose
purpose is to quantify the error in the performance
estimate, rather than the performance of @ itself.
We refer to this layering as an “experiment within
an experiment.”

To make the concept more concrete, let ¥ denote
a random problem instance to which % might be

INFORMS JournaL oN CoMPUTING/ Vol. 14, No. 1, Winter 2002

applied. Further, let ., denote a performance mea-
sure associated with %; examples include a mean
value, bias, standard error, PCS, etc. Our goal is to
determine /;(%(.¥)), a performance attribute of &
when applied to instances of type .. However, we
also want to make sure that our estimate of (; has
satisfactory performance, as determined by measure
Aty (standard error, for instance). This might lead to
the following set of nested experiments:

for £ from 1 to r; do
for j from 1 to r, do
for i from 1 to r; do
generate instance .
apply & to .J
loop
/il\1 estimates M, (%(.¥))
loop
f%} estimates ﬂlz(/'ﬂ.[l)
loop
//%\3 estimates /”3(%2)

The ! indicates that, if desired, we could add even
more layers to the experiment, with each new layer
allowing us to evaluate the performance estimate
from the inner stage. Typically two to three layers are
adequate, but the fact that we can use an arbitrary
number of layers is a distinct advantage of empirical
evaluation in simulation.

4. New Procedures

We now assume that the output from each system,
Xij, i=1,2,...,k j=1,2,...,is a stationary stochas-
tic process satisfying the assumptions of Section 2.2,
and further that the systems are simulated indepen-
dently. Implicit in these assumptions are effectively
solving any initialization-bias problem, and not using
the technique of common random numbers to induce
dependence across alternatives.

We extend & and AN to steady-state simulation
by replacing the first-stage variance estimator (S? for
R, S}, for HN) with an estimator of the appropriate
asymptotic variance constant from Section 2.3. For &
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we need an estimator of the marginal asymptotic vari-
ance, while for AN we require an estimator of the
asymptotic variance of the difference between pairs
of systems.

To be specific, let X1, X5, ... , X;,, be the first-stage
sample from system i. From this sample we form
batches of size m and apply a variance estimator mV?>
from Section 2.3. In the case of the BM and A estima-
tors we form by = |ny/my] batches of size my; for the
OBM estimator we form ny — m, + 1 batches of size
mq. The degrees of freedom associated with each esti-
mator are d =by—1 for BM, d = b, for A, and d =
[3(by —1)/2] for OBM.

4.1. Extended Rinott’s Procedure (%)
Our extension to Rinott’s procedure is as follows:

Setup: Select confidence level 1— «, indifference-
zone parameter 6 > 0, first-stage sample size 1, >
2 and batch size m; < n,.

Initialization: Obtain Rinott’s
h(d, k,1—a) (BSG 1995).
Obtain 7, observations X,
each system i=1,2,... k.
For i =1,2,...,k, compute m,V? the sample
asymptotic variance of the data from system i.

Let
W2 moVE
Nj =maxj "y, ——8‘2-—— .

Stopping Rule: If 75 > max; N; then stop and select
the system with the largest X;(n;) as the best.
Otherwise, take N, —n, additional observations

, X;n, from each system i for

constant h =

j=1,2,..., ny from

Xi, ng+17s X,', ng+27 v
which N; > n,. B
Select the system with the largest X;(N,) as the
best.

4.2. Extended Kim and Nelson’s
Procedure (XN +)
FN is modified analogously to %. In the procedure,
we estimate the asymptotic variance of the difference,
v + 0}, by first forming the differenced series D;,; =
X=Xy, j=1,2,..., then applying one of the vari-
ance estimators from Section 2.3 to the series Djy;.
Setup: Select confidence level 1 — ¢, indifference-
zone parameter & > 0, first-stage sample size 1, >
2 and batch size m; < ny. Calculate

n= {21 - (1-a)/*D)]2 -1,

N —

10

Initialization: Let [ = {1, 2, ..., k} be the set of sys-
tems still in contention, and let h?* = 2nd.
Obtain n, observations Xij, i=1,2,...,np from
each system i =1,2,... k.
For all i # £ compute m,Vj, the sample asymp-
totic variance of the difference between systems i

and £. Let ) )
N, = {-h mOVilJ
L — 82

and let
N; =maxN,,.
i 0 24

Here N;+1 is the maximum number of obser-
vations that can be taken from system i. If 7, >
max; N; +1 then stop and select the system with
the largest X;(11y) as the best.
Otherwise set the observation counter r = n, and
go to Screening.

