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Abstract. In this paper we demonstrate how a key adjustment to known numerically
exact methods for evaluating time-dependent moments of the number of entities in the
Pht/Pht/∞ queueing system and [Pht/Pht/∞]K queueing network may be implemented
to capture the effect of autocorrelation that may be present in arrivals to the more general
MAPt/Pht/∞ queueing system and multiclass [MAPt/Pht/∞]K queueing network. The
MAPt is more general than the Pht arrival process in that it allows for stationary nonre-
newal point processes, as well as the time-dependent generalization of nonrenewal point
processes. Modeling real-world systems with bursty arrival processes such as those in
telecommunications and transportation, for example, necessitate the use of nonrenewal
processes. Finally, we show that the covariance of the number of entities at different nodes
and times may be described by a single closed differential equation.
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1. Introduction
A primary difficulty in analyzing steady-state behav-
ior of stationary non-product-form networks is that
the nodal departure processes are not renewal
processes in general. When we consider arrival and
service processes at a queueing node that have time-
varying parameters, yielding time-dependent queue-
ing networks, the composite arrival processes at a
node are also, obviously, nonrenewal. As a result
numerical analysis is exceedingly difficult in almost all
time-dependent queueing system models. An excep-
tion is the [Mt/Mt/∞]K network (the superscript indi-
cates the number of nodes in the network), which
has closed moment differential equations (Whitt and
Massey 1993).
In Nelson and Taaffe (2004a, b) we showed that

the Pht/Pht/∞ system possesses characteristics such
that evaluation of time-dependent performance mea-
sures are easy to compute numerically, and computa-
tional effort increases only linearly with the product
of the number of arrival-process and service-process
phases (independent of the number of states, which
is infinite). In a network of such nodes the compu-
tational requirements increase only linearly with the
product of the total number of network arrival phases
and service phases—nodal or network capacity does

not affect the computational demands. The analysis
in these papers used moment, partial-moment, and
marginal-moment differential equations and showed
that the time-dependent moments of the number of
entities in the system (at a node or in the network) and
the moments and time-dependent distribution of the
virtual sojourn times can be evaluated without explicit
knowledge of any state probabilities. Therefore, the
cardinality of the state space (which is infinite) has no
effect on the computation effort.

Although Ph distributions are dense on the space
of all distributions having support on the nonnega-
tive real numbers (Asmussen 1987), they are limited
in their ability to represent arrival and composite-
arrival processes in general queueing networks where
these processes are nonrenewal. Similarly, there is
a limit on the variety of time-dependent point pro-
cesses that a Pht process can approximate. Real-world
studies of systems in manufacturing, transportation,
and telecommunication networks have brought to
light that standard assumptions regarding indepen-
dence of interarrival times may actually be inappro-
priate (Casale et al. 2010a). More realistic models need
to involve processes with nonnegligible dependence
structures (i.e., nonzero autocovariance and autocor-
relation; Asmussen 2000). Therefore, a mechanism is
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needed to efficiently represent nonrenewal arrival pro-
cesses with a variety of marginal-distribution shapes
to (eventually) construct highly accurate and efficient
algorithms and approximations of composite-arrival
processes for use in general stationary queueing net-
work models. Similarly, there is a need for an efficient
time-dependent generalization of the Pht process for
use in time-dependent queueing network models.
In this technical notewe develop the time-dependent

generalization of the well-known stationary Markov
arrival process (MAP)—a nonrenewal point process—
using it as the arrival process to an infinite-server, time-
dependent, phase-type-service queue and then in a
network of such queues with (perhaps) multiple cus-
tomer classes.
Several results we present in this paper are anal-

ogous to those in Nelson and Taaffe (2004a, b) for
the [Pht/Pht/∞]K queueing network. In fact some
differential-equation results in this paper are identical
to results in the previous papers and are only briefly
discussed. However, we demonstrate numerically that
behavior of the [Pht/Pht/∞]K queueing network and
the [MAPt/Pht/∞]K queueing network can be dramat-
ically different. Although the qualitative effect of auto-
correlation on queueing network behavior has been
known for some time, the contribution of this note is
to provide a method to quantify it for a useful class
of queueing networks. A second key contribution of
this paper is we show that the covariance of the num-
ber of entities at (potentially) different nodes and times
for the [MAPt/Pht/∞]K queueing network is described
by a closed, finite system of ordinary differential equa-
tions. This result is new.
The remainder of this paper is organized as follows:

