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Abstract

Providing probabilistic analysis of queueing models can be difficult when the in-
put distributions are non-Markovian. In response, a plethora of methods have been
developed to approximate a general renewal process by a process with the time be-
tween renewals being distributed as a phase type random variable, which allows the
resulting queueing models to become analytically or numerically tractable. However,
from previous studies on the manufacturing sector, and more recently in analysis of
telecommunications systems, assumptions of independence do not always hold and ef-
forts have been made to approximate nonrenewal processes with Markovian Arrival
Processes. In this paper we survey techniques for deriving the appropriate parameters
of a Markovian process to accurately capture relevant characteristics of the original
point process.

Keywords: Markovian arrival process, phase type distribution, Markov-modulated Poisson
process, dependence, moment-matching, maximum-likelihood estimation, time-series analysis,
parameter estimation.

1 Introduction

Providing analytical results for specific real-world queueing models is made more difficult

if characteristics of the input processes—such as interarrival and service times—do not cor-

respond to the i.i.d. exponential random variables that are the building blocks of queueing

theory. For example, studies of internet protocol (IP) traffic have shown that the times

between connection attempts typically are not mutually independent, while the resulting

counting processes are frequently more variable than Poisson, with connection attempts oc-

curring in bursts (e.g., see [35, 42, 92]). This may lead to models that are computationally
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and analytically intractable. The task then for the engineer intending to calculate relevant

performance measures or predict future queueing behavior begins with fitting models to these

processes that allow for tractability.

In response, much queueing literature over the last 40 years has been devoted to devel-

oping and describing techniques for fitting processes with the Markov property to arbitrary

point processes. Notice the term “fitting” is somewhat misleading, as it is often impossible

to perfectly match the cumulative distribution function (cdf) or probability density function

(pdf) along its entire support as well as a complete set of dependence measures. Rather,

these fitting techniques frequently target a subset of properties of the original process (such

as marginal moments, shape characteristics, or measures of autocovariance) or estimate pa-

rameters for the fitted process from empirical samples of the original process. Although not

always guaranteed to obtain accurate predictions of queueing behavior (e.g., see [3]), these

matching techniques typically yield analytically tractable queueing models.

The majority of this literature has focused on approximating point processes with the

versatile Markovian point process, first described by Neuts [85], which is a generalized class

of processes with interevent times characterized as the time to absorption of a finite-state

continuous-time Markov chain (CTMC). Two subclasses of this process are particularly

prevalent in the fitting literature: Markovian Arrival Processes (MAPs) and phase-type

(Ph) renewal processes. Reasons for selecting Ph processes or MAPs as fitting tools are

detailed below.

In this paper we survey some of the extensive literature devoted to fitting Markovian point

processes, with a focus on those techniques that aim to capture some measure of dependence.

The remainder of the paper is organized as follows: First we introduce relevant notation

and describe classes of Markovian processes that are the tools of the fitting techniques we

survey (Section 2). In Section 3 we briefly review work on approximating a general renewal

process with a Ph renewal process, both in terms of techniques and developed technology.

In Section 4 we provide a discussion of efforts to capture properties of general nonrenewal
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processes with MAPs. We also briefly review efforts to fit MAPs to data and cite examples

of the use of maximum-likelihood methods to estimate MAP parameters. We conclude with

Section 5 where we discuss future directions for this research area.

2 Relevant Terminology

2.1 General Notation for Point Processes

We begin with a set of nonnegative identically distributed interevent times {Xn, n ≥ 1},

such that X1 is from cumulative distribution function G (i.e., G(t) = Pr{X1 ≤ t}, for

t ≥ 0). We let Sn denote the time of the nth event; that is, S0 = 0 and Sn =
∑n

i=1 Xi, for

n = 1, 2, . . . . We assume that {Xn, n ≥ 1} is stationary; that is, the joint distribution of

(Xn1+m, Xn2+m, . . . , Xnk+m) is independent of m for all k ≥ 1, {n1, n2, . . . , nk} ∈ (Z+)k [67].

We further assume that limδ↓0 G(δ) = 0.

For i = 1, 2, . . ., we define mi ≡ E{X i
1} and m′

i ≡ E{(X1 − m1)
i}; we say mi is the ith

ordinary moment of X1, while m′
i is its ith centralized moment. We further define µ2, such

that (µ2)
2 ≡ m′

2/m
2
1, and µi ≡ m′

i/(m
′
2)

i/2 for i = 3, 4, . . .; we say µi is the ith standardized

moment of X1, for i = 2, 3, . . . . The second standardized moment µ2 is worth further dis-

cussion; it is commonly known as the coefficient of variation, or cv. The squared coefficient

of variation, or scv (= µ2
2), may also be useful. Notice that throughout this paper we refer

to cv and scv rather than µ2 and µ2
2, respectively.

Many papers cited here describe a moment-matching technique. For shorthand we let the

vector mn denote the first n noncentral moments of X1, and let vector µn denote its first n

standardized moments (by convention, µ1 = m1). Notice that we can compute µn from mn

and vice versa.

We let ρk denote the lag-k interevent time autocorrelation; that is, ρk ≡ Corr{X1, X1+k}

= Cov{X1, X1+k}/m′
2, for k = 1, 2, . . . . A useful tool is the Index of Dispersion for Intervals

(IDI), defined as c2
n = Var{Sn}/(nm2

1) [111]; c2
n is also referred to as the n-interval scv
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sequence. Several papers cited here utilize c2
∞ ≡ limn→∞ c2

n; it can be shown that

c2
∞ = scv

(
1 + 2

∞∑
k=1

ρk

)
. (1)

When {Xn, n ≥ 1} are independent as well as identically distributed (i.i.d.), then ρk = 0 for

all k ≥ 1, and c2
n = scv for all n ≥ 1 (including n = ∞).

We have now described the interval process, consisting of interevent times {Xn, n ≥ 1}

(with first n marginal moments mn) and autocorrelation structure {ρk, k ≥ 1}. For the

purpose of this paper, we define an event as an arrival of entities in a batch of (random)

size `, for ` ∈ Z+. Thus, we define the counting process N(t) which describes the number of

entities that have arrived at or before time t ≥ 0.

Analogous to the IDI is the Index of Dispersion for Counts (IDC) at time t, defined as

I(t) = Var{N(t)}/E{N(t)} [39]. The IDC curve, {I(t), t ≥ 0}, may also be referred to as

the variance-time curve. The limiting value of the IDC curve, I∞ = limt→∞ I(t), appears in

several of the papers we cite here.

2.2 BMAPs, MAPs, and Ph Renewal Processes

The most general Markovian process cited in this survey is the Batch Markovian Arrival Pro-

cess (BMAP) [75], which is equivalent to the versatile Markovian process first investigated by

Neuts [85], referred to elsewhere (in tribute to Neuts) as the N -Process [94]. The interevent

times in a BMAP describe the time it takes an underlying CTMC to reach mC ≥ 1 absorbing

phases from a finite number mT < ∞ of transient phases; the chain reaching an absorbing

phase triggers an arrival of random size ` ∈ {1, 2, . . . ,M}, where M may be infinity. Let

J(t) denote the current phase of the CTMC at time t. We utilize the shorthand BMAP(mT )

to describe a BMAP of order mT , meaning that the underlying CTMC for the BMAP has

mT transient phases.

We utilize a representation here for the BMAP(mT ) that characterizes the interevent

distribution by transitions within the embedded discrete-time Markov chain (DTMC) along

with a vector of transition rates (one for each transient phase) and a matrix of the initial
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transient phase probabilities. This representation is used by Nelson and Taaffe [84] and

recounted here.

We let A denote the one-step transition probability matrix of the embedded DTMC:

A =

(
A1 A2

α 0

)
.