Screening;: Set [°¢ =]. Let

I=liiie I°Y and Xi(r) > )—Q(T’)—Wiz(r)/

Vee I, g 4£i)
where
8 (h*myV2
W, (r) = max{O, Z(”ng—e - r) }

Stopping Rule: If |I| =1, then stop and select the
system whose index is in I as the best.
Otherwise, take one additional observation X; .,
from each system i € I and set r =r+1.

If r =max; N; +1, then stop and select the system
whose index is in I and has the largest X;(r) as
the best. Otherwise go to Screening.

Notice that in AN+, as in %+, the variance estima-
tors depend only on the first-stage data. In Kim and
Nelson (2001b) we show that if m,V3 ~ 02 x*(d)/d,
then N+ achieves the desired probability of correct
selection as 6 — 0. However, this distribution assump-
tion will be approximately true at best, and so we
also consider a more dramatic refinement of W in
which we update the variance estimators as more data
are obtained.

4.3. Extended Kim and Nelson’s Procedure

with Updates (XN ++)
To define this new procedure, we first need the con-
cept of a batching sequence: A batching sequence is
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defined as {(m,, b,)} where m, is an integer-valued,
nondecreasing function of the sampling stage » with
the property that m, <r/2, and m, — o as r —>
co. The function m, is the batch size when r obser-
vations have been created; the number of batches
is b, = [r/m,] for batch means and area estimators,
and b, = r —m, +1 for overlapping batch means. Spe-
cific examples of batching sequences are provided in
Section 6.

Setup: Select confidence level 1 — «, indifference-
zone parameter 6 > 0, first-stage sample size 1, >
2 and initial batch size m; < n,. Calculate

= %{[2(1 — (1= a)/=1y]=24 _ 1y,

Initialization: Let [ = {1,2,...,k} be the set of
systems still in contention, and let h* = 27d.
(Note that since d is a function of the number of
batches, b,, the value of h? will change whenever
b, changes.)

Obtam n, observations X,
each system i=1,2,... k.
Set the observation counter r=mny and m, = m,.

Update: If m, has changed since the last update
(m, # m,_,), then for all i # ¢, compute m,V3(r),
the sample asymptotic variance of the difference
between systems i and £ based on b, batches of

size m,. Let
h2m, Va(r
Nie(r) = [—,Sal(“lJ

Ni(r) =

j=1,2,...,n from

and let
max N (7).

If r > max; N;(r) +1 then stop and select the sys-
tem with the largest X;(r) as the best.
Otherwise go to Screening.

Screening: Set [°d =], Let

[={i:iel®and X;(r) > X,(r) —
Veelo, e i)

Wie(7),

where

W, (1) = max[ E;(hzmr;z/,%(r) r)}

Stopping Rule: If |I| =1, then stop and select the
system whose index is in I as the best.

Otherwise, take one additional observation X,
from each system i € I and set r =7 +1.

If r = max; Ni(r) +1, then stop and select the sys-
tem whose index is in I and has the largest X;(r)
as the best. Otherwise go to Update.

i, r+1

Under very general conditions Kim and Nelson
(2001b) show that N + + is asymptotically valid as
6—0.

5. Asymptotic Analysis and

Surrogate Models

The asymptotic validity of ZWN+, as shown in Kim
and Nelson (2001b), is based on the assumption
that the variance estimators computed from the first
stage sample follow v?x2(d)/d distributions, where
v}, = v?+v? is the asymptotic variance of the differ-
ence between systems i and ¢, and d depends on the
variance estimator (we refer to this as Assumption C).
However, this is never precisely true, and violation
of the assumption affects the validity of the proce-
dure. In this section, we analyze how asymptotic per-
formance is affected by one type of deviation from
this assumption.

Let b, and m; denote the number of batches and
batch size, respectively, and ny = myb, the first-stage
sample size. Where there will be no confusion, we
drop the subscript 0 in this section so that m and
b also refer to first-stage batch size and number of
batches, respectively. Let X, 1 mr X, 2mree X, b,m b€
the first-stage batch means of size m from system i.
We define Var()—(i/ j,m) to be the variance of a batch
mean of size m from system 7, and define v?(m) to be

i (m) =mvar(X, ; ).

Thus, v? = lim,,_,,, v?(m), but v? # v?(m) in general
for finite m. The effect of th15 bias is what we
will examine.