We first define the MAPt process and a representa-
tion of it that is particularly useful in our work. We
next describe the MAPt/Pht/∞ queueing system and
introduce the necessary adjustment to the numerically
exact method for evaluating the time-dependent per-
formance measures introduced in Nelson and Taaffe
(2004a, b) to this more general system. We utilize a
numerical example to quantify the effect of introducing
nonzero autocorrelation into the arrival stream as well
as the effects of adjusting nonstationarity in the arrival
process and variation in service. We close the paper
with a brief analysis of the time-dependent covariance
of the number of entities at a node (or in the network)
at a fixed point of time s and the number of entities at
that same node or some other node (or in the network)
at point of time t, t ≥ s. This last result can be use-
ful in constructing approximations for departure point
processes.

2. MAPs
Lucantoni (1991), Takine and Hasegawa (1994),
Asmussen and Koole (1993), and others develop the

Markovian arrival process as a generalization of the
phase-type, or Ph, renewal process, originally pro-
posed by Neuts (1979). The Ph process is a stochastic
point process described by a continuous-time finite-
phase Markov process having exactly one absorbing
phase, with distribution of initial phase being indepen-
dent of any history of the Ph-type process. Our defi-
nition of MAP generalizes the Ph process to allow for
one or more absorbing phases, with the distribution
of initial phase dependent upon the absorbing phase
most recently visited. Let mA <∞ and vA ≥ 1 represent
the number of transient and absorbing phases, respec-
tively, of the embedded discrete-time Markov chain
(DTMC). Our representation of the MAP characterizes
the DTMC along with a vector of transition rates and a
matrix of the initial transient phase probabilities. This
representation is analogous to that of the Ph process
presented in Nelson and Taaffe (2004b).

We let A denote the one-step transition probability
matrix of the embedded DTMC:

A�

(
A0 A2
α 0

)
.

The mA × mA matrix A1 represents the one-step tran-
sition probabilities between the mA transient phases,
whereas the mA × vA matrix A2 represents the one-step
transition probabilities from the mA transient phases to
the vA absorbing phases. For i � 1, 2, . . . ,mA, if we let ai j
represent the one-step transition probability from tran-
sient phase i to either transient or absorbing phase j,
then for j � 1, 2, . . . ,mA we set (A1)i j � ai j and for j �
vA + 1, vA + 2, . . . , vA + mA we set (A2)i , j−vA

� ai j . Notice
that “absorbing phase” is really a misnomer in this
representation because rather than being absorbed, the
process is reinitialized for the next interevent time by
vA ×mA initial probability matrix α.
We further define the (mA + vA) × 1 vector λ, whose

jth argument is λ j , the nonnegative rate corresponding
to phase j, for j � 1, 2, . . . ,mA + vA. We use the conven-
tion λmA+h � ∞, for h � 1, 2, . . . , vA, corresponding to
an instantaneous sojourn time in any absorbing phase.
Thus, our MAP representation is the pair (A,λ).

To generalize our parameterization of the MAP
to the time-dependent MAPt process, we make all
nonzero and noninfinite rates and one-step transitions
probabilities integrable functions of time and add the
argument “(t).” Thus, we represent the MAPt as the
pair (A(t),λ(t)).

Lucantoni (1991) and other authors define the MAP
using notation that is slightly different from ours. Their
definition of MAP utilizes a single absorbing phase;
however, the distribution of initial phase is now depen-
dent upon the last transient phase visited prior to
absorption. The Lucantoni MAP representation is the
set of mA × mA matrices (D0 ,D1) such that (Dl) jh is
the transition rate from transient phase j to transient
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phase h upon an arrival of size l, for l � 0, 1 and j, h �

1, 2, . . . ,mA. Notice we can construct the Lucantoni rep-
resentation directly from our representation (A,λ) and
vice versa. We leave the details of the two-way trans-
lation for the online supplement accompanying this
journal.
Both definitions correctly describe the same MAP.

