
Online Supplement

This support material is intended for an online supplement. It primarily contains a sum-

mary the MDE/DDE approach used to approximate time-dependent nodal-size moments

and departure-count moments for non-stationary Markovian queues, and the specific results

used in this paper. As such, much of the material simply documents an application of known

results. The exceptions are Appendices B and D. In Appendix B we make some modifica-

tions to known approximations for the Pht/Pht/s/c queue to approximate a Pht/Pht/s/∞

node; these modifications are important for our work, but not foundational contributions.

In Appendix D we list the network parameters of seven networks examined in Section 4.

A Calculating Departure Count Moments for the

MAPt/Ph/∞ Node

Recall that to develop our traffic flow approximations we used numerically exact results for

two-node MAPt/Ph/∞ → ·/Ph/∞ networks. A closed system of infinite-server MDEs is

provided in [28] and recounted here. For our work we need the DDEs for the MAPt/Ph/∞

node, which we derive here. We use the notation in Section 2.2.

Utilizing the techniques of Taaffe and co-authors (e.g., see [23, 27, 31] and related papers),

we can derive the pth DDE, namely

d

dτ
E{Dp

t (t+ τ )} =

mb∑

i=1

µifi

[
ma∑

j=1

(
E {Ni(t+ τ ), J(t+ τ ) = j}

+

p−1∑

q=1

(
p

q

)
E {Dq

t (t+ τ )Ni(t+ τ ), J(t+ τ ) = j}

)]
, (A.1)

for p = 1, 2, . . ., where the moments on the right-hand side of (A.1) are the partial moments1

of the random variables with respect to arrival phase j, for j = 1, 2, . . . , ma. Notice the

1A partial moment is evaluated only over those elements that are in a particular subset of the sample
space [36]. That is, for random variable X, E{X, X ∈ U} =

∑
x∈U

x Pr{X = x, X ∈ U}, for sample space
subset U .
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derivatives in the DDEs are with respect to the interval length τ , while the terms on the

right-hand side of the DDEs are evaluated at time t+ τ .

Since Var{Dt(t + τ )} = E{D2
t (t + τ )} − (E{Dt(t + τ )})2, we need only numerically

integrate (A.1) over [t, t + τ ) for p = 1, 2 to evaluate the variance. However, this requires

knowing values for E{Ni(t+ τ ), J(t+ τ ) = j} and E{Dt(t+ τ )Ni(t+ τ ), J(t+ τ ) = j}, for

j = 1, 2, . . . , ma and i = 1, 2, . . . , mb; we present differential equations for each now.

First we express the pth partial-MDEs (PMDEs) for the upstream node, introduced in [28]

and recounted here:

d

dt
E {(Ni(t))

p , J(t) = j} =

−υj(t)E {(Ni(t))
p , J(t) = j}

+
ma∑

h=1

υh(t)

[(
ahj(t) + dh(t)αhj(t)

)
E {(Ni(t))

p , J(t) = h}

+βidh(t)αhj(t)

p−1∑

q=1

(
p

q

)
E {(Ni(t))

q , J(t) = h}

]

+µi

p−1∑

q=0

(
p

q

)
(−1)p−q

E
{
(Ni(t))

q+1 , J(t) = j
}

+

mb∑

k=1,k 6=i

µkbki

p−1∑

q=0

(
p

q

)
E {(Ni(t))

q Nk(t), J(t) = j} , (A.2)

for p = 0, 1, 2, . . ., j = 1, 2, . . . , ma, and i = 1, 2, . . . , mb. Unlike the DDEs, the derivatives

in the MDEs are with respect to the current time t, and the right-hand terms in the MDEs

are evaluated at t as well.

We also can derive the partial cross-system-departure differential equations (PCSDDEs)
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needed to close (A.1), namely

d

dτ
E {Dt(t+ τ )Ni(t+ τ ), J(t+ τ ) = j} =

−
(
υj(t+ τ ) + µi

)
E {Dt(t+ τ )Ni(t+ τ ), J(t+ τ ) = j}

+
ma∑

h=1

υh(t+ τ )

[
βidh(t+ τ )αhj(t+ τ )E {Dt(t+ τ ), J(t+ τ ) = h}

+
(
ahj(t+ τ ) + dh(t+ τ )αhj(t+ τ )

)
E {Dt(t+ τ )Ni(t+ τ ), J(t+ τ ) = h}

]

+µifi

(
E
{
(Ni(t+ τ ))2 , J(t+ τ ) = j

}
− E {Ni(t+ τ ), J(t+ τ ) = j}

)

+

mb∑

k=1,k 6=i

µk

(
bkiE {Dt(t+ τ )Nk(t+ τ ), J(t+ τ ) = j}

+ fkE {Ni(t+ τ )Nk(t+ τ ), J(t+ τ ) = j}

)
, (A.3)

for j = 1, 2, . . . , ma and i = 1, 2, . . . , mb. Notice the right-hand sides of (A.2) and (A.3)

include values for E{Ni(t + τ )Nk(t + τ ), J(t + τ ) = j} and E{Dt(t + τ ), J(t + τ ) = j},

for j = 1, 2, . . . , ma and i, k = 1, 2, . . . , mb (i 6= k). We find the partial product-moment

differential equations (PPMDEs) in [28]:

d

dt
E {Ni(t)Nk(t), J(t) = j} =

−
(
υj(t) + µi + µk

)
E {Ni(t)Nk(t), J(t) = j}

+
ma∑

h=1

υh(t)

[(
ahj(t) + dh(t)αhj(t)

)
E {Ni(t)Nk(t), J(t) = h}

+dh(t)αhj(t)
(
βiE {Nk(t), J(t) = h} + βkE {Ni(t), J(t) = h}

)]

+µkbki

(
E
{
(Nk(t))

2 , J(t) = j
}
− E {Nk(t), J(t) = j}

)

+µibik
(

E
{
(Ni(t))

2 , J(t) = j
}
− E {Ni(t), J(t) = j}

)

+

mb∑

r=1,r 6=i,k

µr

(
briE {Nr(t)Nk(t), J(t) = j} + brkE {Nr(t)Ni(t), J(t) = j}

)
, (A.4)

for j = 1, 2, . . . , ma and i, k = 1, 2, . . . , mb (i 6= k).
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Finally, we close the system of MDEs and DDEs with the first partial departure-moment

differential equations (PDDEs):

d

dτ
E {Dt(t+ τ ), J(t+ τ ) = j} =

−υj(t+ τ )E {Dt(t+ τ ), J(t+ τ ) = j}

+

ma∑

h=1

υh(t+ τ )
[
ahj(t+ τ ) + dh(t+ τ )αhj(t+ τ )

]
E {Dt(t+ τ ), J(t+ τ ) = h}

+

mb∑

i=1

µifiE {Ni(t+ τ ), J(t+ τ ) = j} , (A.5)

for j = 1, 2, . . . , ma. Summing (A.5) across arrival phases j = 1, 2, . . . , ma yields (A.1), for

p = 1.