If m is large enough, then the (X, ijm ] =1,2,...,b]
are approximately i.i.d. N(u;, f(m) /m), so that
vi(m)x*(b—1)

o1 @
where ~ means “approximately distributed as.” Fur-
ther, from the discussion in Section 2.3.2, we have

v ~ HIC@ 2

mVa ~
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where d = |3(b — 1)/2]. For the area estimator, if
the A? ’s are assumed to be approximately i.i.d.
v?(m)x*(1), then
v¥(m)x*(b
o) -
In Kim and Nelson (2001b) we showed that, under
Assumption C, the asymptotic probability of an incor-

rect selection (ICS) when k>2, u,—~8=p, 1 =--- =
My, and & — 0, is

mVi ~

k-1
Pr{ICS} — 1— [1_%(1 +277)—d/2] —a

where the final equality is a result of the way we
select . However, if we only assume that the batch
size is large enough that (1), (2) or (3) holds instead
of Assumption C, then the asymptotic probability of
incorrect selection (APICS), as 6 — 0, is

e 3 (m)\ ™"
APICS:l—l’{[l—§<1+2n > ) }

ik

where v} = v?+v? is the asymptotic variance of the
difference, and v3 (m)/m is the variance of the differ-
ence between batch means of size m from systems i
and k.

If Assumption C holds, then v3(m)/v} =1 and the
APICS is a. Since the two quantities typically are not
equal we refer to v2 (m)/v% as the bias.

To facilitate the analysis, we use an AR(1) model
as a surrogate for the simulation output process.
Specifically,

Xi=ui+dX; 1 —m)+Z; 4)

where Z; ; X N(0,1-¢?* and —1 < ¢ < 1. For simplic-
ity, suppose that each system has the same parameter
¢. Under this assumption, the difference of two sys-
tems’ output is also AR(1) with parameter, ¢. We can
show that the bias becomes