The mT × mT matrix A1 represents the one-step transition probabilities between the mT

transient phases, while the mT ×mC matrix A2 represents the one-step transition probabil-

ities from the mT transient phases to the mC absorbing phases. “Absorbing phase” is really

a misnomer in this representation, because rather than being absorbed the process is reini-

tialized for the next interevent time by mC×mT initial probability matrix α. By convention

we assume self-transitions in the embedded DTMC are not permitted (i.e., (A1)jj = 0, for

all j = 1, 2, . . . ,mT ).

We define the mT×1 vector υ, whose jth argument is υj, the non-negative rate correspond-

ing to phase j, for j = 1, 2, . . . ,mT . We use the convention υmT +k = ∞, for k = 1, 2, . . . ,mC ,

corresponding to an instantaneous sojourn time in any absorbing phase. Thus, the Nelson

and Taaffe BMAP representation is the pair (A,υ).

The key to the Nelson and Taaffe BMAP representation is that we construct matrices

A2 and α such that there is a unique absorbing phase for each pair (j, `) of transient phase

j = 1, 2, . . . ,mT and batch size ` = 1, 2, . . . ,M ; thus, mC = MmT . To do this, we construct

A2 as the concatenation of M diagonal matrices, each mT ×mT ; that is, we specify that the

DTMC cannot transition in one-step from transient phase j to an absorbing state with label

(h, `), for h 6= j ∈ {1, 2, . . . ,mT}.

It is worth mentioning that with matrices A2 and α constructed as such, we can connect

the Nelson and Taaffe BMAP representation to a related representation from Lucantoni [75].

The Lucantoni BMAP representation is the set of mT ×mT matrices {D`, ` = 0, 1, . . . ,M},

such that (D`)jh is the transition rate from transient phase j to transient phase h upon an

arrival of size `, for ` ≥ 0. We can construct the Lucantoni representation from the Nelson
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and Taaffe representation (A,υ):

D0 = U(A1 − I), (2)

where U is a diagonal matrix with nonzero elements υj, for j = 1, 2, . . . ,mT , and I is the

identity matrix, while

(D`)jh = υj · (A2)j,(`−1)mT +j · (α)(`−1)mT +j,h, (3)

for j, h = 1, 2, . . . ,mT and ` = 1, 2, . . . ,M .

Notice the Lucantoni representation explicitly describes the stochastic process {(N(t),

J(t)), t ≥ 0}, which has infinite state space, while the Nelson and Taaffe representation

describes interevent times, characterized by transitions on the embedded DTMC, whose

(typically finite) space consists of mT transient phases and MmT absorbing phases. The

papers cited in this survey typically approximate properties of the interval process, not the

counting process, which is why we employ the Nelson and Taaffe representation.

For simplicity, we refer to this representation as the BMAP representation for the remain-

der of this paper without further attribution. We provide the BMAP representation (A,υ)

for several example BMAPs; readers interested in translating from the BMAP representation

to the Lucantoni representation can do so using (2) and (3).

A MAP(mT ) is a special case of BMAP(mT ) where M = 1. For a stationary MAP(mT )

(as we examine here), we utilize β, the steady-state mT × 1 vector for the embedded DTMC

at arrival instants; it is the solution to

β>[(I−A1)
−1A2α] = β>, β>e = 1,

where e is a mT × 1 vector with all coordinates equal to 1. Then

G(t) = 1− β> exp{U(A1 − I)t}e,

and

mi = i!β> [U(I−A1)]
−i e, (4)
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for i = 1, 2, . . . [67]. Further, it can be shown that

ρk =
β> [U(A1 − I)]−1 (I− eβ>) [(I−A1)

−1A2α]
k
[U(A1 − I)]−1 e

β> [U(A1 − I)]−1 (2I− eβ>) [U(A1 − I)]−1 e
, (5)

for k = 1, 2, . . . [30]. Notice for a MAP(mT ), the matrix A2 is diagonal; in fact,

(A2)jh =

{
1−

∑mT

r=1(A1)jr, if h = j,
0, otherwise,

(6)

for j, h = 1, 2, . . . ,mT . Therefore, to characterize a MAP, we need only specify the prob-

ability matrices A1 and α and rate vector υ; the matrix A2 is defined completely by the

matrix A1, as in (6). The BMAP representation of the MAP(mT ) has mT (2mT − 1) free

parameters; we discuss the possible over-parameterization of MAPs later in this paper.

A Ph renewal process is a special case of MAP where the {Xn, n ≥ 1} are i.i.d; therefore,

ρk = 0 in (5), for all k = 1, 2, . . . . For this to hold, all mT rows in the initial probability

matrix α must equal β>. Thus, for a Ph renewal process, the initial transient phase visited

by the CTMC immediately after an absorbing phase is independent of the absorbing phase

index.

A renewal process is completely defined by its interrenewal distribution; therefore, we

describe a Ph renewal process in terms of its Ph interrenewal distribution. Various Ph

distributions are utilized in the papers we cite here; we specify the matrix A1, rate vector

υ, and steady-state initial probability vector β for their corresponding Ph renewal processes

here:

• Coxian (CmT
): Define the set {p1, p2, . . . , pmT−1} ∈ [0, 1]mT−1. If λ−1

j is the mean so-

journ time the underlying CTMC spends in phase j (with λj > 0), for j = 1, 2, . . . ,mT ,

then the BMAP representation of the Coxian renewal process (generated by a Coxian

interrenewal distribution) is

υj = λj, (A1)jh =

{
pj, if h = j + 1,
0, otherwise,

βj =

{
1, if j = 1,
0, otherwise,

for j, h = 1, 2, . . . ,mT , where βj is the jth component of vector β. Several cases of

Coxian distributions are worth calling out:
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– The Generalized Erlang distribution (GEmT
(λ)) is a special case of a Coxian

distribution where pj = 1 for j = 2, 3, . . . ,mT − 1 (but p1 ∈ [0, 1]), while λj = λ

(with constant λ > 0) for all j = 1, 2, . . . ,mT .

– The Erlang distribution (EmT
(λ)) is a special case of a Generalized Erlang distri-

bution where p1 = 1.

– The exponential distribution (E1(λ)) is a special case of an Erlang distribution

where mT = 1. A renewal process generated by an exponential interrenewal

distribution is Poisson.

• Hyperexponential (HmT
): Define the set {p1, p2, . . . , pmT

} ∈ [0, 1]mT , such that
∑mT

j=1 pj =

1. If λ−1
j is the mean sojourn time the underlying CTMC spends in phase j (with

λj > 0), then the BMAP representation of the hyperexponential renewal process (gen-

erated by a hyperexponential interrenewal distribution) has A1 = 0, while υj = λj and

βj = pj, for j = 1, 2, . . . ,mT .

We frequently use the Ph renewal process’ shorthand to describe a random variable from

the Ph interrenewal distribution.

3 Renewal Processes: Fitting Ph Interrenewal Distri-

butions

Phase-type, or Ph, distributions are attributed to Neuts [86] and are frequently used in fitting

renewal processes, for two reasons. First, the Markovian properties of Ph distributions make

the resulting queueing models more analytically tractable [77]. Second, Ph distributions are

dense on the set of all distributions with support on [0,∞) [5].

The question then arises: how do we approximate a general renewal process by one with

times between renewals governed by a Ph distribution? What properties of the original

process can we capture? Which properties are important to replicate to properly represent

the original process? An expansive literature has been created to answer these questions;
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most papers specify a small but flexible family of Ph distributions, setting values for its

BMAP parameters to satisfy (4) for i = 1 and i = 2 (and possibly, i = 3). Although the

emphasis of our paper is nonrenewal MAPs, in this section we provide a brief overview of

Ph-fitting literature as well as a description of some of the software that has been developed

to fit Ph distributions.

3.1 Modeling Techniques

Early work on fitting Ph renewal processes targets the first two moments of the original

interval process (i.e., m2). Using the notion that the mean of a Ph distribution acts as

a scaling factor, these papers focus on developing methods to match the scv of the time

between renewals.