Thus, numerically integrating (A.2)–(A.5) over interval [t, t+τ ) yields values for E{Dt(t+

τ )} and Var{Dt(t + τ )}, for t ≥ 0 and τ > 0. Additionally, numerically integrating these

equations over [t, t+ 2τ ) and [t+ τ, t+ 2τ ) yields values for Cov{Dt(t+ τ ), Dt+τ (t+ 2τ )} =

1/2[Var{Dt(t+ 2τ )} −Var{Dt+τ (t+ 2τ )} − Var{Dt(t+ τ )}], and

Corr{Dt(t+ τ ), Dt+τ (t+ 2τ )} =
Cov{Dt(t+ τ ), Dt+τ (t+ 2τ )}√

Var{Dt(t+ τ )}Var{Dt+τ (t+ 2τ )}
.

B The Pht/Ph/s/∞ Node: MDEs, DDEs, and Closure

Techniques

In this section we introduce the system of MDEs and DDEs for the Pht/Ph/s/∞ node, where

s <∞ (described as “finite-server, infinite-buffer”), and propose techniques for closing this

system using approximations for unknown terms. We recount the simpler case of finite-

buffer nodes (i.e., Pht/Ph/s/c nodes, for c < ∞), using this case to introduce the Pólya-

Eggenberger (PE) distribution in Appendix B.1. In Appendix B.2 we derive the MDEs and

DDEs for the finite-server, infinite-buffer node, and define our technique for employing the

PE as surrogate in the infinite-buffer case in Appendix B.3.
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B.1 Employing the PE Distribution in a Finite-Buffer Model

B.1.1 Closure Techniques for Finite-Server, Finite-Buffer MDEs

In calculating moments for the expected number of entities in the nonstationary, finite-buffer

Pht/Mt/s/c queueing node (i.e., s ≤ c < ∞), Ong and Taaffe [31] derive partial moment

differential equations (PMDEs), which give the instantaneous rate of change of the joint

expectation of powers of the number of entities in the system and the current phase of the

next entity arrival. The left-hand side of these equations is d/dt [E{Np(t), Ja(t) = j}], where

Np(t) represents the pth power of the node size (p = 0, 1, 2, . . .), while Ja(t) represents the

current phase of the next entity arrival (j = 1, 2, . . . , ma, where ma is the order of the Ph

interarrival distribution), at time t ≥ 0. Notice that Mt service process indicates mb = 1.

The right-hand sides of the Ong and Taaffe PMDEs include both the partial moments

mentioned above and the following 3ma joint state probabilities: Pr{N(t) = s−1, Ja(t) = j},

Pr{N(t) = s, Ja(t) = j}, Pr{N(t) = c, Ja(t) = j}, for arrival phases j = 1, 2, . . . , ma. Since

approximations are needed to evaluate these joint state probabilities, the PMDEs are pseudo-

closed by a surrogate distribution to approximate these values [27]. The authors employ the

following steps for s ≤ c <∞ nodes; we utilize this same algorithm when s < c = ∞ in our

work.

1. At time t, we have system moments from numerical integration of the finite-server

MDEs and DDEs; see Appendix B.2.

2. Choose parameters of the surrogate system-size distribution to match the moments in

Step 1 (e.g., (B.2) and (B.3) below); see Appendix B.1.2.

3. Plug specified parameters into the probability mass function for the surrogate (e.g., (B.1))

to calculate approximations for the state probabilities necessary to close the MDEs and

DDEs.
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4. Numerically integrate MDEs and DDEs to time t+ τ . Go to Step 1.

B.1.2 Surrogate Distributions: The Pólya-Eggenberger

Clark [2] was the first to propose using the Pólya-Eggenberger (PE) as a surrogate; the PE

distribution is described by the number of times in a sequence of n ≥ 1 trials that a blue

ball is selected from an urn that initially has b blue balls and r red balls in it, such that after

every pull, the chosen ball is replaced and u balls of the same color as the most recently

pulled ball are added to the urn. We reparameterize the distribution, defining p ≡ b/(b+ r)

and α ≡ u/(b+ r). Letting X denote the random variable representing the number of pulls

that were blue, we have

Pr{X = k} =

(
n

k

)∏k−1
i=0 (p + iα)

∏n−k−1
j=0 ((1 − p) + jα)

∏n−1
m=0(1 +mα)

, (B.1)

for k = 0, 1, . . . , n.

By deriving equations for E{X} and E{X2} in terms of p and α, Clark [2] describes

a technique in which the PE distribution serves as a surrogate for state probabilities in a

nonstationary Mt/Mt/s system. He shows that

p = E{X}/n. (B.2)

Solving further for the incremental probability α, Clark defines the quantity α∗:

α∗ ≡
E{X}2 + E{X}(1 − p) − E{X2}

E{X2} − nE{X}
. (B.3)

If α∗ ≤ −min{p, 1−p}/(n−1), then the PE parameter α = −min{p, 1−p}/(n−1)+10−4 .

Otherwise, α = α∗.