Similarly, the number of Kolmogorov forward equa-
tions (KFEs) describing the queueing process of
MAPt/Pht/∞ nodes and [MAPt/Pht/∞]K networks is
the same regardless of the choice of representation
since absorbing phases are instantaneous and therefore
do not require KFEs. However, key differences between
the two representations are worth mentioning. First,
the Lucantoni representation explicitly describes the
stochastic process {(N(t), J(t)); t ≥ 0}, where N(t) is
the number of arrivals triggered by absorption by time
t ≥ 0 and J(t) is the current phase of the underly-
ing Markov chain. Notice the Lucantoni process has
infinite state space, whereas our representation, char-
acterizing transitions in the embedded DTMC, has
a (typically finite) space consisting of mA transient
and vA absorbing phases, respectively. Second, a large
body of literature exists that describes techniques for
specifying MAPs to capture various properties of sta-
tionary point processes. One reason for this is that
stationary MAPs are weakly dense in the space of
all stationary point processes (Asmussen and Koole
1993), so technically MAPs are sufficiently general to
serve as approximations for any stationary point pro-
cess. An additional justification for this prolific body
of work is that approximating point processes with
MAPs tends to yield queueing models that are ana-
lytically tractable. Techniques exist for fitting computa-
tionally friendly MAPs including Markov-modulated
Poisson processes (MMPPs; see Ferng and Chang 2001,
Fischer andMeier-Hellstern 1993, Heffes 1980); general
MAPs with exactly two transient phases (MAP(2), e.g.,
Diamond and Alfa 2000, Horváth and Telek 2006); and
nonrenewal analogs of Ph-type renewal processes (e.g.,
Bitran and Dasu 1993, Johnson 1998)—to name a few—
to various properties of a stationary point process
or a sample of data. Other fitting techniques utilize
Kronecker products for MAP representations (Casale
et al. 2010b) or sequentially fit the marginal Ph process
and autocorrelation sequence (Horváth et al. 2005).
Additional sources of MAP-based methods and appli-
cations can be found in Artalejo et al. (2010), Liu and
Neuts (1991), Narayana and Neuts (1992), Neuts et al.
(1992). Important in this is that these fitting techniques
target either properties of the interevent time or prop-
erties of the counting process; in the former case a
MAP representation that describes transitions in the
embedded DTMC, such as ours, would prove more
useful, whereas for techniques that target the count-
ing process the Lucantoni representation may be more
appropriate.

3. The MAPt/Pht/∞ System
In this section we define the MAPt/Pht/∞ queueing
system and present the KFEs (and resulting MDEs)
guiding the trajectory of the time-dependent system-
state probabilities. The arrival process was defined
in Section 2. The service process is parameterized in
exactly the same manner as the Pht/Pht/∞ service pro-
cess in Nelson and Taaffe (2004a, b).

For completeness we repeat the definition of the
(mB + 1)-dimensional Pht service process here.
Let

B(t)�
(

B1(t) B2(t)
β(t)T 0

)
,

where

B1(t)�

©«
b11(t) b12(t) · · · b1mB

(t)
b21(t) b22(t) · · · b2mB

(t)
...

...
...

...

bmB1(t) bmB2(t) · · · bmB mB
(t)

ª®®®®®¬
is the underlying Markov chain one-step transition
matrix for transient-to-transient phase transitions, and

B2(t)�

©«
b1,mB+1(t)
b2,mB+1(t)

...

bmB ,mB+1(t)

ª®®®®®¬
is the vector of transition probabilities from tran-
sient phases to the instantaneous absorbing phase,
mB + 1, which represents a service completion
(a departure from the queue). The vector β(t) �
[β1(t), β2(t), . . . , βmB

(t)]T contains the initial service-
phase probabilities for an entity completing its arrival
process.

Let µ(t) � [µ1(t), µ2(t), . . . , µmB
(t)]T be the vector of

real-valued integrable service-rate functions for the
transient phases of the service process so that [µ(t)T ,∞]
is the (mB + 1)-dimensional rate vector for the entire
phase service process.