In the earliest of these papers, Sauer and Chandy [105] fit non-exponential service pro-

cesses with scv > 1 to H2’s and processes with scv < 1 to GEmT
(λ)’s. Similarly, Marie [78]

fits service processes with scv > 0.5 to C2’s and scv = 0.5 to E2(λ)’s. While noting that

an EmT
(λ) has scv = 1/mT , he conjectures that Ek(λ) distributions might be viable to fit

intervals with scv = 1/k+ε, for ε small and k = 3, 4, . . . . Bux and Herzog [23] develop a non-

linear technique that targets a sample m2 while minimizing a measure of difference from the

empirical cdf. Whitt [119] also develops a two-moment technique, establishing parameters

in H2, GE2(λ), and a shifted exponential distribution (i.e., an E1(λ) shifted by a constant

value) to approximate an arrival process in an effort to assess the effect (on congestion in

the system) of changing the service parameters. Tijms [114] cites a two-moment technique

mixing a pair of Erlang distributions of consecutive orders for scv < 1; Weerstra [117] de-

scribes a similar technique utilizing an adjusted Erlang, with different means for the last two

phases than the common mean for the earlier phases in the chain.

Altiok [2] moves beyond the two-moment approach, citing Whitt [122] on the impor-

tance of shape considerations in approximating arrival processes. Altiok derives formulas for

matching a C2 to µ3 for a given point process with scv > 1, and identifies necessary and
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sufficient conditions for the fitted parameters of the C2 to specify a legitimate distribution.

Whitt [120] also develops a three-moment matching technique to fit point processes with

scv > 1 to H2’s, comparing the quality of matching the point process over a short interval

(referred to as the “stationary-interval method,” originally attributed to Kuehn [66]) versus

matching the behavior over a relatively long time interval (the “asymptotic method”).

Additional three-moment techniques using Ph subclasses are developed by Johnson and

Taaffe [59], who identify the feasible set of µ3 that can be matched with a mixture of two

Erlangs of common order (MECO-2). In this paper they derive formulas for the mixing

probability p and respective rates λ1, λ2 for the EmT
’s in the MECO-2 (for feasible order

mT ) to match µ3. Johnson and Taaffe expand on this method, using a nonlinear technique

to fit Coxians and mixtures of Erlangs possibly not of common order [61], and investigate

the effect of these techniques on the shapes of the density functions they attain [60]. Later

they compare their MECO method to a two-moment method that uses H2 distributions with

balanced means [62].

More recently, Osogami and Harchol-Balter [91] use a sewing technique with Erlangs

and Coxians to match m3 for a general distribution with a minimal order Ph distribution.

Noting that the Erlang is the least variable of the Ph distributions [1], the authors provide

necessary and sufficient conditions for matching m3 with Coxian distributions [90].

Bobbio and Telek [18] survey methods for fitting an Acyclic Ph distribution of order mT

(APHmT
) to a set of benchmark distributions. A Ph distribution is acyclic if there exists

an ordering of the transient phases such that A1 under that ordering is upper-triangular.

They cite a previous Bobbio paper [14] on using maximum likelihood (ML) methods to

estimate the parameters of the canonical representation of a fitted APH distribution. Bobbio

et al. [15, 16, 17] develop techniques for fitting the parameters of discrete and continuous

APHmT
distributions to µ3 of general distributions, while Telek and Heindl [112] focus on

fitting APH2.

In a paper on general continuous distributions, van de Liefvoort [115] provides an algo-
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rithm to specify the rational Laplace-Stieltjes transform (LST) (with maximum degree n)

of a distribution from moments m2n−1. Those distributions with rational LST are known

as the Matrix Exponential (ME) distributions. Ph distributions are a subset of the ME

distributions.

One limitation of the rational LST technique is that it impossible to know if the set of

moments correspond to a feasible ME distribution until its corresponding density is com-

puted. Horváth and Telek [53] build on van de Liefvoort’s result [115] and utilize APHmT
in

an attempt to overcome this limitation and target more than three moments. They propose

a one-phase reduction technique, where at each step the APHk (for k ≤ mT ) is replaced by

an APHk−1 possibly superposed with an E1(λ).

Other fitting-related work focuses on general distributions with heavy tails (i.e., dis-

tributions whose tails decay slower than exponentially). Feldman and Whitt [32] develop

a technique for matching HmT
distributions to heavy-tailed distributions with completely

monotone density functions (such as certain Weibull and Pareto distributions); for a sur-

vey of heavy-tailed related literature, see [32]. Notice that, to date, most heavy-tailed fitting

techniques are minor adaptations of the Feldman and Whitt method. Horváth and Telek [51]

study the quality of several of these approaches.

A number of papers are devoted to using ML methods and the expectation-maximization

(EM) algorithm to estimate parameters of Ph distributions from data. A key benefit of the

EM algorithm is that it works when data are incomplete or there are missing values; for

background on the EM algorithm, see [28, 123]. Asmussen et al. [8] use the EM algorithm

to estimate parameters for a general Ph distribution and later for a mixture of EmT
(λ)

distributions [6]. Thümmler et al. [113] also utilize mixtures of EmT
(λ) distributions to

fit real and simulated Internet trace data, while El Abdouni Khayari et al. [64] use the

EM algorithm to fit real trace data with hyperexponentials. Fackrell [31] develops an ML

technique for determining when the fitted parameters in a rational LST correspond to a

legitimate ME distribution. Riska et al. [95] use the EM algorithm to fit mixtures of Ph
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distributions when the histogram of the data indicates long tails.

3.2 Computer Software for Fitting Ph-Renewal Processes

Several of the papers described in Section 3.1 have been complemented with computer soft-

ware. Johnson’s [57] and Schmickler’s [106] work on using mixtures of EmT
distributions to

target µ3 has led to MEFIT and MEDA, respectively. EMPHT [89] (and its successor, EM-

pht) employs the EM algorithm in estimating parameters of a general Ph distribution, fitting

the Ph either to data or to one of a predefined set of distributions. MLAPH [14], as per its

name, uses ML techniques to fit parameters in the canonical form of an APH distribution,

while PHFit [52] separates fitting techniques for the body and tail of the target distribution,

using APH distributions for the body and the method of Feldman and Whitt [32] for the

tail. Recently, Pérez and Riaño [93] present jPhase, with component jPhaseFit that utilizes

both ML techniques for fitting Ph distributions to data and APH distributions for matching

moments. For discussion on the comparative quality of several of these applications, see [69].

3.3 Evaluation of Fitting with Ph Renewal Processes

In this section we have (primarily) reviewed techniques to match the first two or three

marginal moments of renewal point processes using specific families of Ph renewal processes.

Based on our survey, we feel that efforts to capture these characteristics have been successful,

and given values for m3 (or equivalently µ3), there exist several techniques that will specify

a Ph renewal process that sufficiently approximates the original process; we recommend the

MECO-2 from Johnson and Taaffe and the APH techniques from Bobbio et al. because they

can match any feasible triple of first three interval moments using simple formulas.

4 Non-Renewal Processes: Fitting MAPs

Real-world studies of systems in manufacturing and telecommunication networks have brought

to light that standard assumptions regarding independence of interarrival times actually
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may be inappropriate. Therefore, more realistic models need to involve processes with non-

negligible dependence structures (i.e., nonzero autocovariance and autocorrelation) as well

as non-exponentially distributed interarrival times [7].

In this section we review efforts to fit nonrenewal processes with MAPs. We first discuss

techniques to capture dependence with general MAPs, following that with a discussion on

the use of BMAPs and Markov-modulated Poisson processes (MMPPs). Although our focus

is fitting properties (such as moments and covariance measures), we briefly cite papers that

employ algorithms to estimate parameters from data. Some analytical models that result

in MAP departure processes are also briefly reviewed, and the section concludes with our

recommendations from amongst the cited fitting techniques.

4.1 General MAPs

Most general MAP-fitting methods involve taking superpositions and mixtures of the fun-

damental building blocks (i.e., exponential distributions), but in such a way as to capture

dependence within the model.