Ong and Taaffe [31] use a partitioning technique to solve the PMDEs. For each pth partial

system moment, they define two joint partial moments,

E
(p)
1,j ≡ E {Np(t), N(t) ≤ s− 1, Ja(t) = j} , E

(p)
2,j ≡ E {Np(t), s ≤ N(t) ≤ c, Ja(t) = j} ,

(B.4)

6



for p = 0, 1, 2, . . ., such that E
(0)
1,j ≡ Pr{N(t) ≤ s − 1, Ja(t) = j}, E

(0)
2,j ≡ Pr{s ≤ N(t) ≤

c, Ja(t) = j}, for j = 1, 2, . . . , ma. To complete the approximations, the authors match the

respective pair of PE parameters necessary to approximate the joint state probabilities in

the PMDEs to the first and second conditional partial moments in each space, E
(1)
v,j /E

(0)
v,j and

E
(2)
v,j /E

(0)
v,j , for v = 1, 2 and j = 1, 2, . . . , ma. Plugging the current values of the conditional

partial moments into (B.2) and (B.3)—and further plugging these parameters into (B.1)—

they define the approximation

Pr{N(t) = s− 1, Ja(t) = j}
.
= E

(0)
1,j · Pr{X = s− 1},

where X is a PE-distributed random variable with support on 0, 1, . . . , s−1 (in this context,

“
.
=” means “is approximated by”). Similarly,

Pr{N(t) = s, Ja(t) = j}
.
= E

(0)
2,j · Pr{Y = 0},

Pr{N(t) = c, Ja(t) = j}
.
= E

(0)
2,j · Pr{Y = c− s},

where Y is a shifted PE-distributed random variable with support on 0, 1, . . . , c − s. Ong

and Taaffe [31] test these approximations versus the exact solutions for the KFEs from the

capacitated system and typically find the results satisfactory.

B.2 The MDEs and DDEs for the Finite-Server, Infinite-Buffer

Node

In this section we derive the MDEs and DDEs for the finite-server, infinite-buffer node;

thus, it is the finite-server equivalent of the model in Appendix A. The equations here are

analogous to those in [36] for the Pht/Pht/s/c node when s ≤ c <∞; we use the finite-buffer

MDEs to validate our equations.

Recall from Section 2.3 that the finite-server MDEs and DDEs are not closed, as they

have several terms on their right-hand sides that require approximation. The main conse-
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quence is that we require an accurate closure approximation for state probabilities Pr{N(t) =

m, Ja(t) = j}, for m = s− 1, s, and j = 1, 2, . . . , ma.

B.2.1 PMDEs for the Pht/Ph/s/∞ Node

We provide the PMDEs for infinite-buffer models to confirm which probabilities we need to

approximate. Notice that we drop the nodal superscript from all partial-node and departure

moments for simplicity; the equations derived here can be utilized at any node n = 1, 2, . . . , z.

We introduce the following notation for use in the PMDEs; these are defined for all

j = 1, 2, . . . , ma, i, k = 1, 2, . . . , mb, and v, p = 1, 2.

• The state of the node at time t is S(t) ≡ (N1(t), N2(t), . . . , Nmb
(t), Q(t), Ja(t)).

• We split the state space into 2ma partitions, letting Ω
(j)
1 denote the partition of all

states such that Ja(t) = j,
∑mb

i=1 Ni(t) < s, while Ω
(j)
2 the partition of all states such

that Ja(t) = j,
∑mb

i=1 Ni(t) = s. Notice that if S(t) ∈ Ω
(j)
1 , then Q(t) = 0, while if

S(t) ∈ Ω
(j)
2 , then N(t) = s + Q(t), for Q(t) ≥ 0. Shorthands for the partial moments

in each partition are provided now:

P
(v)
j ≡ Pr

{
S(t) ∈ Ω

(j)
v

}
,

L
(p)
i,j ≡ E

{
(Ni(t))

p, S(t) ∈ Ω
(j)
1

}
,

Li,k,j ≡ E

{
Ni(t)Nk(t), S(t) ∈ Ω

(j)
1

}
,

M
(p)
j ≡ E

{
Np(t), S(t) ∈ Ω

(j)
2

}
,

Ri,j ≡ E

{
Ni(t)N(t), S(t) ∈ Ω

(j)
2

}
.

Notice we can recapture the notation for the partial-moments specified in (B.4) by defin-

ing

E
(0)
v,j ≡ P

(v)
j , (B.5)

E
(1)
1,j ≡

mb∑

i=1

L
(1)
i,j , (B.6)
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E
(2)
1,j ≡

mb∑

i=1

[
L

(2)
i,j +

(
mb∑

k=1,k 6=i

Li,k,j

)]
, (B.7)

and

E
(p)
2,j ≡ M

(p)
j , (B.8)

for j = 1, 2, . . . , ma, and v, p = 1, 2.

Recall that our focus is to identify those terms in the PMDEs that need to be approx-

imated for us to calculate (numerically) the mean and variance of the number of entities

at the node, where E{Np(t)} =
∑ma

j=1

(
E

(p)
1,j + E

(p)
2,j

)
, for p = 1, 2. Further recall that for a

nonstationary Ph arrival process, the rows in initial probability matrix α(t) are equal for

all t ≥ 0; without loss of generality we let αj(t) represent the jth element in the first row of

α(t), for j = 1, 2, . . . , ma.

With all notation defined, we now present the MDEs for the finite-server, infinite-buffer

node; we define F ′ ≡ d/dt[F ].

• The phase-partition PMDEs are

P
(v)′
j = −υj(t)P

(v)
j +

ma∑

u=1,u6=j

υu(t)auj(t)P
(v)
u

+ αj(t)
ma∑

u=1

υu(t)du(t)
(
P (v)

u + (−1)v Pr{N(t) = s− 1, Ja(t) = u}
)

+ (−1)v+1

mb∑

i=1

µifiE{Ni(t), N(t) = s, Ja(t) = j}, (B.9)

for j = 1, 2, . . . , ma and v = 1, 2. From these, we can show

Pr{N(t) ≤ s− 1}′ = −
∑

j=1

υj(t)dj(t) Pr{N(t) = s− 1, Ja(t) = j}

+

mb∑

i=1

µifiE {Ni(t), N(t) = s} .

Of course, Pr{N(t) ≥ s}′ = −Pr{N(t) ≤ s− 1}′, for all t ≥ 0.
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• The first PMDEs for the number of entities in the ith phase of service when there are

idle servers are

L
(1)′
i,j = −

(
υj(t) + µi

)
L

(1)
i,j +

ma∑

u=1,u6=j

υu(t)auj(t)L
(1)
i,u

+ αj(t)
ma∑

u=1

υu(t)du(t)

[(
L

(1)
i,u − E {Ni(t), N(t) = s− 1, Ja(t) = u}

)

+ βi

(
P (1)

u − Pr {N(t) = s− 1, Ja(t) = u}
)
]

+ µifi

(
E
{
(Ni(t))

2, N(t) = s, Ja(t) = j
}
− E {Ni(t), N(t) = s, Ja(t) = j}

)

+

mb∑

k=1,k 6=i

µk

(
bkiL

(1)
k,j + fkE {Ni(t)Nk(t), N(t) = s, Ja(t) = j}

)
, (B.10)

for j = 1, 2, . . . , ma and i = 1, 2, . . . , mb.