The state of the MAPt/Pht/∞ process at time t is
given by

[N(t),A(t)]� [{N1(t),N2(t), . . . ,NmB
(t)},A(t)],

where {A(t); t ≥ 0} is the arrival phase of the next
arrival to the system at time t, with A(t) ∈ {1, 2, . . . ,mA}
and where {Ni(t); t ≥ 0} for i � 1, 2, . . . ,mB is the ran-
dom process representing the number of entities who,
at time t, are in the ith phase of their service. There-
fore, the total number of entities in service at time t is
N(t) �∑mB

i�1 Ni(t). The instantaneous absorbing phases
in the arrival and service processes need not be explic-
itly represented.
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Naturally the state space for MAPt/Pht/∞ system is
identical to the state space for the Pht/Pht/∞ system;
however, the KFEs for these two models are not the
same. As in Nelson and Taaffe (2004b), if we let

P(t; n1 , n2 , . . . , nmB
, k)

≡ P(N1(t)� n1 , . . . ,NmB
(t)� nmB

,A(t)� k)

and

P(t; n1 , n2 , . . . , nmB
, k)′

≡ d
dt

P(N1(t)� n1 , . . . ,NmB
(t)� nmB

,A(t)� k),

then we can show

P(t; n1 ,n2 , . . . ,nmB
, k)′

�−[1− akk(t)]λk(t)P(t; n1 ,n2 , . . . ,nmB
, k)

−
mB∑
l�1

nlµl(t)[1− bll(t)]P(t; n1 ,n2 , . . . ,nmB
, k)

+

mA∑
l�1
λl(t)

( vA∑
j�1

al ,mA+ j(t)α j, k(t)
)

·
{ mB∑

h�1
I[nh>0]βh(t)P(t; n1 , . . . ,nh −1, . . . ,nmB

, k)
}

+

mA∑
l�1
l,k

alk(t)λl(t)P(t; n1 ,n2 , . . . ,nmB
, l)

+

mB∑
l�1

bl ,mB+1(t)[nl +1]µl(t)

·P(t; n1 , . . . ,nl +1, . . . ,nmB
, k)

+

mB∑
l�1

I[nl>0]

{ mB∑
h�1
h,l

bhl(t)[nh +1]µh(t)

·P(t; n1 , . . . ,nl −1, . . . ,nh +1, . . . ,nmB
, k)

}
, (1)

for k � 1, 2, . . . ,mA, nh � 0, 1, 2, . . . ,∞, h � 1, 2, . . . ,mB ,
and t ≥ 0, and where for all t,∑

k , n1 ,..., nmB

P(t; n1 , n2 , . . . , nmB
, k)� 1.

We let I[a>0] be the indicator function for the event
“a > 0.”

We now describe the closed system of moment
differential equations (MDEs) and partial-moment
differential equations (PMDEs) that we utilize in cal-
culating E[N(t)] and Var[N(t)] for the MAPt/Pht/∞
queueing system at all times t ≥ 0. As in Nelson
and Taaffe (2004b), an MDE or PMDE is closed if
it contains no state probabilities on the right-hand
side; closedness is necessary to calculate the time-
dependent moments or partial moments without hav-
ing to compute the time-dependent state probabilities.

Theorem 1. The MAPt/Pht/∞ first MDE is

d
dt

E[N(t)] �
mA∑
l�1
λl(t)

( vA∑
k�1

al ,mA+k(t)
)
P(t; ·, l)

−
mB∑
j�1
µ j(t)b j,mB+1(t)E[N j(t)] (2)

where P(t; ·, k) ≡∑
n1 , n2 ,..., nmB

P(t; n1 , n2 , . . . , nmB
, k) is the

marginal probability of the arrival process being in phase k
at time t.