Several papers cite techniques for specifying parameters of a MAP(2) to accomplish this.

The BMAP representation for the MAP(2) is

υ = (υ1, υ2)
>, A1 =

(
0 a1

a2 0

)
, and α =

(
α1 1− α1

1− α2 α2

)
,

with probabilities {a1, a2, α1, α2} ∈ [0, 1]4, and rates υ1, υ2 ≥ 0. Thus, the MAP(2) is

characterized by six free parameters.

We can use (5) to show that the autocorrelation sequence {ρk, k ≥ 1} for the MAP(2)

is geometric; that is, ρk = cρξ
k, for k ≥ 1, where both the parameter ξ and coefficient cρ are

functions of the MAP(2) parameters (presented in Appendix A). The parameter ξ is utilized

in both MAP(2)-fitting techniques described below.

Diamond and Alfa [30] provide the most general fitting technique for the MAP(2), ex-

tending Altiok [2] and Whitt [120] in matching m3 to also target ρ1 for a nonrenewal interval

process. The authors provide feasibility conditions on the MAP(2) parameters to achieve
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particular values for ρ1 (in terms of the parameter ξ); these conditions generally include re-

strictions on the feasible scv of the marginal distribution that can be achieved. They provide

algorithms for specifying the BMAP representation when the feasibility conditions are met.

To validate their technique, the authors model the departure process from a queue and

then examine the moments of the resulting queue length when that departure process serves

as the arrival stream to another queue. Their method leads to accurate approximations for

the first three moments of the queue length when there are no restrictions on ξ and scv.

However, if scv < 1 and ξ > 0, the minimum achievable ρ1 is -0.037. Also, they conclude

that the MAP approximation for the model is only a slight improvement over the renewal

approximation (i.e., when α2 = 1− α1). They hypothesize that using MAPs of larger order

will allow them to target more significant levels of dependence.

Special cases of the MAP(2) are worth citing; they result when specific values are selected

for the probability parameters a1, a2, α1, and α2. One such case is the MMPP(2); it is

specified by α1 = α2 = 1. We discuss the MMPP(2) in Section 4.2. When either a1 = 0 or

a2 = 0 (but not both), the marginal distribution of the MAP(2) is APH2, and the resulting

process is referred to as an AMAP(2).

Recently, Heindl et al. [45] utilize AMAP(2)’s to provide matching techniques for both

hyperexponential (i.e., scv > 1) and hypoexponential (i.e., scv < 1) marginals, improving

on an earlier Heindl result [44] where only H2 marginals could be specified.

An important difference between the Diamond and Alfa technique and the Heindl et al.

technique is that the representation in the latter also involves a free parameter η ∈ [0, 1],

selected by the modeler; the range of feasible ξ that can be achieved is then dependent

on both the choice of η and the scv for the marginal distribution. Heindl et al. define

feasible bounds for ξ in both the hyperexponential and hypoexponential domains, noting

that, although the former domain is more flexible, in neither can the full range of ρ1 be

achieved (limitations are most apparent when the target scv < 1 and ρ1 < 0). For reference,

the BMAP representation of Heindl et al.’s AMAP(2) technique is provided in Appendix B.
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A related two-step EM algorithm for first specifying the marginal distribution and then

ρ1 while fitting MAP(2)’s is described in [55]; the algorithm utilizes nonlinear optimization

to specify α1 and α2, and its success is heavily dependent on the choice of initial values.

The technique in [45] also extends earlier Heindl et al. papers [46, 47] that utilize Marie’s

technique [78] when scv > 0.5. The authors’ goal is to assess the quality of the fitting

technique for use in network decomposition, noting that the decomposition may be sensitive

to m3 and ξ and, thus, the two-moment fitting technique (for renewal processes) first utilized

in Whitt’s Queueing Network Analyzer (QNA) [121] may be insufficient.

Also in the area of network decomposition, Mitchell and van de Liefvoort [82] use

sequences of correlated ME(2) distributions (with invariant marginals) in targeting both

marginal and dependence moments of the departure process from a G/G/1/N queue. The

idea of using correlated ME distributions is developed by Mitchell [80] and extends an earlier

paper [81] that investigates matching only marginal information.

Casale et al. [25] utilize Kronecker products (rather than sums) in the superposition of

MAP(2)’s within a network traffic model. They provide theorems connecting the moments

of the marginal distribution with the eigenvalues of [U(A1−I)]−1 for the superposed process.

By requiring A1 = 0 for all but one of the component processes, the authors claim they can

target both hyperexponential and hypoexponential distributions. The focus of their efforts

is fitting trace data; the KPCToolbox [24]—a package of Matlab scripts—has been designed

to this end.

Another technique for modeling network flow comes from Bitran and Dasu [12]; the

authors develop Super-Erlang (SE) chains, which they consider to be nonrenewal analogs

of Erlang chains. Effectively, they start with EmT
(λ) and expand each phase j (for j =

1, 2, . . . ,mT ) to include several subphases (each labeled by the phase level j and a subphase

index). One-step transitions in the SE chain are labeled as either unmarked or marked:

unmarked transitions move the chain forward one phase level (i.e., j to j + 1), while marked

transitions move the chain backwards (i.e., j to h, where h ≤ j). Notice that for the SE
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chain, N(t) counts the number of marked transitions by time t ≥ 0, and G is the distribution

of times between marked transitions. The fitting technique involves targeting m1 and c2
∞ of

the marked process and then setting the remaining SE chain parameters to match scv.

The authors validate their model by investigating performance measures at a queue (such

as the queue length distribution and scv of the departure process) whose arrival stream is

the superposition of renewal processes. The method approximates the superposition of low

variable (i.e., scv < 1) renewal processes well, but cannot be utilized if any component

renewal process has scv > 1. Further, the fitting method itself is highly complicated, with a

recursive numerical procedure at its center.

In another paper that utilizes Erlang distributions, Johnson [58] extends the earlier John-

son and Taaffe work on MECO-2’s [59] to create the Markov-MECO. Letting En(λ1), En(λ2)

denote the two Erlang distributions (of feasible order n) in the MECO-2 marginal distribution

(where the mixing probability p is assigned to En(λ1)), the author introduces dependence

parameters pim ≡ Pr{X2 ∼ En(λm) |X1 ∼ En(λi)}, for i, m = 1, 2. This explains the

“Markov” in Markov-MECO: which Erlang the current interarrival time is from is only de-

pendent on which Erlang generated the previous interarrival time. Notice mT = 2n since

the chain can sojourn in any of n phases in either Erlang; without loss of generality, we let

phases {1, 2, . . . , n} correspond to En(λ1) and phases {n + 1, n + 2, . . . , 2n} correspond to

En(λ2). Then the BMAP representation for the Markov-MECO is

υj =

{
λ1, if j ≤ n,
λ2, if j ≥ n + 1,

(A1)jh =


1, if h = j + 1, j < n,
1, if h = j + 1, j ≥ n + 1,
0, otherwise,

and (α)jh =


1− p12, if (j, h) = (n, 1),
p12, if (j, h) = (n, n + 1),
p21, if (j, h) = (2n, 1),
1− p21, if (j, h) = (2n, n + 1),
0, otherwise,

for j, h = 1, 2, . . . , 2n. For the Markov-MECO to have MECO-2 marginals, the relationship

p12 = p21(1 − p)/p must hold. Thus, adding the Markovian structure to the model entails

the addition of a single free parameter, p21. Johnson further shows ρ1 can be expressed as a
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1-to-1 function of p21, thus specifying the value of p21 that yields a given value for ρ1.

However, two limitations arise for the Johnson model. First, the autocovariance function

decays geometrically (with rate 1− p21/p). Plugging this into (1) we find

c2
∞ = scv

(
1 +

2p

p21

ρ1

)
.