2 1
vi.(m) 2¢ 2¢™*
=1 5
= G—em  a-gm O
so that the APICS is
1 2¢

2+ ] Y } k-1
+a—&m> ‘

]
e —— m=10
s M=30
~~~~~~ m=50
0
g
[}
o
Q.
<
e
z -
3
T T T
0.5 0.0 05
phi
Figure 1 APICS as a Function of ¢ for Different Batch Size (m) When

b=5,k=10

We computed the APICS for various values of m, b, k
and ¢, with 7 chosen as described in procedure Z N +.
Although we considered the three variance estima-
tors, BM, OBM and A, the analysis is the same for
each of them except for the value of d. Therefore, we
can judge the behavior of the APICS for the OBM or
area estimators by looking at the APICS for BM only.

We varied m = 5, 10, 20 and b = 10, 30, 50, 80,
while letting k and ¢ range over k = 2, 5, 10, 25, 100
and ¢ =—-09, —0.38,...,0.9. The nominal probability
of correct selection was set at 1 —a = 0.95. The results
are as follows:

o Larger m implies closer-to-nominal APICS. Not sur-
prisingly, large batch size resulted in an APICS close
to the nominal probability of incorrect selection.
Figure 1 shows the APICS for different values of m
when b =5 and k = 10. In the case of m = 10, the
APICS is much greater than 0.05 relative to when
m =30 or m = 50 for every positive value of ¢. The
same pattern appeared for different k and b. Larger
batch size causes (5) to be closer to 1, making the
APICS closer to the nominal level.

e Larger k implies farther-from-nominal APICS. Figure 2
shows the APICS for different k when b =5 and
m = 10. Notice that the APICS is farther from the
nominal when k =100 than it is when k=2 or k=
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Figure 2 APICS as a Function of ¢ for a Different Number of Systems

(k) When b =5, m=10

10 for all values of ¢. This is because the effect of
bias is amplified by the factor k —1 in the equation
for APICS.

o Negative ¢ always produces APICS smaller than 0.05.
On the other hand, positive ¢ makes the APICS big-
ger, thus requiring a larger batch size to achieve the
nominal probability of incorrect selection.

These results suggest that one may want to pick m,
as large as possible given n;,. When Goldsman and
Marshall (1999) examined new two-stage procedures
using standardized time series variance estimators,
they showed that larger m, made the procedures less
efficient, but more likely to deliver the desired PCS.
This implies that large m, may be inefficient for Z N+,
also. We examine this in our empirical analysis.

6. Empirical Analysis
In this section we report on a portion of an extensive
empirical evaluation of &+, ZN+ and N + +. For
this study we focus on the ability of a procedure to
terminate quickly with a correct selection.

In the study we controlled the number of systems
k; the number of first-stage observations 7,; the batch

size my (or batching sequence {(m,, b,)}); the configu-
ration of the true means; and the dependence struc-
ture within the process. In all cases system 1 was the
true best (had the largest or smallest mean, depend-
ing on the particular problem). We obtained the sim-
ulation output data from surrogate output processes
that allow us to control the mean and dependence
structure of the process, and to initialize the process
in steady state. In this paper we report results for
the AR(1) process of equation (4); the moving average
order-1, or MA(1), process

Xj=u+0Z, 1+Z;

where Z; ; x N(0,1/(1 + 6%); and the waiting time
process from an M/M/1 queue
X.

ii= max{O, Xi, j-1 + Si/j—l - Gz]}

iid . .
where S ; ; ~ exp(r;) represents the service time,

and G ES exp(A) represents the interarrival-time gap.
The AR(1) and MA(1) processes are both marginally
normal—which is favorable to our procedures—but
the mean, variance and dependence can be controlled
independently. The M/M/1 provides an example
with non-normal marginals, but the mean, variance
and dependence are all functions of the service rate 7
and the arrival rate A.

6.1. Configurations and Experiment Design
The number of systems in each experiment varied
over k = 2,5, 10.

When we have independent data, ny =24 is an ade-
quate first-stage sample size to obtain variance esti-
mators of good quality. However, we need more data
when outputs are highly correlated. To give a fair
comparison across different levels of correlation, we
chose the first-stage sample size 7, such that the ratio
of v?(ny) = ngvar[X(ny)] and its limit, v2, is approxi-
mately equal to 1; more specifically, |1 —v?(n,)/v?| &
0.01. This guarantees that there is enough, but not
too much, data so that it is possible to get a reason-
ably good estimator of v?. After n, was determined
(and it can be determined analytically for the AR(1)
and MA(1) processes and empirically for M/M/1 pro-