At this point it is worth noticing that the sole differ-
ence between Theorem 1 and its counterpart in Nelson
and Taaffe (2004b) is that portion of the positive flux
term specified by the arrival process being reinitialized
in phase k, that is,

λl(t)
( vA∑

k�1
al ,mA+k(t)

)
P(t; ·, l),

which here accounts for the vA ≥ 1 absorbing phases in
the MAPt , and the corresponding term in Nelson and
Taaffe (2004b), namely,

λl(t)al ,mA+1(t)P(t; ·, l)

represents the single absorbing phase in the arrival Pht .
This results directly from the summation

λl(t)
( vA∑

j�1
al ,mA+ j(t)α j, k(t)

)
(3)

in Equation (1) for theMAPt/Pht/∞ node replacing the
single term

λl(t)al ,mA+1(t)αk(t) (4)

in the KFEs for the Pht/Pht/∞ node. Since this is the
sole difference between the KFEs in the two systems,
we argue that the remainder of the closed system of
moment differential equations (MDEs) and the partial-
moment differential equations (PMDEs) needed for
calculating E[N(t)] and Var[N(t)] for theMAPt/Pht/∞
node may be obtained similarly from the correspond-
ing theorems in Nelson and Taaffe (2004b) by replac-
ing the single term in (4) with the summation in (3)
that accounts for the (potentially) multiple absorbing
phases in the MAPt . To this end we leave the presen-
tation (with derivation) of Theorems 3–6 for the online
supplement accompanying this journal.

As in the Pht/Pht/∞ system, the number of differen-
tial equations required to numerically evaluate E[N(t)]
is mA +mB−1 and the number of additional differential
equations required to numerically evaluate Var[N(t)]
(by evaluating E[N(t)2]) is mAmB(mB + 1).
Remark 1. We can also consider the K-node network
case where we have R independent, time-dependent,
MAPt-type arrival processes for each of several entity
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classes and time-dependent, class-specific, Markov
routing (MRt) among K nodes. Two key results are that
(1) the single-class K-node network of time-dependent,
Pht-type service nodes having MRt among nodes
is mathematically equivalent to a single-class single-
node system with a number of service phases equal
to the total number of service phases in the network
of service nodes and (2) an R-class [MAPt/Pht/∞]K
queueing network with class-specific, independent,
time-dependent, MAPt arrival processes and MRt
routing is mathematically equivalent to R independent
[MAPt/Pht/∞]K queueing networks.
Notice that the description of the set of service nodes

in this network is identical to the description of the
set of service nodes for the [Pht/Pht/∞]K . It follows
directly then that the single-node-to-network equiva-
lence is true whether the arrival process is Pht or is
MAPt . Of course the behavior of the network is very
much a function of the arrival process. We refer the
reader to the details laid out in Nelson and Taaffe
(2004a, b) and the online supplement.

Remark 2. The [MAPt/Pht/∞]K network for systems
having R arrival sources (or entity classes) can be repre-
sented by R single-arrival-source [MAPt/Pht/∞]K net-
works. Since there is an infinite number of servers at
every node, the entity classes are stochastically inde-
pendent and thus the single-node network model (and
software) can be used to analyze each of the entity
classes separately at the nodal and network levels. The
computational effort to analyze the multiple-arrival-
process network is a linear function of the number of
arrival sources (entity classes) because the indepen-
dence of the entity-by-class random processes allows
us to evaluate the class-performance measures by look-
ing at the each of the R classes separately. Doing this for
each arrival type (or entity class) means that we ana-
lyze the entire network (including all arrival classes) by
decomposing the network into R separate networks—
one for each entity class. This result is identical to
the multiple arrival process result for the infinite-
server network having Pht arrival processes (Nelson
and Taaffe 2004a).

4. Examples
In this section we present a series of examples specifi-
cally constructed to illustrate the effects of autocorrela-
tion, nonstationarity, and variability.