• The second PMDEs for the number of entities in the ith phase of service when there

are idle servers are

L
(2)′
i,j = −

(
υj(t) + 2µi

)
L

(2)
i,j + µiL

(1)
i,j +

ma∑

u=1,u6=j

υu(t)auj(t)L
(2)
i,u

+ αj(t)
ma∑

u=1

υu(t)du(t)

[(
L

(2)
i,u − E

{
(Ni(t))

2, N(t) = s− 1, Ja(t) = u
})

+ 2βi

(
L

(1)
i,u − E {Ni(t), N(t) = s− 1, Ja(t) = u}

)

+ βi

(
P (1)

u − Pr {N(t) = s − 1, Ja(t) = u}
)
]

+ µifi

[(
E
{
(Ni(t))

3, N(t) = s, Ja(t) = j
}
− 2E

{
(Ni(t))

2, N(t) = s, Ja(t) = j
})

+ E {Ni(t), N(t) = s, Ja(t) = j}

]

+

mb∑

k=1,k 6=i

µk

[
bki

(
L

(1)
k,j + 2Li,k,j

)

+ fkE
{
(Ni(t))

2Nk(t), N(t) = s, Ja(t) = j
}]

,
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for j = 1, 2, . . . , ma, i = 1, 2, . . . , mb.

• The first PMDEs for the number of entities at the node when all servers are busy are

M
(1)′
j = −υj(t)M

(1)
j +

ma∑

u=1,u6=j

υu(t)auj(t)M
(1)
u

+ αj(t)
ma∑

u=1

υu(t)du(t)
(
M (1)

u + P (2)
u + sPr{N(t) = s− 1, Ja(t) = u}

)

−

mb∑

i=1

µifi

(
E

{
Ni(t), S(t) ∈ Ω

(j)
2

}

+ (s− 1)E {Ni(t), N(t) = s, Ja(t) = j}

)
,

while the second PMDEs are

M
(2)′
j = −υj(t)M

(2)
j +

ma∑

u=1,u6=j

υu(t)auj(t)M
(2)
u

+ αj(t)
ma∑

u=1

υu(t)du(t)

(
M (2)

u + 2M (1)
u + P (2)

u

+ s2 Pr{N(t) = s− 1, Ja(t) = u}

)

−

mb∑

i=1

µifi

(
E

{
Ni(t), S(t) ∈ Ω

(j)
2

}
− 2Ri,j

+ (s− 1)2
E{Ni(t), N(t) = s, Ja(t) = j}

)
,

for j = 1, 2, . . . , ma.

• The CMDEs for the product of the number of entities in the ith and kth phases of
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service (for i 6= k), when there are idle servers, are

L′
i,k,j = −

(
υj(t) + µi + µk

)
Li,k,j +

ma∑

u=1,u6=j

υu(t)auj(t)Li,k,u

+ αj(t)
ma∑

u=1

υu(t)du(t)

[(
Li,k,u − E {Ni(t)Nk(t), N(t) = s− 1, Ja(t) = u}

)

+ βi

(
L

(1)
k,u − E{Nk(t), N(t) = s− 1, Ja(t) = u}

)

+ βk

(
L

(1)
i,u − E{Ni(t), N(t) = s− 1, Ja(t) = u}

)]

+ µkbki

(
L

(2)
k,j − L

(1)
k,j

)
+ µibik

(
L

(2)
i,j − L

(1)
i,j

)

+

mb∑

r=1,r 6=i,k

µr (brkLr,i,j + briLr,k,j)

+ µifiE
{
(Ni(t))

2Nk(t), N(t) = s, Ja(t) = j
}

+ µkfkE
{
Ni(t)(Nk(t))

2, N(t) = s, Ja(t) = j
}

− (µifi + µkfk) E {Ni(t)Nk(t), N(t) = s, Ja(t) = j}

+

mb∑

r=1,r 6=i,k

µrE {Ni(t)Nk(t)Nr(t), N(t) = s, Ja(t) = j} ,

for j = 1, 2, . . . , ma and i, k = 1, 2, . . . , mb (i 6= k).

• Finally, the CMDEs for the product of the number of entities in the ith phase of service
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and the total number of entities at the node when all servers are busy are

R′
i,j = −

(
υj(t) + µi

)
Ri,j +

ma∑

u=1,u6=j

υu(t)auj(t)Ri,u +

mb∑

k=1,k 6=i

µkbkiRk,j

+ αj(t)
ma∑

u=1

υu(t)du(t)

[(
sE {Ni(t), N(t) = s− 1, Ja(t) = u} +Ri,u

)

+
(
sβi Pr {N(t) = s− 1, Ja(t) = u} + E

{
Ni(t), S(t) ∈ Ω

(u)
2

})]

+ βi

mb∑

k=1

µkfkRk,j

−

mb∑

k=1,k 6=i

µkfk

[
E

{
Ni(t)Nk(t), S(t) ∈ Ω

(j)
2

}

+ βi

(
E

{
Nk(t), S(t) ∈ Ω

(j)
2

}
− (s− 1)E {Nk(t), N(t) = s, Ja(t) = j}

)

+ (s− 1)E {Ni(t)Nk(t), N(t) = s, Ja(t) = j}

]

+ µifi

[
(1 − βi)

(
E

{
Ni(t), S(t) ∈ Ω

(j)
2

}

− (s− 1)E {Ni(t), N(t) = s, Ja(t) = j}
)

− E

{
(Ni(t))

2, S(t) ∈ Ω
(j)
2

}

− (s− 1)E
{
(Ni(t))

2, N(t) = s, Ja(t) = j
} ]

,

for j = 1, 2, . . . , ma and i = 1, 2, . . . , mb.