cesses), all divisors of 1, were employed as batch sizes
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my, implying ny/m, batches for BM and A, and n;—
my+1 for OBM.

The indifference-zone parameter was set to 6 =
v,//fy, where v? is the asymptotic variance of the
best system. Thus, & is approximately the stan-
dard deviation of the first-stage sample mean of the
best system.

For each configuration, 1000 macroreplications of
the entire experiment were performed. In all exper-
iments, the nominal probability of correct selection
(PCS) was set at 1 —a = 0.95.

We now explain how we set the level of
dependence and configurations of the means for
each process.

6.1.1. AR(1) and MA(1) Processes. For the AR(1)
and MA(1) processes, the strength of the correlation
among the outputs depends on ¢ and 6, respectively.
We varied ¢ and 6 over the range —0.3,0,0.3,0.6,0.9
to see the performance of the new procedures under
various levels of correlation.

Two configurations of the true means were used:
The first was the slippage configuration (SC), in which
p; was set to 8, while p, =y ==, =0. To
investigate the effectiveness of the procedures in elim-
inating non-competitive systems, monotone decreas-
ing means (MDM) were also used. In the MDM con-
figuration, the means of all systems were spaced
evenly apart, § from the previous mean. For AR(1)
and MA(1) processes, the variances of all systems are
the same.

6.1.2. M/M/1 Queue. The performance measure is
w;, the expected waiting time in the queue of system
i. Thus, smaller w; is better and system 1 is the best. In
all cases the service rate of system 1 is set to 7, = 1.
To achieve different levels of dependence, the arrival
rate varies over A =0.3,0.6, 0.9 so the traffic intensity
of system 1, p = A/7y, varies over 0.3, 0.6, 0.9.

For configurations of w;, we consider SC and MDM
configurations. In SC, w; = p?/A(1 —p), while w, =
ce=wp=w;+ 0. In MDM, w; = w; + (i — 1) so the
means of all systems are § apart. Table 1 shows one
example of the MDM configuration. After we deter-
mine the desired w, for i =2,3,...,k, we derive the
service rate 7; that delivers it. We generate X;; based
on the algorithm of Schmeiser and Song (1989).

14

Table 1 Example of the MDM Configuration for the M/M/1 Queue When
k=3
A=03 A=06 A=0.9
wy(ry =1) 0.429 15 9
A 0.429+5 1546 948
Wy 0.429+26 15+28 9425

The MDM configuration is very interesting since
a larger expected waiting time in the queue is asso-
ciated with a larger variance. Thus, inferior systems
have larger variances than the best system, and it is
more difficult to find the best than it is when vari-
ances are the same across systems.

6.2. Batching Sequences

AN ++ requires a batching sequence (B) that guar-
antees the convergence in probability of the variance
estimator; both strong consistency and mean-square-
error (MSE) consistency imply convergence in prob-
ability. Damerdji (1994) showed that if {(m,,D,)} is a
batching sequence satisfying certain conditions, then
variance estimators become strongly consistent as m,
and b, go to infinity. Mean-square consistency is also
studied in Damerdji (1995) and Damerdji and Golds-
man (1995) for various variance estimators. Song and
Schmeiser (1995) and Chien et al. (1997) derive the
optimal mean-squared-error batch size.

In this section, we review several batching
sequences that have been proposed in the literature,
and a modification of them that we propose. In Sec-
tion 6.3 we will compare, empirically, the perfor-
mance of the batching sequences in terms of PCS and
total number of observations.

In our procedure, we start with a certain first-stage
sample size, n,, divided into b batches of size m,; that
is, ny = moyb,. Three different batching sequences that
have been proposed are the following:

e B;:m, =Y. Song and Schmeiser (1995) showed that
this rule leads to the smallest asymptotic MSE.

e Byim, = /r. This is often called the square-root
rule (Fishman and Yarberry 1997). The square-root
rule is known to achieve the fastest convergence
rate to the asymptotic variance, but can produce
low confidence-interval coverage.

e Byim, = ¥/r2. Damerdji and Goldsman (1995)
showed that the batch size m should be increased
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faster than /7 to achieve strong consistency of the
variance estimator.
Thus, we picked V7%

If, in the first stage, we start with a large value of
the batch size m, (small number of batches b,), then
it may be a very long time (measured in number of
observations) until an update occurs. For example, if
1y =100 and m, = 50, then the first update will occur
at r = 125,000 for B; and B,, and at » =2,500 for B,.