Therefore, targeting a specific value of either ρ1 or c2
∞ specifies the value of the other; thus,

only one can be matched by the transition parameter p21. The second limitation is that not

all values of ρ1 can be matched. The author shows that p21 ∈ [0, min{1, p/(1−p)}], and that

as p21 approaches the upper limit of this range, both ρ1 and c2
∞ approach finite lower limits.

She suggests that this limitation can be overcome by increasing the value of the common

order n, and thus the full range of ρ1 can be matched. However, no proof of this conjecture

is offered.

4.2 Markov-Modulated Poisson Processes (MMPPs)

This section provides an overview of MMPP literature, describing their use in fitting general

nonrenewal processes to superpositions of renewal and nonrenewal processes, as well as the

application of the EM algorithm in estimating the MMPP parameters.

The MMPP(mT ) is a special case of MAP where initial probability matrix α = I; its

BMAP representation has m2
T free parameters. MMPPs have become an important tool in

fitting nonrenewal processes due to their analytical tractability and parsimonious represen-

tation. With the advent of the Internet and the interest in modeling Asynchronous Transfer

Mode (ATM) performance, the MMPP has gained popularity due to its ability to model the

correlation structure of packet streams [35]. The MMPP(2) has been the focus of the bulk

of the literature.

Due to its 2-state representation, the MMPP(2) is often referred to as the Switched

Poisson process (SPP). The SPP is a special case of MAP(2); its BMAP representation has

four free parameters: rates υ1 and υ2 and probabilities a1 and a2. Notice we can connect

the BMAP representation for a SPP to another frequently-cited representation in which
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the SPP is characterized by transition rates r1 and r2 and arrival rates λ1 and λ2 [35]:

rj = υjaj, λj = υj(1 − aj), for j = 1, 2. An important case of SPP is the Interrupted

Poisson Process (IPP), which results when either a1 = 1 or a2 = 1. The IPP is used to

model ON/OFF traffic sources, as arrivals are turned “off” when the underlying CTMC for

the IPP is in that phase j such that aj = 1 (where j = 1 or j = 2).

Two important properties of the SPP are utilized in papers cited here. First, the super-

position of a Poisson process and a SPP can be represented as a SPP. Specifically, if the

Poisson process has rate υp, the parameters of the superposed SPP are

a
(s)
1 =

a1υ1

υ1 + υp

, a
(s)
2 =

a2υ2

υ2 + υp

, υ
(s)
1 = υ1 + υp, υ

(s)
2 = υ2 + υp,

where a1, a2, υ1, and υ2 are the parameters of the component SPP. Second, the superposition

of z identical SPP’s can be represented as a MMPP(z + 1).

4.2.1 Fitting the SPP: Uses and Limitations

The SPP is a useful tool for fitting nonrenewal processes as its four parameters can be used

to match four features of the original process: e.g., m3 and a single dependence measure. A

key restriction, though, on using the SPP is that its marginal distribution has scv > 1, and

the SPP may be a poor fit for processes with low variability (i.e., scv < 1). Since IP traffic

is often found to be more variable than Poisson, the SPP is frequently utilized in this branch

of the literature.

One form of IP traffic is the superposition of ATM packet streams. Stationary SPPs are

frequently used as tools to model this traffic, with fitting techniques that specify the required

parameters to target properties of superposed ATM count or interval processes. The earliest

such technique is attributed to Heffes [41], who provides formulas for specifying a SPP given

m3 and an asymptotic time constant, τc, analogous to c2
∞ for the interval process. Utilizing

the shorthand

ϕ = 1 +
µ3

2

[
µ3 −

√
4 + µ2

3

]
,
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Heffes derives explicit formulas for the SPP parameters in terms of these descriptors:

υ1 = [τc(1 + ϕ)]−1 + m1 +
√

m′
2/ϕ, a1 =

[τc(1 + ϕ)]−1

υ1

,

υ2 = τ−1
c

[
1− (1 + ϕ)−1

]
+ m1 −

√
m′

2ϕ, a2 =
τ−1
c [1− (1 + ϕ)−1]

υ2

,

and investigates the quality of his fitting technique by modeling arrivals to a SPP/M/s(/K)

node (for both s < ∞ and s = ∞).

Several other techniques for targeting SPP properties are worth mentioning. Heffes and

Lucantoni [42] examine counts of superposed ATM streams, providing formulas for SPP

parameters to target two asymptotic measures (the long-run average arrival rate, equal

to m−1
1 , and I∞) and two time-dependent measures (I(t1) and E{[N(t2) − E{N(t2)}]3}),

calculated at arbitrary times t1, t2 ∈ (0,∞) selected by the modeler. Nagarajan et al. [83]

use the first three Heffes and Lucantoni descriptors in their SPP fitting technique, replacing

the third centralized count moment with I(t2); the selection of finite time t2 here depends

on the traffic load at that time. Gusella [39] targets µ2, I∞, and I(t1), such that the

choice here of t1 depends on scv of the targeted process. Rossiter [99] uses the same first

three descriptors as Gusella, replacing time-dependent measure I(t1) with the asymptotic

dependence measure limt→∞Cov{N(t), N(2t)−N(t)}. Ferng and Chang [33, 34] target m3

and ρ1 of the stationary departure process from a BMAP/G/1 node as they model network

flow.

Approaches for validating these fitting technique vary by author. Heffes and Lucantoni

examine performance measures at a SPP/G/1 node (where the superposed ATM arrival

process is fitted by a SPP), while Gusella compares the moments and IDC curve of the

fitted SPP to those of the original process. In both techniques, accurate results are achieved,

although the results are heavily dependent on the choices of the finite time values t1, t2. Also,

Heffes and Lucantoni note that the SPP has too small an order to effectively capture long

tails. Ferng and Chang examine both the fitted traffic descriptors and the expected delay

at downstream nodes (versus simulation), and found the results to be generally satisfactory.
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Formulas for specifying the SPP parameters in the Heffes and Lucantoni, Gusella, and Ferng

and Chang techniques are found in Appendices C, D, and E, respectively. An additional

contribution of the Heffes and Lucantoni paper is the set of SPP count moments as explicit

functions of SPP parameters; these expressions have been utilized in several papers (e.g.,

see [43]).

Frequently, simple models for IP traffic arriving to a multiplexer are produced by aggre-

gating the various levels of video and voice sources into two states based on whether the

arrival load (i.e., rate) for a particular level is either greater (overloaded) or lower (under-

loaded) than the multiplexer’s capacity. The two aggregated states are then considered the

phases (of the underlying CTMC) of a SPP, and techniques are provided to specify the SPP

parameters to target descriptors of the IP traffic.

Skelley et al. [110] use SPPs to model the superposition of variable bit rate (VBR) video

traffic streams; their aggregation is based on a histogram representation of the bit-rates of

each of the individual traffic steams. Kang et al. [63] aggregate arrival counts (during fixed

time windows of length w); they claim that superposed ATM streams may have scv < 1,

and fit this data with a MAP(3) (extending a SPP by adding an additional phase to the

SPP underloaded state) to capture this. Wang et al. [116] approximate a superposed traffic

stream (consisting of voice, video and data sources) to a multiplexer, modeling the video

and voice sources as an aggregated SPP and the data as a batch Poisson process (with an

exogenously determined packet size distribution).

Both Skelley et al. and Kang et al. examine loss probability in a finite-buffer ATM

multiplexer (the former approximates it in validating their model, while the latter uses it as

a target measure to fit). For a survey comparing Skelley et al. to other papers in this section,

see [107]. The quality of the Kang et al. technique is highly dependent on the window length

w; if w is either too small or too large, then time windows may be categorized incorrectly

(e.g., as overloaded rather than underloaded). The authors here suggest extending their

technique to a MAP(mT ) (for mT > 3) to capture lower levels of the superposed stream’s
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scv.

Wang et al. model the multiplexer as a BMMPP/D/1 node, assessing the quality of

the technique by investigating average system time versus simulation. They compare their

technique to an earlier one from Baiocchi et al. [9], which includes a similar aggregation

assumption but requires calculating eigenvalues to determine the parameters of the fitted

SPP. Wang et al. claim their technique is thus less complex and also provides an exact fit

(as opposed to the asymptotic match provided in Baiocchi et al.).