Notice that the PMDEs we have provided in this section are similar to those presented

in Theorems 1–4 of [36]; however, our equations do not include any partial moments or state

probabilities with respect to the full state N(t) = c, since c = ∞ in our model.

B.2.2 Approximating Terms in the PMDEs

Thus, the following terms must be approximated to close the MDEs at the finite-server,

infinite-buffer node, for j = 1, 2, . . . , ma:
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1. Pr {N(t) = m, Ja(t) = j}: m = s− 1, s,

2. E {(Ni(t))
p, N(t) = m, Ja(t) = j}: m = s− 1, s; i = 1, 2, . . . , mb; p = 1, 2, 3,

3. E {(Ni(t))
pNk(t), N(t) = m, Ja(t) = j}: m = s− 1, s; i, k = 1, 2, . . . , mb; p = 1, 2, 3,

4. E {Ni(t)Nk(t)Nr(t), N(t) = s, Ja(t) = j}: i, k, r = 1, 2, . . . , mb,

5. E

{
(Ni(t))

p, S(t) ∈ Ω
(j)
2

}
: i = 1, 2, . . . , mb, p = 1, 2.

We can simplify our work in approximating the partial-moments in items 2–5 by using a

result from Rueda [36], who notes that, for example,

E {Ni(t), N(t) = s, Ja(t) = j} = E {Ni(t) |N(t) = s, Ja(t) = j} · Pr {N(t) = s, Ja(t) = j} ,

(B.11)

for j = 1, 2, . . . , ma. We ignore the second term on the right-hand side of (B.11) for the

moment. The first term is the conditional expectation of the number of entities in service

phase i, for i = 1, 2, . . . , mb, when there are exactly s entities at the node (and thus, s entities

in service). The number of these s entities in service that are in fact in a particular phase

of service can be modeled as a random variable having a multinomial distribution, where s

identical balls are placed into any of mb different boxes. Rueda defines the quantity ri, such

that

ri ≡

∑ma

j=1 L
(1)
i,j

∑ma

j=1

∑mb

k=1 L
(1)
k,j

.

Thus, ri approximates the probability that a single ball would be placed in the ith box, for

i = 1, 2, . . . , mb. Therefore, we can rewrite the terms in items 2–4 above in their product-

form (i.e., a conditional expectation times Pr{N(t) = m, Ja(t) = j}, for m = s − 1, s, j =

1, 2, . . . , ma), and calculate the conditional expectations using properties of the multinomial

distribution and the set of selection probabilities ri, for i = 1, 2, . . . , mb.
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Thus, we have resolved approximating the terms in the first four items to being able to

approximate Pr{N(t) = m, Ja(t) = j}, for each arrival phase j = 1, 2, . . . , ma and entity

quantity m = s− 1, s. For the terms in item 5, we can write

E

{
(Ni(t))

p, S(t) ∈ Ω
(j)
2

}
= E

{
(Ni(t))

p |S(t) ∈ Ω
(j)
2

}
· Pr

{
S(t) ∈ Ω

(j)
2

}
, (B.12)

for j = 1, 2, . . . , ma. We obtain the first term on the right-hand side of (B.12) by noticing

{S(t) ∈ Ω
(j)
2 } ⇔ {Ja(t) = j,

∑mb

i=1Ni(t) = s}. Thus, we use the multinomial distribution

again to approximate the conditional term in (B.12). As for the second term in (B.12), we

need not approximate this; this is the solution of (B.9) for v = 2.

B.2.3 DDEs for the Pht/Ph/s/∞ Node

We derive the partial DDEs (PDDEs) for the finite-server, infinite-buffer node with Marko-

vian component processes; as in the infinite-server model, the derivatives in the DDEs are

with respect to the interval length τ , and the terms on the right-hand sides are evaluated at

time t+ τ . We utilize the following notation; these terms are defined for all j = 1, 2, . . . , ma,

i = 1, 2, . . . , mb, and p, v = 1, 2.

• Departure moments

D(p) ≡ E {(Dt(t+ τ ))p} =
ma∑

j=1

D
(p)
j ,

where

D
(p)
j ≡ E {(Dt(t+ τ ))p, Ja(t+ τ ) = j} =

ma∑

j=1

2∑

v=1

D
(p)
j,v ,

such that D
(p)
j,v ≡ E

{
(Dt(t+ τ ))p, S(t+ τ ) ∈ Ω

(j)
v

}
.

•
[
D

(1)
j N

(1)
i

]

v
≡ E

{
Dt(t+ τ )Ni(t+ τ ), S(t+ τ ) ∈ Ω

(j)
v

}
.
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We present the PDDEs now; we use ψ as shorthand for the interval end-time t+ τ . The

first PDDEs are

d

dτ
D

(1)
j,v = −υj(ψ)D

(1)
j,v +

ma∑

u=1,u6=j

υu(ψ)auj(ψ)D(1)
u,v

+ αj

ma∑

u=1

υu(ψ)du(ψ)

(
D(1)

u,v

+ (−1)v
E{Dt(ψ), N(ψ) = s− 1, Ja(ψ) = u}

)

+

mb∑

i=1

µifi

[
E{Ni(ψ), S(ψ) ∈ Ω(j)

v }

− (−1)v
E{Dt(ψ)Ni(ψ), N(ψ) = s, Ja(ψ) = j}

− (−1)v
E{Ni(ψ), N(ψ) = s, Ja(ψ) = j}

]
, (B.13)

for j = 1, 2, . . . , ma, v = 1, 2. Adding the first PDDEs across partitions, we find

d

dτ
D

(1)
j = −υj(ψ)D

(1)
j +

ma∑

u=1,u6=j

υu(ψ)
(
auj(ψ) + αj(ψ)du(ψ)

)
D(1)

u

+

mb∑

i=1

µifiE{Ni(ψ), Ja(ψ) = j}.