Thus, the update may never happen and we will not
realize the benefits of updating. On the other hand,
we do not want to risk having m, too small since a
severely biased variance estimator may lead to early
and incorrect termination of the procedure (when out-
put data are positively correlated the variance estima-
tors tend to be biased low).

To induce more frequent updates, we introduce a
sequence that doubles the number of batches (for BM
and A), while fixing the batch size at m,, until B, B,
or B, can be applied. For OBM, the number of batches
increases at those points when the total sample size
doubles. To express this in an algorithm format, let

Jr, e
ul(r) = \/_7:/ 14
£

3
r2,

Il

1
2
=3.
Then our modification of B, is as follows:
Modified Batching Sequence

Setup: Pick ny, m, and b, such that n, = bym, and
set r=ny+1, m,=my b, =by and f =2.
Update: For each new value of r

If (u,(r) < my & r = fny) then
Set m, < m,_4
Set b, < 2b,_; for BM and A
Set b, « r—m,+1 for OBM
Set f «2f
Elself (u,(r) = my & u,(r) is integer) then
Set m, < 1u,(r)
Set b, < |r/m,] for BM and A
Set b, <~ r—m,+1 for OBM
Else
Set m, < m,_4
Set b, «b,_,
Endif
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Table2  Modified Batching Sequence for BM and A When 7, = 100 and
my = 50 (Table Entries Are Given Only Where the Batch Size
Changes)

r B, B, B,
100 (50,2) (50,2) (50,2)
200 (50, 4) (50,4) (50,4)
400 (50,8) (50,8) (50,8)
800 (50, 16) (50, 16) (50,16)

1,600 (50,32) (50, 32) (50,32)
2,500 (50, 50)
2,601 : (51,51)
2,704 (52,52)

3,200 (50, 64) (50, 64)

Continuing with the same example as above, the
modified batching sequences for BM and A appear
in Table 2.

6.3. Summary of Results
The experiments show that N+ and HN + + are
typically more efficient than %+. The gain in effi-
ciency is due to the ability of N+ and FN + +
to eliminate inferior systems. The performance of
AN + + is particularly excellent, with savings in
the total number of observations of up to 99% relative
to R+

To illustrate the key conclusions, we report selected
results, emphasizing cases when strong dependence
exists (¢, 0 and p equal to 0.9) and the means are
arrayed in the MDM configuration. Tables 3-4 show

Table 3  Sample Average of Total Basic (Unbatched) Observations
When AR(1) Processes Are Tested with the MDM Configura-
tion, k =10, ¢ = 0.9 and n, = 1000 (All Values Are in Units
of 104)

R+ AN+ AN ++
my BM 0BM A BM  0BM A BM OBM A
1000 47.63 1667.83

500 47.65 46.52 42.38 1686.39 39.45 3840 4.36 4.40 4.07
250 3451 23.95 2853 12.86 8.03 821 3.38 345 3.32
200 28.43 2118 23.94 785 6.07 6.03 318 3.22 3.07
125 19.04 1571 16.38 444 407 385 391 375 3.49
100 16.54 14.42 13.98 3.75 3.56 313 337 330 2.95
50 1212 11.44 7.82 2.63 2.61 1.83 229 236 1.69
40 11.06 10.58 6.26 239 238 154 225 232 1.52
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Table 4 Estimated PCS When AR(1) Processes Are Tested with the Table 6 Estimated PCS When MA(1) Processes Are Tested with the
MDM Configuration, k = 10, ¢ = 0.9 and n, = 1000 (No Val- MDM Configuration, k = 10, 6 = 0.9 and n, = 60 (No Values
ues Are Statistically Significantly Smailer than 0.95) Are Statistically Significantly Smaller than 0.95)
R+ KN+ AN ++ R+ AN+ EN ++
my, BM OBM A BM OBM A BM OBM A my BM O0BM A BM OBM A BM 0BM A
1000 0.994 0.993 60 0.995 0.996

500 0.995 1.000 0.994 0.994 1.000 0.997 0.985 0.997 0.983
250 0992 00995 0.994 0.990 0.997 0.995 0.986 0.992 0.987
200 0992 00996 0.993 0.996 0.998 0.993 0.984 0.991 0.983
125 0.990 0.992 0.991 0.991 0995 0.989 0.997 0.999 0.989
100 0.993 0.991 0.988 0.995 0.994 0.989 0.992 0.996 0.983
50 0.988 0.986 0.967 0.988 0.989 0.962 0.990 0.991 0.969
40 0.988 0.986 0.950 0.982 0.984 0.946 0.986 0.988 0.946

the sample average of the total number of basic
(unbatched) observations (OBS) and estimated PCS
for the AR(1) processes when BM, OBM and A are
employed and k = 10. By “total number of basic
(unbatched) observations” we mean all observations,
including the initial 7, generated by the simulation
until the selection procedure terminates. Tables 5-6
show OBS and estimated PCS for the MA(1) pro-
cesses when k = 10. Tables 7-8 report OBS and esti-
mated PCS for the M/M/1 processes when there are
k =5 systems. All of the results reported for N + +
employ B, as the batching sequence. Notice that since
we fix the first-stage sample size, n,, large m, implies
small b,.

o Effect of m, and b,: Tables 3, 5 and 7 show that each
procedure consumes a very large number of obser-
vations when m, is large (b, small). Both %+ and
AN+, in particular, are inefficient when they start
with the largest possible m, for a given n,. For the
efficiency of the procedures, small m, is desirable.