However, the performance of both of these techniques is expected to degrade as the load

on the system increases, since the superposed arrival process is burstier than the fitted SPP.

To adjust for this, Wang et al. suggest over-weighting the overloaded state. They report

more accurate results for time in system versus the Baiocchi et al. model, although both

techniques underestimate simulation results in the presence of high server utilization.

Several papers seek alternatives to using SPPs, citing limitations in the range of marginal

moments or autocorrelations that can be targeted by the SPP. Lee et al. [71] suggest that

either a generalized IPP (GIPP) or a generalized interrupted Bernoulli process (GIBP) could

be used to match the moments and autocovariance of interdeparture times as an improve-

ment over standard IPP models. The GIPP is an IPP where the “on” and “off” times are

generally distributed (i.e., not exponential); the GIBP is a GIPP where the general distri-

bution is discrete. However, the authors concede that their GIPP/GIBP model can match

only marginal or dependence properties of the original process, but not both.

Heyman and Lucantoni [50] also move beyond the SPP, developing the LAMBDA algo-

rithm to fit the parameters of a discrete MMPP(mT ) (for mT > 2) to a set of arrival count

data. The authors claim the SPP is insufficient to model highly bursty data (i.e., more than

two phases would be required). In LAMBDA, the authors split the data across a sequence

of time windows, estimating the arrival rate on each window. They find the rates υj of the

minimum order MMPP(mT ) such that every sample rate is contained in υj±2
√

υj, for some

j = 1, 2, . . . ,mT . In this fashion, each window is associated with some phase j, and the
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transition probabilities in A1 are approximated by examining the phase transitions between

consecutive windows.

The authors also use the LAMBDA algorithm to derive approximate representations

of large state MMPPs by smaller order MMPPs. They note that state reduction is key

in modeling because the order of a superposition of MMPPs is the product of the orders

of each of its components; we elaborate on this result in the next section. The reduction

technique is shown to be quite successful, as they are able to approximate, for example,

the superposition of four MMPP(21)’s (over 194,000 total states) with a single MMPP(41).

This is a similar idea to one proposed by Sitaraman [109], where a large order Birth-Death

Modulated Poisson process (BDMPP)—a MMPP where the underlying CTMC is a birth-

death process—is approximated by the superposition of SPPs and Poisson processes.

4.2.2 Superposing SPPs and Other Simplifications

Several techniques developed to match the characteristics of a nonrenewal process involve

fitting the superposition of SPPs. There are two explanations for why this idea is useful:

First, the superposition of MMPPs is also a MMPP [76]. If the order in the `th MMPP is

m
(`)
T , for ` = 1, 2, . . . , z, then the order of the composite MMPP(m

(T )
T ) is m

(T )
T =

∏z
`=1 m

(`)
T .

However, a special case of this superposition occurs when the z MMPPs are identical SPPs;

as stated in Section 4.2, this superposition can be represented as a MMPP(z + 1). If the

parameters of the component SPP are υ1, υ2, a1, and a2, then the BMAP representation for

the MMPP(z + 1), representing the superposition of z such SPPs is

υ
(s)
j = (j − 1)υ1 + (z − j + 1)υ2, (A1)jh =


(j − 1)υ1a1/υ

(s)
j , if h = j − 1,

(z − j + 1)υ2a2/υ
(s)
j , if h = j + 1,

0, otherwise,

(7)

for j, h = 1, 2, . . . , z + 1, while α = I. Thus, to target properties of a nonrenewal process

with the superposition of identical SPPs requires specifying only the quantity z of SPPs and

the four SPP parameters.

The second reason this superposition of identical SPPs is frequently used is that IP traffic
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has been shown to exhibit self-similarity and long range dependence (LRD) [72]. Since this

superposition can be represented as in (7), we can use (5) to express ρk, for a sequence of lags

{k1, k2, . . . , kd} (for some d ∈ Z+), as functions of the SPP parameters and the quantities

z and d. Hence, components of the superposed fitted process can be determined to target

autocorrelations of the original process over multiple time-lags.

One paper to utilize these ideas is Andersen and Nielsen [4]. Each component SPP

in their technique is expressed as the superposition of an IPP and a Poisson process; the

parameters in the superposition are set to target m1, ρ1, and an asymptotic approximation

of the autocovariance of the original counting process. Yoshihara et al. [124] propose a

similar technique, targeting the exact variance of the superposed process as opposed to the

asymptotic autocovariance targeted by Andersen and Nielsen. The authors utilize linear

algebraic queueing theory (for background, see [74]) to determine the rates and non-linear

optimization to approximate the transition probabilities in the component SPPs.

The quality of both techniques here is heavily dependent on choices for z and d. The

quality of the Andersen and Nielsen technique is also dependent on the particular choice of

form for the asymptotic approximation of the autocovariance function, while the range of

variance that can be targeted in Yoshihara et al. is bounded. Finally, both sets of authors

note their respective technique accurately captures properties of the counting process itself,

but is insufficient to model nodal properties when the process feeds a queueing node.

Shah-Heydari and Le-Ngoc [108] use the superposition of identical SPPs to model count

data from an arbitrary ATM stream, using the IDC curve to establish the parameters of the

component SPP. This a data-fitting technique, and several of the parameters are found by

minimizing the difference between the fitted pdf and the empirical pdf.

Moving beyond the superposition solely of SPPs, Salvador et al. [102, 103] use the super-

position of a single MMPP(mT ) and z SPPs (not necessarily identical) to target properties

of network IP traffic data. The authors separately use the SPPs to target autocovariance

properties of the traffic (on z time lags) and the MMPP(mT ) to target its marginal prop-
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erties. This method is also a data fitting technique which uses an approximated empirical

covariance function and pdf. The superposed process is then tested on various telecom-

munications traces and the authors find the results satisfactory in approximating queueing

behavior. One limitation here is that the superposed process has a very large order (i.e.,

2zmT ), while a second limitation is that the output of the fitting process is generated as the

solution to a set of nonlinear equations.

For a further comparison of some of the techniques described in this section, see [104].

4.2.3 Maximum-Likelihood Estimation

Meier-Hellstern [79] was the first to use ML techniques in fitting SPPs to time-series data

in an effort to model processes found in telecommunication networks. In her paper, she

solves for adjusted parameters from the complete likelihood function and creates a 1-to-1

correspondence between this solution and the SPP parameters. She notes that the likelihood

function is unimodal, simplifying the task of computing the initial probability vector. Meier-

Hellstern concedes that her model performs poorly if the data to be fit appears to be Poisson

in nature; thus, the modeler must check the “Poisson-ness” of the data. Also, phases with

too few arrivals may be overlooked and the estimate of the hidden phase distribution may

have too few phase changes.

The dominant citation for application of ML to the general MMPP model is Rydén [100].

In this paper, the author surveys existing fitting techniques and proves the consistency of the

ML estimator. He also develops a technique for using EM to estimate MMPP parameters,

but cannot extend his model beyond the SPP case. Rydén’s conclusion that the analytical

solutions traditionally derived from ML techniques cannot be achieved in MMPP estimation

has sparked work that develops numerical techniques for establishing MMPP parameters.

One such paper is Lindgren and Holst [73], who develop methods to estimate SPP pa-

rameters in a model such that the observed variable (i.e., arrival count or interarrival time)

is dependent on both the current and previous state of the hidden variable (i.e., phase).

However, the model here only achieves a solution when the components of the matrix prod-
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uct UA1 are small, and the authors concede that the recursion technique may need to be

carefully controlled in its early stages to guarantee convergence.

Ge et al. [36] apply the ‘k-means algorithm’ from Deng and Mark [29] to establish an

initial value for their application of the EM algorithm to the MMPP parameter problem.