4.1. The Base [MAPt/Pht/∞]2 Network Model
We utilize the two-node network illustrated in Fig-
ure 1 to quantify the effects of changing network
attributes such as autocorrelation in the arrival stream,
nonstationarity in arrival rates, and variation in ser-
vice. A single arrival process feeds the network, which
includes immediate feedback at node 1 and feedback

from node 2 to node 1. Here we provide values and
time functions for the initial parameters of the MAPt
with eight transient and two absorbing phases that we
use to model arrivals to the network:

A1(t)�



0 0.3 0.4 0.3 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0.2 0 0.8 0
0 0 0 0 0 A55

1 0 A57
1

0 0 0 0 0 0 0 0
0 0 0 0 0.5 0 0 0.5
0 0 0 0 0 1 0 0


,

with A55
1 �0.25−0.25cos( 13 tπ),

A57
1 �0.75+0.25 cos( 13 tπ),

A2(t)�



0 0
0 0

0.5+0.2cos(πt/4) 0.5−0.2cos(πt/4)
0 0
0 0

0.6 0.4
0 0
0 0


,

α(t)�
[
0.25 0.25 0.25 0.25 0 0 0 0

0 0 0 0 0.25 0.25 0.25 0.25

]
,

and

λ(t)� [7.0 9.0 7.0 9.0 7.0 9.0+ 5.0cos( 12 tπ) 7.0 9.0].

Notice that rank(α(t)) > 1 indicating nonzero autocor-
relation in the MAPt .
The service processes are represented by three- and

two-phase Pht processes, respectively. The node 1 ser-
vice process has parameters

B[1](t) �



0 6
10

1
10

3
10

1
4 − 1

4 sin 2πt
7

1
4 0 2

4 +
1
4 sin 2πt

7
4
7

3
7 0 0

2
5 − 1

5 cos 5πt
11

3
5 +

1
5 cos 5πt

11 0 0


,

and µ[1](t)� [2 3.5+3cos(5πt/7)) 1.5]

and the node-2 service process parameter values are

B[2](t)�


0 1 0
1
3 +

1
3 sin 2πt

5
1
3

1
3 − 1

3 sin 2πt
5

2
3

1
3 0

 ,
and µ[2](t)� [1 1].
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Figure 1. Diagram of the Two-Node Network

p11(t)

Node 1 Node 2 

Network
arrival
process

Network
exit 

p01(t)

p02(t)
p21(t)

p12(t)
p20(t)

The Markov routing matrix among the nodes is

P(t)�


1
2 − 1

3 sin 3πt
4

1
2 +

1
3 sin 3πt

4 0
1
6 0 5

6

7
10 − 2

10 cos 2πt
3

3
10 +

2
10 cos 2πt

3 0

 .
Thus, there exists nonstationarity in each of the arrival,
service, and routing processes. For the remainder of
this section we will refer to this as the base network
model. Since having R classes is equivalent to R inde-
pendent K-node networks, we illustrate only a single
entity class here.

4.2. Quantifying Network Variations
We first use our example network to quantify the effect
of autocorrelation in the arrival process. We compute
time-dependent performancemeasures by numerically
integrating the closed system of MDEs for both the
base network model and an analogous network where
the arrival process has alternative initialization matrix

α̃(t)�
[
0.25 0.25 0.25 0.25 0 0 0 0
0.25 0.25 0.25 0.25 0 0 0 0

]
.

Since rank(α̃(t))� 1, this specifies a Pht arrival process
with representation (Ã(t),λ(t)). Curves for the mean

Figure 2. Node 1 Moments: Autocorrelation Effect
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and the variance of the number of entities (from time
t � 0 to t � 10 when the system begins empty and
idle) for each network at each node appear in Fig-
ures 2 and 3, respectively, with the base network nodal
moments represented by solid thin lines and the alter-
native network by thick dots. As an aside, even though
the E[N(t)] and Var[N(t)] curves (respectively at each
node) have similar shapes, neither pair of E[N(t)] and
Var[N(t)] curves is identical, demonstrating that the
number of entities at each node (regardless of arrival
type) does not follow a time-dependent Poisson distri-
bution.

Notice the top curve in each plot is associated with
the networkwithMAPt arrivals. Specifically, we see the
curve corresponding to theMAPt representing respec-
tive moments nearly 20% higher (at its most extreme)
above the curve representing Pht arrivals. Thus, we see
that failing to capture the autocorrelation present in
the MAPt arrivals causes us to significantly understate
both the mean congestion levels at both nodes as well
as the variability of this congestion.