Table 5 Sample Average of Total Basic (Unbatched) Observations
When MA(1) Processes Are Tested with the MDM Configura-
tion, k =10, 6 = 0.9 and n, = 60 (All Values Are in Units

of 104)

R+ AN+ AN ++

my BM O0BM A BM  OBM A BM OBM A

60 40.35 99.69

30 4027 871 899 9907 244 241 078 073 059
20 876 3.03 311 240 081 083 034 033 030
15 303 153 198 080 049 050 023 023 021
12 193 131 155 049 038 038 019 020 0.18
10 151 110 132 037 031 031 018 019 0.17
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30 0.995 1.000 0994 0995 1.000 0.997 0.995 0.999 0.994
20 0994 00999 00993 0996 0.998 0.995 0.990 0.997 0.995
15 0993 0.995 0.994 0.996 0.998 0.990 0.983 0.994 0.986
12 0993 0.995 0994 0996 0.997 0.994 0.987 0.996 0.988
10 0994 0993 0.994 0.993 0.997 0.995 0.987 0.996 0.988

On the other hand, the estimated PCS decreases as
i, decreases as seen in Tables 4, 6 and 8. The num-
bers reported in these three tables for estimated PCS
are greater than the nominal PCS of 0.95 when we
have large my,. This implies that large m; helps to
achieve the nominal PCS but at the cost of a huge
number of observations.

e Performance of %+, AN+ and AN + +: Tables 3,
5 and 7 show that %+ outperforms N+ only in
the extreme case when each variance estimator has
1 degree of freedom. For instance, in Table 3, A
and BM have 1 degree of freedom when m, = 1000
and mgy = 500, respectively, and %+ is more effi-
cient than Z N +. In this extreme case, there is no
benefit from using N+ because it loses its ability
to quickly eliminate inferior systems. However, the
performance of #WN + + is not affected as much
by the choice of m; or b, and it is more efficient
than the other two procedures. The reason is that
KN+ + can correct a poor initial variance estimate
by updating it as more data are obtained. The dis-
advantage of &N 4+ is that it requires saving all of
the data in order to compute the variance updates.
In addition, when the SC configuration is tested,
HAN ++ shows some coverage problems when i,
is small. However, as long as N + + starts with
the largest possible value of mj for given n,, the
estimated PCS is reasonably good while the proce-
dure remains efficient.

o Variance Estimators: For a given initial batch size
my, procedures based on OBM and A require fewer
observations than those based on BM. One reason
is that OBM and A have greater degrees of free-
dom than BM for a given my. BM and OBM have
about the same bias as estimators of the asymp-
totic variance, but for large batch size and num-
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Tahle 7 Sample Average of Total Basic (Unbatched) Observations When M/M/1 Processes
Are Tested with the MDM Configuration, k = 5, p = A/7, = 0.9 and n, = 24000 (All
Values Are in Units of 10°)
R+ AN+ AN ++
my BM 0BM A BM 0BM A BM O0BM A
24000 389.23 1,387.83
12000 391.24 15852 150.61 1,329.52 65.49 6785 789 799 744
8000 15415 8262 8159 66.38 27.27 2774 691 698 6.61
6000 8240 5097 5749 26.68 18.03 1760 6.48 651 6.19
4800 60.04 4470 4648 18.04 14.10 1324 6.04 6.05 5.68
4000 50.18  38.81  40.12 14.22  12.00 10.82 585 585 536
3000 39.58 3327 30.90 1044 973 836 544 543 4.80
2400 3532 3131 2579 894 848 6.78 515 512 4.25
2000 3239 2869 2159 8.00 7.70 576 492 493 3.99
1600 2886 2620 17.07 707 6.86 460 470 472 351
1000 2276 2148 1051 548 540 2.82 411 4141 249

ber of batches OBM’s variance is about 1/3 smaller
than BM (Song and Schmeiser 1995). And while A

mator of system i. In the M/M/1 queue, however,
PR+ requires more observations in the MDM config-

is first-order unbiased, the variances of BM and A
are about the same. Procedures based on OBM typ-
ically achieve the highest estimated PCS among all
variance estimators.

SC vs. MDM: Table 9 shows the effect of having
different configurations of the true means. When
AR(1) and MA(1l) processes are tested, 92+ con-
sumes about the same number of observations
regardless of whether the configuration is SC or
MDM, because the variances in the AR(1) and
MA(1) examples are not affected by a shift in the
means and N, is determined by the variance esti-

uration than the SC configuration because variances
do depend on the means and, for this example, the
inferior systems have larger variances in the MDM
configuration. N+ and #N + + always consume
fewer observations when the MDM configuration
is employed rather than when SC is in force; in
the MDM configuration inferior systems are easier
to eliminate. Table 9 shows that when AR(1) and
MA(1) processes are tested the savings is as large as
50%. When M/M/1 processes are tested the savings
is less dramatic, but still substantial.

Tahle 8 Estimated PCS When M/M/1 Processes Are Tested with the MDM Configuration, & =