Therefore,

d

dτ
E{Dt(t+ τ )} =

mb∑

i=1

µifiE{Ni(t+ τ )},

where

E{Ni(t+ τ )} =
ma∑

j=1

2∑

v=1

E
{
Ni(t+ τ ), S(t+ τ ) ∈ Ω(j)

v

}
. (B.14)

Notice we can approximate the terms on the right-hand side of (B.14) at time ψ from the

discussion in Appendix B.2.2: for v = 1, these terms are the solutions to (B.10) for each

i = 1, 2, . . . , mb, while for v = 2, they are the fifth item in the list of approximated terms

(for p = 1) in Appendix B.2.2.
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The second PDDEs are

d

dτ
D

(2)
j,v = −υj(ψ)D

(2)
j,v +

ma∑

u=1,u6=j

υu(ψ)auj(ψ)D(2)
u,v

+ αj(ψ)
ma∑

u=1

υu(ψ)du(ψ)

(
D(2)

u,v

+ (−1)v
E{(Dt(ψ))2, N(ψ) = s − 1, Ja(ψ) = u}

)

+

mb∑

i=1

µifi

[ (
E{Ni(ψ), S(ψ) ∈ Ω(j)

v } + 2[D
(1)
j N

(1)
i ]v

)

− (−1)v

2∑

q=0

(
2

q

)
E{(Dt(ψ))qNi(ψ), N(ψ) = s, Ja(ψ) = j}

]
,

for j = 1, 2, . . . , ma, v = 1, 2. Therefore,

d

dτ
E{(Dt(t+ τ ))2} =

mb∑

i=1

µifi

(
E{Ni(t+ τ )} + 2E{Dt(t+ τ )Ni(t+ τ )}

)
,

where E{Ni(t+ τ )} is calculated in (B.14), while

E{Dt(t+ τ )Ni(t+ τ )}} =
ma∑

j=1

2∑

v=1

[
D

(1)
j N

(1)
i

]

v
.

The partial departure-system DEs (PCDDEs) for the product of the number of departures

over the interval and the number of entities in the ith phase of service at the end of the

interval, when at least one server is idle, are
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d

dτ

[
D

(1)
j N

(1)
i

]

1
= − (υj(ψ) + µi)

[
D

(1)
j N

(1)
i

]

1

+
ma∑

u=1,u6=j

υu(ψ)auj(ψ)
[
D(1)

u N
(1)
i

]

1
+

mb∑

k=1,k 6=i

µkbki

[
D(1)

u N
(1)
k

]

1

+ αj(ψ)
ma∑

u=1

υu(ψ)du(ψ)

[([
D(1)

u N
(1)
i

]

1
+ βiD

(1)
u,1

)

− E {Dt(ψ)Ni(ψ), N(ψ) = s− 1, Ja(ψ) = u}

− βiE {Dt(ψ), N(ψ) = s− 1, Ja(ψ) = u}

]

+ µifi

[(
E

{
(Ni(ψ))2, S(ψ) ∈ Ω

(j)
1

}
− E

{
Ni(ψ), S(ψ) ∈ Ω

(j)
1

})

+ E
{
Dt(ψ)(Ni(ψ))2, N(ψ) = s, Ja(ψ) = j

}

− E {Dt(ψ)Ni(ψ), N(ψ) = s, Ja(ψ) = j}

+ E
{
(Ni(ψ))2, N(ψ) = s, Ja(ψ) = j

}

− E {Ni(ψ), N(ψ) = s, Ja(ψ) = j}

]

+

mb∑

k=1,k 6=i

µkfk

[
E

{
Ni(ψ)Nk(ψ), S(ψ) ∈ Ω

(j)
1

}

+ E {Dt(ψ)Ni(ψ)Nk(ψ), N(ψ) = s, Ja(ψ) = j}

+ E {Ni(ψ)Nk(ψ), N(ψ) = s, Ja(ψ) = j}

]
,

for j = 1, 2, . . . , ma, i = 1, 2, . . . , mb.

The PCDDEs for the product of the number of departures over the interval and the

number of entities in the ith phase of service at the end of the interval, when all servers are
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busy, are

d

dτ

[
D

(1)
j N

(1)
i

]

2
= −

(
υj(ψ) + µi

) [
D

(1)
j N

(1)
i

]

2

+
ma∑

u=1,u6=j

υu(ψ)auj

[
D(1)

u N
(1)
i

]

2
+

mb∑

k=1,k 6=i

µkbki

[
D(1)

u N
(1)
k

]

2

+ αj

ma∑

u=1

υu(ψ)du(ψ)

[([
D(1)

u N
(1)
i

]

2
+ βiD

(1)
u,2

)

E {Dt(ψ)Ni(ψ), N(ψ) = s− 1, Ja(ψ) = u}

βiE {Dt(ψ), N(ψ) = s− 1, Ja(ψ) = u}

]

+ µifi

[
E

{
(Ni(ψ))2, S(ψ) ∈ Ω

(j)
2

}

− (1 − βi)E
{
Ni(ψ), S(ψ) ∈ Ω

(j)
2

}

− E
{
Dt(ψ)(Ni(ψ))2, N(ψ) = s, Ja(ψ) = j

}

+ (1 − βi)E {Dt(ψ)Ni(ψ), N(ψ) = s, Ja(ψ) = j}

− E
{
(Ni(ψ))2, N(ψ) = s, Ja(ψ) = j

}

+ (1 − βi)E {Ni(ψ), N(ψ) = s, Ja(ψ) = j}

]

+

mb∑

k=1,k 6=i

µkfk

[

E

{
(Ni(ψ) + βi)Nk(ψ), S(ψ) ∈ Ω

(j)
2

}

− E {(Dt(ψ)− 1)Ni(ψ)Nk(ψ), N(ψ) = s, Ja(ψ) = j}

− βiE {(Dt(ψ) − 1)Nk(ψ), N(ψ) = s, Ja(ψ) = j}

]

,

for j = 1, 2, . . . , ma, i = 1, 2, . . . , mb.
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B.2.4 Approximating Terms in the DDEs

As in the PMDEs, we look at the right-hand sides of the PDDEs and the PCDDEs and

identify those new terms (i.e., terms that involve the number of departures) that we need to

approximate to close the system of DDEs at the finite-server node. Using ψ to replace t+ τ ,

we require approximations for

1. E {(Dt(ψ))p, N(ψ) = s− 1, Ja(ψ) = j}: p = 1, 2,

2. E {(Dt(ψ))pNi(ψ), N(ψ) = m, Ja(ψ) = j}: m = s− 1, s; i, k = 1, 2, . . . , mb; p = 1, 2,

3. E {Dt(ψ)(Ni(ψ))2, N(ψ) = s, Ja(ψ) = j}: i = 1, 2, . . . , mb,

4. E {Dt(ψ)Ni(ψ)Nk(ψ), N(ψ) = s, Ja(ψ) = j}: i, k = 1, 2, . . . , mb,

for j = 1, 2, . . . , ma. We utilize the conditional expectation technique discussed in Ap-

pendix B.2.2, evaluating the terms at time ψ (we return to the discuss on approximating

Pr{N(t) = m, Ja(t) = j}, for m = s − 1, s, j = 1, 2, . . . , ma, and all t ≥ 0, in the next

section).