Additionally, we can utilize our example to easily
quantify effects caused by other simple adjustments to
the network parameters. One such adjustment could be
to the nonstationarity in the arrival process. To demon-
strate, we increase the amplitude in the periodic arrival
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Figure 3. Node 2 Moments: Autocorrelation Effect
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Figure 4. Node 1 Moments: Arrival Nonstationarity Effect
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rate in phase 6 of the base network model’s initial rate
vector, defining

λ̃(t)� [7.0 9.0 7.0 9.0 7.0 9.0+ 8.0cos( 12 tπ) 7.0 9.0].

We then compare the respective nodal moments in the
base network model to those in an identical service
network fed by an alternative MAPt with represen-
tation (A(t), λ̃(t)), presenting the results in Figures 4
and 5; as above, the base network model is represented
by solid thin lines. This adjustment appears to have
less effect than was seen in the autocorrelation com-
parisons; however, this is not unexpected because the
adjustment here solely affects the mean time spent in a
single phase of the MAPt .
One other effect we calculate here results from

adjusting the variation in service. We define

B̃[1](t)�



0 6
10

1
10

3
10

1
4 − 1

4 sin(2πt) 1
4 0 2

4 +
1
4 sin(2πt)

4
7

3
7 0 0

2
5 − 1

5 cos 5πt
11

3
5 +

1
5 cos 5πt

11 0 0


,

created simply by replacing “sin 2πt
7 ” with “sin(2πt)”

in those relevant terms in the second row of theB[1](t)

matrix from the base network model. We again com-
pare the respective nodal moments in the base net-
workmodel to those in a networkwith the same arrival
and node-2 service processes but with node 1 service
Pht process having representation (B̃[1](t), µ[1](t)). The
respective plots appear in Figures 6 and 7.

In this section we have utilized our example net-
work to quantify the specific effects on nodal moments
from changes to autocorrelation and nonstationar-
ity in the arrival process as well as variation in
service; these represent only a few potential net-
work variations that can be analyzed. It is worth
noting that although the network presented here
includes a single external MAPt , our technique does
allow for more than one independent MAPt arrival
process.

5. Covariance of the Number of
Entities at Different Nodes in the
[MAPt/Pht/∞]K Network

We now show that for the [MAPt/Pht/∞]K queue-
ing network the covariance of the number of entities
present at time t at node i and the number of entities at
time s at node j has a describing differential equation
that is closed.
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Figure 5. Node 2 Moments: Arrival Nonstationarity Effect
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Figure 6. Node 1 Moments: Node 1 Service Variation Effect
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Figure 7. Node 2 Moments: Node 1 Service Variation Effect
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We begin with useful notation, presented in Table 1.
Notice that for any time-dependent notation M defined
in Table 1, we let M′ ≡ (d/dt)M; the sole exception is
Ci , j(s , t)′ ≡ (∂/∂t)Ci , j(s , t).
For the MAPt/Pht/∞ the partial marginal KFEs for

phases i and j are

∂
∂t

P(N [i](s)� ni ,N
[ j](t)� n j)

�−β j(t)
mA∑
h�1

λh(t)
vA∑
r�1

ah ,mA+r(t)

·P(N [i](s)� ni ,N
[ j](t)� n j ,A(t)� h)

− [1− b j j(t)]µ j(t)n jP(N [i](s)� ni ,N
[ j](t)� n j)

−
mB∑
r�1
r, j

µr(t)br j(t)
∞∑

nr�0
nr
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·P(N [i](s)� ni ,N
[ j](t)� n j ,Nr(t)� nr)

+ β j(t)
mA∑
h�1

λh(t)
vA∑
r�1

ah ,mA+r(t)

·P(N [i](s)� ni ,N
[ j](t)� n j − 1,A(t)� h)

+ µ j(t)[1− b j j(t)](n j + 1)
·P(N [i](s)� ni ,N

[ j](t)� n j + 1)

+

mB∑
r�1
r, j

µr(t)br j(t)
∞∑

nr�0
nr

·P(N [i](s)� ni ,N
[ j](t)� n j − 1,Nr(t)� nr).