5, p=\/m = 0.9 and 1, = 24000 (Values That Are Statistically Smaller than 0.95
Are Enclosed ina 0)
R+ AN+ EN ++
my BM 0BM A BM  0BM A BM  0BM A
24000 0.986 0.987
12000 0.984 0994 0971 0979 0997 0979 0975 0982  0.959
8000 0976 0982 0957 0992 0990 0979 0.970 0987  0.967
6000 0968 0967 0962 0985 0984 0974 0961 0979 0.967
4800 0970 0959 0952 0978 0981 0972 0958 0.965 0.955
4000 0957 0956 0951 0974 0975 095 0966 0971  0.959
3000 095 0950 0949 0965 0969 0962 0967 0972 0.957
2400 0953 0948 0940 0961 0970 0.959 0.971 0971  0.960
2000 0956 0945 (0934 0965 0965 0941 0963 0970 0.943
1600 0949 0941 [0934| 0959 0958 0942 0948 0946 {0915
1000 0938 [0911] 0.046 0.950 0959 0.958 |[0.909
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Table 8 The Effect of SC vs. MDM Configurations on Sample Average
of Total Basic (Unbatched) Observations When Estimator A is
Used (All Values Are in Units of 10)
R+ KN+ AN 4+
AR(1) k=10,$=009 SC 23.94 13.63 5.98
my =200 MDM 23.94 6.03 3.07
M/M/ k=5p=09 SC 291.91 178.78 66.92
my = 4800 MDM 46478  132.36 56.76

o Batching Sequence for %V + +: Table 10 reports
OBS and estimated PCS when M/M/1 processes
are tested with the OBM estimator, p = 0.6, k = 10
and 1y = 1200. When #N + + starts with a very
large initial batch size m,, the procedure terminates
during the phase in which b; is doubled, but before
ever reaching the actual batching sequence, u,(r).
When the procedure starts with a smaller batch size
mgy (my < 200 in Table 10), u,(r) is invoked. Table 10
shows that up to some point # ./ 4+ using B, con-
sumes a slightly larger number of observations, but
has higher estimated PCS, than B, or B;, but there-
after it consumes fewer observations and has lower
estimated PCS. There seems to be no difference in
performance between B; and B,.

For %+ and A N+, a strategy for selecting m, and b,
is not clear. Assuming that one wants to find the best
among a very large number of alternatives, say larger
than 20, we suggest that any m, which yields b, > 5
can be chosen. For &N + +, we strongly recommend

Table 10 The Effect of Different Batching Sequences on %~ ++ When
M/M/1 Processes Are Tested with the SC Configuration, n; =
1200, k =10, p = 0.6 and the 0BM Estimator (Values of Total
Basic [Unbatched] Observations Are in Units of 10¢)
Total OBS Estimated PCS
My B B, B, B B, By
600 10.75 10.75 10.75 0.952 0.952 0.952
400 9.54 9.54 9.54 0.939 0.939 0.939
300 8.64 8.64 8.64 0.926 0.926 0.926
240 8.55 8.55 8.55 0.927 0.927 0.927
200 7.97 12.29 7.97 0.899 0.921 0.899
150 7.60 11.47 7.60 0.896 0.916 0.896
120 7.23 8.98 7.23 0.868 0.875 0.868

100 6.96 7.52 6.96 0.890 0.868 0.890
80 7.08 6.63 7.08 0.887 0.869 0.887
75 7.03 6.54 7.03 0.845 0.842 0.845
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that one choose the largest possible m, given n, to
help the procedure to achieve the nominal PCS.

7. The Future

The empirical evidence presented here, as well as
other analyses we have undertaken, convinces us that
R&S procedures can be applied to steady-state sim-
ulation problems in which only a single replication
is obtained from each system. Procedure %+ has the
advantage that data can be collected from each sys-
tem without reference to the others, making it easy
to implement in distributed computing environments.
AN+ and KN ++ are highly efficient procedures, but
they assume the ability to obtain incremental output
data from each system in a coordinated manner.

Despite our confidence, there are a number of
issues yet to be resolved:

¢ The longstanding initialization-bias problem is at
least as critical here as it is in estimating parameters
of a single system.

e Even assuming the initialization-bias problem is
solved, there is still a fundamental question of when
enough data have been collected to have a statis-
tically valid first-stage sample (what we call ).
For %+ and %N+, enough data must be collected
to have an approximately (scaled) chi-squared vari-
ance estimator with low bias. When data are highly
dependent this is difficult to determine. Since
AN ++ updates the variance estimators, it may be
able to overcome errors in determining an accept-
able initial sample size or batch size provided it
does not terminate too early.

e None of the new procedures introduced here
directly incorporate the variance reduction tech-
nique of common random numbers (CRN). CRN
can be effective at reducing the sample size required
to reach a correct selection, as shown in Kim
and Nelson (2001a) for . Because CRN induces
dependence across systems, and we already have
dependence within replications, it becomes difficult
to provide procedures that account for both.
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