Notice that the first item in the list of approximated terms in this section is different in

form from items 2–4; we approach it first. As in [24], we approximate terms of this form by

claiming

E {(Dt(ψ))p, N(ψ) = s− 1, Ja(ψ) = j} ≈ E

{
(Dt(ψ))p, S(ψ) ∈ Ω

(j)
1

}

·
Pr {N(ψ) = s− 1, Ja(ψ) = j}

Pr
{
S(ψ) ∈ Ω

(j)
1

}

= D
(p)
j,1 ·

Pr {N(ψ) = s− 1, Ja(ψ) = j}

Pr
{
S(ψ) ∈ Ω

(j)
1

} ,(B.15)

for j = 1, 2, . . . , ma, where ‘≈’ indicates the two terms are approximately equal. The first

term on the right-hand side of (B.15) is the solution to (B.13), while the denominator in the

second term is the solution to (B.9), both for v = 1.
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The other three items in the list are of the form

E {(Dt(ψ))p(Ni(ψ))r(Nk(ψ))q, N(ψ) = m, Ja(ψ) = j}

for p, r, q = 0, 1, 2, i, k = 1, 2, . . . , mb, j = 1, 2, . . . , ma, and m = s−1, s (not all combinations

of p, q, and r are utilized). To approximate these terms we assume the departure count on

[t, ψ] and the system size at ψ are independent, given N(ψ); this assumption is introduced

in [22]. We claim that

E {(Dt(ψ))p(Ni(ψ))r(Nk(ψ))q, N(ψ) = m, Ja(ψ) = j} ≈

E {(Dt(ψ))p, N(ψ) = m, Ja(ψ) = j} ·
E {(Ni(ψ))r(Nk(ψ))q, N(ψ) = m, Ja(ψ) = j}

Pr
{
S(ψ) ∈ Ω

(j)
m+2−s

} ,

(B.16)

for m = s − 1, s. Notice that the first term on the right-hand side of (B.16) comes

from (B.15), while, for the second term, the numerator is approximated using techniques

in Appendix B.2.2 and the denominator is again the solution to (B.9), at time t + τ , for

v = m+ 2 − s, where m = s− 1, s.

As in the PMDEs, we have described techniques here for approximating those terms

required to close the PDDEs premised on finding a suitable technique to approximate

Pr{N(t) = m, Ja(t) = j}, (B.17)

for m = s− 1, s and j = 1, 2, . . . , ma. We return now to the question of approximating the

2ma probabilities in (B.17) for a finite-server node with infinite buffer space.

B.3 Using the PE Distribution as a Surrogate in Infinite-Buffer

Models

As described in Appendix B.1, employing the PE distribution as a surrogate for the Pht/Pht/s/c

node has proven to be successful for approximating terms necessary for closing the MDEs
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when c <∞. We require a tool to employ as a surrogate when c = ∞. The PE distribution

has finite support, and thus applying it directly to the infinite-capacity node is not feasible

as we need to approximate terms in partitions whose natural support is infinite. Instead,

we consider techniques to truncate the natural support of the state partitions, which would

allow us to employ the PE distribution on these truncated spaces.

We define Pm,j(t) ≡ Pr{N(t) = m, Ja(t) = j}, for m = s− 1, s, j = 1, 2, . . . , ma. Notice

we can approximate Ps−1,j(t) for c = ∞ as we do for c <∞; that is

Ps−1,j(t)
.
= E

(0)
1,j · Pr{X = s− 1}, (B.18)

for j = 1, 2, . . . , ma, where X is a PE-distributed r.v. with support 0, 1, . . . , s − 1 and

parameters p and α matched to E
(1)
1,j /E

(0)
1,j and E

(2)
1,j /E

(0)
1,j , according to (B.2) and (B.3);

the partial conditional moments E
(p)
1,j are defined in (B.5) (for v = 1), (B.6), and (B.7),

respectively (for p = 0, 1, 2), for all j = 1, 2, . . . , ma.

However, we cannot use a similar approximation for Ps,j(t), since this would require

Ps,j(t)
.
= E

(0)
2,j · Pr{Z = 0}, (B.19)

for j = 1, 2, . . . , ma, where Z is a PE r.v. with support on 0, 1, . . . , c− s, having parameters

p and α derived analogously. Since c = ∞, this yields an infinite support, and the PE

distribution is inappropriate as a surrogate since it requires finite support.

We consider instead that the PE distribution may be a valid surrogate for the random

variable Z (defined in (B.19)) if we can identify a value R ∈ Z+ to serve as the upper bound

of the support for Z, such that the tail probability (i.e., the probability that the system size

is larger than R + s) is very small for any time t < ∞, provided the system size does not

grow without bound.

We might consider setting R arbitrarily large, thus minimizing the tail probability; how-

ever, this fails for two reasons. First, setting R too large leads to numerical problems in
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evaluating the PE probabilities. Second, forcing the technique to match two entity moments

with a very large support may compromise the accuracy of the probabilities we obtain from

the technique, since the PE distribution is not the actual distribution for the number of

entities at the node.

Instead, we develop a technique where R is set to be just large enough so that a small

change in R does not cause a large change in the nodal moments. At each time t, we

test whether the current truncation level R is sufficient to advance the system (through

numerical integration) to time t+ τ . To do so, we generate the nodal moments at t+ τ using

the current R in our approximation of Ps,j(t), for each j = 1, 2, . . . , ma. We then return to t

and repeat the integration, using this time a slightly larger value for the truncation point. If

the moments from the larger truncation point are relatively the same as those we calculated

using R, we maintain our choice of R and continue to time t + τ . If the relative change is

significant in either the mean or variance of the number of entities, we set this slightly larger

truncation point as our value for R, and repeat the process again from time t—thus only

advancing to t+ τ when we have found a satisfactory level for R.