From these equations we can compute the required
partial derivatives of the form (∂/∂t)Ei j(s , t) for all t ≥
s and then use these results to compute the Ci , j(s , t)′
terms. The proof of the following theorem, found in
the online supplement, makes use of the expression for
dE j(t)/dt developed in Nelson and Taaffe (2004b).
Theorem 2. For the MAPt/Pht/∞ with t ≥ s, s ≥ 0, and
i , j � 1, 2, . . .mB ,

Ci , j(s , t)′≡−µ j(t)Ci , j(s , t)+
mB∑
r�1
µr(t)br, j(t)Ci , j(s , t).

(5)
Notice that Theorem 2 is written in the notation

used for the single-node system, which we can apply
to finding covariances between all pairs of phases
within a node as well as the covariances among all
pairs of nodes in the network case since the [MAPt
(or Pht)/Pht/∞]K network system is mathematically
equivalent to the single-node system. To implement
the notationally cumbersome network case, we need
to use the fact that a node is made up of (possibly)
many phases and make use of the standard covariance-
decomposition:

Cov[Q +R,Y +Z] � Cov[Q ,Y]+Cov[Q ,Z]
+Cov[R,Y]+Cov[R,Z].

Table 1. Useful Notation for the Covariance MDEs

Notation Description

mB The number of phases (nodes) in the service process
(network)

mA, vA Number of nonabsorbing and absorbing (respectively)
phases in the arrival process

N [i](s) Number of entities in the system at node i at time s
for s ≥ 0 and i � 1, 2, . . . ,mB

Ei(s) E[N [i](s)]
Ei j(s , t) E[N [i](s)N [ j](t)]
Ei j j(s , t , t) E[N [i](s)(N [ j](t))2]
Ei j, h(s , t) E[N [i](s)N [ j](t),A(t)� h]
bi , j(t) Markov routing probability for entities proceeding to

phase j after having finished their service at phase i at
time t for i, j � 1, 2, . . . ,mB , t ≥ 0

Ci , j(s , t) Cov[N [i](s),N [ j](t)], for s ≥ 0, t ≥ 0, i , j � 1, 2, . . . ,mB

Clearly at time t � s, Ci , i(s , s) � Var[N [i](s)]. If the
“initial” condition (i.e., the state of the system at time s)
is empty-and-idle then Ci , i(s , s) � 0 and Ci , i(s , t) � 0,
for all t ≥ s. Likewise if at time t � s we have an
empty-and-idle system, then Ci , j(s , s) � Cov[N [i](s),
N [ j](s)] � 0 and Ci , j(s , t) � Cov[N [i](s),N [ j](t)] � 0 for
all t ≥ s.

The interesting case is if at some arbitrarily selected
time s we need to compute the effects of the current
node-i-time-s-to-node- j-time-s covariance or the node-
i-time-s-to-node- j-time-t covariance. Thus we need
to be able to compute the covariance starting from
arbitrary (or random) initial (time s) conditions. For
instance, we may need to evaluate the queueing sys-
tems of interest for some interval ending at time s−1
and then compute the covariance for the system from
s+1 until time s−2 , and so on. The indicated discontinu-
ity at times sl is allowed so that at those epochs the
state of the system can be deterministically altered (for
instance by adding some entities to the system). The
ability to compute results for a system inwhich a deter-
ministic number of entities can be added or deleted at
fixed points in time allows for time-based control pro-
tocols to be examined. Of course, time-based control
policies could by computed and perhaps optimized,
but that optimization is beyond the scope of this paper.

Finally, the covariance partial differential equations
for the Pht/Pht/∞ and MAPt/Pht/∞ are exactly the
same as those for the covariance in a [Mt/Mt/∞]K sys-
tem, or equivalently the Mt/Pht/∞ system. Whitt and
Massey (1993) showed this result for the [Mt/Mt/∞]K
and it is well known that the [Mt/Mt/∞]K is equiv-
alent to the Mt/Pht/∞. We provide a detailed proof
using our notation in the online supplement and on
our Nonstationary Queueing Network website (http://
users.iems.nwu.edu/~nelsonb/PhPhInf/).
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