They find success in comparing their approximated process to a simulated MMPP(mT )

arrival process with predicted parameters, but have difficulty matching particularly small

and large interarrival times. The authors also acknowledge that their fitted MMPPs may

produce uncorrelated data. Nunes and Pacheco [87] also extend Deng and Mark’s technique

to allow for multiple arrivals in a small interval of time. The authors choose this time

discretization technique as they claim rates are better estimated from small intervals, while

quality estimation of transition probabilities require longer intervals.

Buchholz [22] develops an EM algorithm for fitting a MAP to real trace data by adapt-

ing a technique from Wei et al.[118] that uses initial portions of the trace to approximate

conditional probabilities for being in unobservable states (i.e., phases of the fitted underly-

ing CTMC). Buchholz’s technique utilizes randomization, identifying a maximum rate from

the data to use in approximating transition probabilities. As expected, the efficiency and

quality of the application of EM here are heavily dependent on the value of this maximum

rate. Riska et al. [98] also fit IP traffic using the EM algorithm, modeling a web server as

a MAP/Ph/1 node. They utilize hidden Markov models in their approach, first identify-

ing dependence in the arrival process, and then using existing techniques for fitting a Ph

distribution to the interarrival data.

Recently, Okamura et al. [88] present an EM algorithm for estimating Markov-modulated

compound Poisson processes (MMCPPs) which result from a MMPP combining compound

Poisson processes; for background on the MMCPP, see [26]. The authors provide pseudocode

for estimating the MMCPP when the intended output is multivariate normal. Their tech-

nique is dependent on the initial value of the maximization step in the EM algorithm (i.e.,

the M-step), and the computational intensity may be heavy if [U(A1 − I)] for the fitted
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process is stiff.

4.3 BMAPs: Fitting Batch Arrivals

To date, methods to fit MAPs with batch arrivals (i.e., BMAPs) to nonrenewal processes

have focused on directly estimating the BMAP matrices from data using ML techniques

including the EM algorithm. The general assumption behind these papers is that the data

to be fit are incomplete; that is, the interarrival times and batch sizes (for example) are

observable, but the phases of arrivals are not.

The two papers cited here differ from the remainder of the papers on matching nonre-

newal processes as they take batch size into account. In Klemm et al. [65], the batch size

corresponds to packet length, while in Breuer [21], the author fits a series of arrivals that

occur in batches of size greater than one. We explore this below.

Klemm et al. [65] study interarrival time and volume distributions in the IP traffic found

on a dial-up connection at a university site. The authors notice that by associating “rewards”

(i.e., batch sizes) with arrival times, the BMAP is a superior model to either Poisson or

MMPP models of IP traffic. They apply the EM algorithm to the observed data, and

describe the effectiveness of their procedure by calculating µ4 for the data rates of the

measured traffic over various time scales.

Breuer [21] also develops a technique for fitting BMAP distributions by applying a simple

alteration to the classical EM algorithm. The author cites his paper as the only one focused

on using EM to fit BMAPs to empirical time series. The application of EM is broken into two

parts: first, interarrival times are used to estimate the components of A1 and υ, after which

discriminant analysis is performed on the incomplete data set (i.e., identifying unobservable

phases at observable arrival instants) to estimate A2 and α. In his model, Breuer assumes

the number of arrival phases is fixed, but refers the reader to Jewell [56] where the minimum

number of phases is determined iteratively.
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4.4 Analytical Models of the Departure Process from a MAP/MSP/1(/K)
Node

It is known that the stationary departure process from a MAP/MSP/1 node (where MSP

indicates a service process characterized by a MAP) is not renewal in general; an exception is

the case of the M/M/1 node. Bean et al. [11] is one of many papers to note this. Utilizing a

description of the node size as a quasi-birth-death process (QBD) [86], this departure process

can be characterized using MAP representation [13] if we allow the underlying CTMC to

have infinite state space. Although exact, this result is impractical, as the departure process

may serve as the arrival process to another node in a network and hence be impossible to

incorporate into analytical models. Recent papers focus on approximating the departure

MAP by truncating the infinite CTMC, with the necessary goal of maintaining as much of

the true marginal and autocovariance information of the departure process as possible.

In an early paper on this topic, Sadre et al. [101] propose a technique for approximating

the departure process from the MAP/MSP/1 node by a finite MAP, encompassing models

from Green [37, 38], Haverkort [40], and Kumaran et al. [68] where either the service process

(in Green) or both processes (in Haverkort and Kumaran et al.) are uncorrelated. Sadre et

al. [101] propose a technique to identify a truncation point for the space of the underlying

CTMC, aggregating phases with larger indices into a single phase; this technique is an exten-

sion of [10] in which the queue length is truncated to yield an approximation of the departure

process by a MAP with a finite state-space. Sadre et al. [101] also propose techniques for

identifying multiple truncation points, which allows for matching multiple autocorrelation

targets; however, their results show that improvements from this do not always justify the

increased complexity of the model with multiple truncations.

Heindl and Telek [48] investigate tandem networks of ·/Ph/1(/K) nodes (with one exter-

nal MAP arrival stream), providing MAP approximations for the departure process during

a busy period. Their technique involves using the DTMC of the QBD process (describing

the queue size) embedded in a semi-Markov process (SMP), and then providing a MAP rep-
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resentation for the SMP describing the output process. Notice that this requires calculating

distributions for the idle time of the server, conditional on whether the previous busy period

consisted of a single service or multiple services.

Recently, Heindl et al. [49] utilize ETAQA [27, 96] for aggregating states in the infinite

MAP departure process from the MAP/MSP/1 node. In ETAQA, the QBD queueing

process is truncated and its generator matrix is specified using techniques introduced by

Latouche and Ramaswami [70]. Heindl et al. compare the complexity of their model to Sadre

et al. [101], and note their technique is more efficient when the only goal of the analysis is

to describe an output MAP; however, if performance measures are sought for downstream

nodes, then the two techniques have a similar efficiency. ETAQA is implemented in the

modeling tool MAMSolver [97].

Several of the truncation techniques described here have been utilized in network de-

composition. Notice the resulting processes from splitting a MAP (e.g. due to Markovian

routing) or superposing MAPs (e.g., from multiple departure processes feeding a single node)

are also MAPs. Thus, these techniques—when successfully utilized in specifying the MAP

representation of the truncated departure process—lead to MAP representations for the split

or superposed arrival process at a downstream ·/MSP/1 node.

4.5 Minimal MAP Representations

As we have seen, most MAP fitting techniques utilize special structures for the A1 and α ma-

trices. A MAP(mT ) is characterized by mT (2mT −1) free parameters and, therefore, is often

over-parameterized in terms of targeting a few specific properties of a general point process.

An open question in MAP characterization is in finding minimal BMAP representations

(i.e., MAPs with the correct properties that utilize a minimal number of non-zero parameter

values). Along these lines, Bodrog et al. [19] discuss the relationship between AMAP(2)’s

and MAP(2)’s, while Telek and Horváth [54] extend van de Liefvoort’s result [115] on con-

verting distributional moments into rational LST’s, and attempt to specify a minimal MAP
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representation from there. For further discussion on the current status of this topic, see [20].

4.6 Evaluation of Fitting with MAPs

In this section we have surveyed several techniques for specifying MAPs to target properties

of nonrenewal point processes. Many of the papers cited here are data-fitting techniques

that specify the MAP based on histograms or from results of ML methods. These papers do

a sufficient job of fitting data but cannot be extended to matching descriptors (i.e., marginal

moments and dependence measures).

Those techniques most suitable for targeting descriptors are the AMAP(2), the Markov-

MECO model, and several of the MMPP papers, including those from Heffes, Lucantoni,

and their co-authors. Although their techniques accurately target marginal properties of

the original process, upon extending the target to dependence measures they each have

limitations. Often they target only a single dependence measure at a time (so either a short

or long range dependence measure may be matched, but not both) or the achievable range

of autocorrelation is limited. The model from Andersen and Nielsen improves on this by

targeting several time-lags, but their technique provides only asymptotic approximations for

the parameters in their model. Unlike the renewal-fitting problem, discussed in Section 3,

the problem of finding a technique to accurately target several dependence measures while

matching marginal properties appears to still be open.