We enumerate the steps described in the previous paragraph here.

Algorithm B.1. Dynamically setting upper support limit R

1. Prior to initiating integration, we set the following parameters:

• ∆R: the integer quantity to be added to the standing value of R when necessary

(default value: 10).

• γm, γv: thresholds to compare relative changes (from adjusting R) in the mean

and variance of the number of entities, respectively (default value: 0.5%, for both

moments).

2. At time t = 0, R = max{20, 2s}, where s is the number of servers at the node.
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3. Calculate the mean and variance of the number of entities at the node at time t + τ

(given τ from Step 2 of Algorithm 3.1), numerically integrating MDEs ((B.9)–(B.11))

and DDEs ((B.13)–(B.15)).

• Approximate Ps−1,j(t
′), for j = 1, 2, . . . , ma, t

′ ∈ [t, t+ τ ), using (B.18).

• Approximate Ps,j(t
′), for j = 1, 2, . . . , ma, t

′ ∈ [t, t+ τ ), using (B.19), such that

the upper support for the PE r.v. Z at time t′ is equal to R.

• Approximate all terms enumerated in Sections B.2.2 and B.2.4 at all t′ ∈ [t, t+τ ).

4. If this is the first time we have run the model on [t, t + τ ), return to Step 3, using

R + ∆R as the upper support limit. Otherwise, go to Step 5.

5. Compare the nodal mean and variance at t + τ using upper support R + ∆R to the

respective moments using R. If the relative change in either moment is larger than its

respective threshold (i.e., γm or γv), set R = R+ ∆R and return to Step 3. Otherwise,

go to Step 6.

6. Set t = t+ τ .

We are now able to provide approximations for the 2ma probabilities in (B.17); from

these we can derive values for the mean and variance of the number of entities at each node

as well as the mean and variance of the number of departures from each upstream node over

corresponding intervals.

Before we conclude the discussion of our closure technique, it is worth mentioning that our

method is not the only way to model the finite-server, infinite-buffer node with Markovian

component processes. For example, an argument may be made that using our dynamic

truncation method effectively sets a capacity on the node size, thus creating a model where

we treat the node as having finite capacity. However, the MDEs in Appendix B.2.1 only
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account for this implicitly in the approximations for the full space probability terms. Another

method for truncating the infinite support would be to model our Pht/Ph/s/∞ as a finite

capacity Pht/Ph/s/R + s model, using the PMDEs in [36] directly with c = R + s and

deriving appropriate finite-buffer DDEs. Again, we would employ our dynamic truncation

technique in determining R at each time step; however, this is a different application of

our technique, as adjustments to R would alter the nodal capacity in addition to the upper

support of the surrogate distribution. At present we have no plan to pursue modeling the

infinite-buffer node as a Pht/Ph/s/R + s finite-buffer node since the application of our

dynamic truncation technique in the infinite-buffer node typically has proven successful.

C Specifying a Ph Distribution to Match m1 and scv

In Sections 3.2 and 4, we utilize well-known moment–matching techniques in which the pa-

rameters of a specific family of Ph renewal processes are specified to match the mean inter-

renewal time m1 and the squared coefficient of variation scv of the interrenewal distribution.

Many techniques exist that accomplish this; we cite the following:

• If scv ≥ 1, then we specify an h2b [41], which implies thatX is exponentially distributed

with mean λ−1 with probability α, or exponentially distributed with mean λ−1
2 with

probability 1 − α. We say h2b has “balanced means” if α/λ = (1 − α)/λ2. Thus, h2b

has only two free parameters: α and λ. We back these out of the expressions for the

mean m1 and squared coefficient of variation scv of an h2b giving

α =
1

2

(
1 +

√
scv − 1

scv + 1

)
, λ =

2α

m1
.

The MAPt representation (A,υ) for the h2b renewal process is ma = 2,

A =





0 0 1 0

0 0 0 1

α 1 − α 0 0

α 1 − α 0 0




, υ = (λ, λ(1 − α)/α)>.
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• If scv < 1, then we use a MECon distribution [46]. First, we find k ∈ Z+ such that

1/k ≤ scv < 1/(k − 1), since scv for an Erlang of order k (denoted by Ek(λ)) is

1/k. Then X is Ek−1(λ) distributed with probability α, or Ek(λ) distributed with

probability 1− α. Again, this leaves only two free parameters: the mixing probability

α and the common rate λ. We back these out of the expressions for the mean and scv

of a MECon giving

α =
1

1 + scv

(
k · scv −

√
k(1 + scv)− k2scv

)
, λ =

k − α

m1
.

The MAPt representation (A,υ) for the stationary MECon renewal process is ma =

2k − 1,

ajh =






1, if h = j + 1, j < k,
1, if h = j + 1, j ≥ k + 1,
0, otherwise,

dj =

{
1, if j ∈ {k, 2k − 1},
0, otherwise,

αjh =






1 − α, if h = 1,
α, if h = k + 1,
0, otherwise,

while υj = λ, for j, h = 1, 2, . . . , 2k − 1.

D Parameters for Sample Networks

We provide the network parameters in Table 3 for seven networks specifically examined in

Section 4. Plots for the fitted and true moments in Figures 1–3 correspond to networks 1–3,

respectively. Networks 1 and 4–7 are the five sample networks utilized in the analysis of

alternative network structures discussed in Section 4.2.
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Table 3: Parameter values for seven sample networks utilized in evaluating the matching
technique.

Network ba PTM scva AOL(1) scv
(1)
s AU(1) AOL(2) scv

(2)
s AU(2)

1 36.9% 88.06 2.037 31.41 1.290 47.6% 27.49 1.442 68.7%
2 54.9% 73.63 2.426 25.38 0.595 42.3% 38.19 0.551 55.3%
3 44.7% 34.83 0.905 20.70 1.524 73.9% 25.68 0.718 40.8%
4 11.6% 52.74 1.821 36.23 1.422 54.9% 20.70 0.723 41.4%
5 19.7% 91.54 0.819 37.29 0.949 39.2% 29.30 1.578 50.5%
6 39.0% 56.72 0.928 36.38 1.373 60.6% 22.96 1.130 60.4%
7 52.1% 26.37 1.191 20.25 0.910 69.8% 30.50 0.638 37.2%
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