5 Summary and Further Research

In this paper we have provided a survey of tools that have been developed to approximate

general stationary point processes in a Markovian framework to make models more ana-

lytically tractable. We have provided an overview of techniques to match characteristics of

renewal and nonrenewal processes, with a focus on the latter and the efforts made to capture

the dependence present in many of these point processes.

Work continues to be done in this area, as MAPs (and their special cases such as MMPPs)
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remain the most effective tool for modeling processes in telecommunications systems and

related areas. From here we may expect to see further tweaking of the aforementioned

models in an effort to improve the range and quality of what is captured. The idea that

which characteristics of a point process are important to match appears to be problem-

dependent leaves the door open for further efforts.

One research area where providing an accurate approximation of a general nonrenewal

process with a MAP might play an important role is in modeling internode traffic flow in

nonstationary queueing networks. Notice that any matching technique designed to accom-

plish this must be able to specify Markovian processes that are fairly flexible, as the traffic

flow to be approximated may be more variable than Poisson on some portions of the time

horizon and less variable on others; additionally, it may exhibit extreme levels of positive and

negative autocorrelation which occur at multiple lags. Further, the approximated Marko-

vian process must be specified to match not only descriptors of the traffic flow itself, but

also yield accurate approximations for congestion measures at nodes that the traffic flow

feeds. At present, there is no single matching technique that can meet all of these potential

requirements.
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[19] L. Bodrog, A. Heindl, G. Horváth, and M. Telek. A Markovian canonical form of second-order
matrix-exponential processes. European Journal of Operational Research, 190(2):459–477,
Oct. 2008.
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Appendices

A MAP(2): Formula for the lag-k autocorrelation

We provide the explicit expression for ρk for the MAP(2), for k ≥ 1. We use shorthand

notation

κ1 =
(1− a1) (1− α1) + a1α2 (1− a2)

1− a1a2

, κ2 =
(1− a2) (1− α2) + a2α1 (1− a1)

1− a1a2

.

From (5), we find ρk = cρξ
k, such that

ξ = 1− κ1 − κ2,

cρ =
(κ1 + κ2) [υ1κ2 (κ2a1 + κ1)− υ2κ1 (κ2 + κ1a2)] [υ2 (1− a2)− υ1 (1− a1)]

d1 + d2

,

where

d1 = υ1 (κ2a1 + κ1) [(κ1 + 2κ2) (υ2a2 + υ1)− κ2 (υ2 + υ1a1)] ,

d2 = υ2 (κ2 + κ1a2) [(2κ1 + κ2) (υ2 + υ1a1)− κ1 (υ2a2 + υ1)] ,

for k ≥ 1.

B AMAP(2) Fitting: Heindl et al. [45]

We provide formulas to target m3 and ρ1 with an AMAP(2) (given free parameter η ∈ [0, 1]).

We use shorthand notation

h2 =
m2

2m2
1

− 1, h3 =
2m3m1 − 3m2

2

12m4
1

, h4 = h3 + h2
2 − h2, h5 =

√
h2

4 + 4h3
2,

h6 =
(1− η)(2h2ξ + h4 − h5) + ξ(h4 + h5)− (h4 − h5)

(1− η)(2h2 + h4 − h5) + 2h5

,

h7 =
(ξ − 1)(h4 − h5)

(1− η)(2h2 + h4 − h5) + 2h5

,

where parameter ξ = (2h2 +1)ρ1/h2. If h2 > 0 (i.e., scv > 1), then m3 may only be matched

if additionally h3 > 0. If this holds, the fitted BMAP parameters for the AMAP(2) are

υ1 =
2h2 + h4 − h5

2m1h3

, υ2 =
2h2 + h4 + h5

2m1h3

, a1 = 1− η, a2 = 0, α1 =
h6

η
, α2 = 1−h7. (A.1)
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If h2 < 0 (i.e., scv < 1), then h3 < 0 must hold. If so, the fitted BMAP parameters are

the same as in (A.1), except the sign in front of h5 must be switched in each place that

shorthand appears.

C SPP Fitting: Heffes and Lucantoni [42]

We provide formulas to target m1, I∞, I(t1), and f3(t2) ≡ E{(N(t2)
3} with a SPP (given

times t1, t2 > 0). Notice that time t1 must be selected such that I(t1) > 1.

We define two terms that will be useful here: d1, which solves

d1 =
1

t1

(
I∞ − 1

I∞ − I(t1)

)(
1− e−d1t1

)
, (A.2)

and C, which satisfies

f3(t2) =

(
t2
m1

)3

+
3 (I∞ − 1) t22

m2
1

+
3 (I∞ − 1) t2

d1m1

(
C

d1

−m−1
1

)
+

3 (I∞ − 1) t2e
−d1t2

d2
1m1

(
C +

d1

m1

)
− 6C (I∞ − 1)

d3
1m1

(
1− e−d1t2

)
.

If C = 0, then we define h1 = h2 = d1/2 and

`1 = m−1
1 +

d1

2
(I∞ − 1) , `2 = m−1

1 − d1

2
(I∞ − 1) ,

while if C 6= 0, we define

d2 =
(I∞ − 1) d3

1

2C2m1

,

and

h1 =
d1

2

(
1 +

1√
4d2 + 1

)
, h2 = d1 − h1, `2 = m−1

1 − Ch2

d1 (h1 − h2)
, `1 =

C

h1 − h2

+ `2.

Then the fitted SPP parameters are υj = hj + `j and aj = hj/υj, for j = 1, 2.

D SPP Fitting: Gusella [39]

We provide formulas to target m1, scv, I∞, and I(t1) with a SPP (given t1 > 0). Notice that

time t1 must be selected such that I(t1) > 1.
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We utilize d1, as in (A.2), and find `2 which solves

scv =
2m1`

2
2 + `2 [2m1d1 + m1d1 (I∞ − 1)− 2]− 2d1I∞

2m1`2
2 + `2 [2m1d1 −m1d1 (I∞ − 1)− 2]− 2d1

. (A.3)

Notice that typically there will be two solutions for `2 in (A.3). Then, defining

h1 =
m1d

2
1 (I∞ − 1)

2 + m1d1 (I∞ − 1)− 4m1`2 + 2m2
1`

2
2

,

h2 =
2d1 (m1`

2
2 − 1)

2

2 + m1d1 (I∞ − 1)− 4m1`2 + 2m2
1`

2
2

,

`1 =
2 + m1d1 (I∞ − 1)− 2m1`2

2m1 − 2m2
1`2

,

leads to the fitted SPP parameters υj = hj + `j and aj = hj/υj, for j = 1, 2.

E SPP Fitting: Ferng and Chang [33]

We provide formulas to target m3 and ρ1 with a SPP. We define several terms that will be

useful here: first, d1 = m−1
1 ,

d2 =
ρ1 (m2 −m2

1)

m1 [(m2 − 2m2
1) /2− ρ1 (m2 −m2

1)]
, d3 =

[(m2 − 2m2
1) (d1 + d2) + 2d2m

2
1]

2d1m2
1

,

d4 =
6 (d1d3 − d2)

m3d1 (d1 + d2)
2 − 3m2d1 (d1 + d2)− 6 (d3 + d2

3)
,

d5 = d1d4, d6 = d2d4, and d7 = d1 + d3d4. From these, we define

`1 =
d7 +

√
d2

7 − 4d6

2
, `2 =

d7 −
√

d2
7 − 4d6

2
.

If `1 < `2, then we reverse their assignments. Then

h1 =
d4`1 − d5

`1 − `2

, h2 =
d5 − d4`1

`1 − `2

,

and the fitted SPP parameters are υj = hj + `j and aj = hj/υj, for j = 1, 2.

40


