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Simulation models of real-life systems often assume stationary (homogeneous) Poisson arrivals. Therefore,
when nonstationary arrival processes are required, it is natural to assume Poisson arrivals with a time-

varying arrival rate. For many systems, however, this provides an inaccurate representation of the arrival process
that is either more or less variable than Poisson. In this paper we extend techniques that transform a stationary
Poisson arrival process into a nonstationary Poisson arrival process (NSPP) by transforming a stationary renewal
process into a nonstationary, non-Poisson (NSNP) arrival process. We show that the desired arrival rate is
achieved and that when the renewal base process is either more or less variable than Poisson, then the NSNP
process is also more or less variable, respectively, than an NSPP. We also propose techniques for specifying
the renewal base process when presented properties of, or data from, an arrival process and illustrate them by
modeling real arrival data.
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1. Introduction
Queueing models are frequently used as tools for per-
formance analysis of real-life systems. Although the
characteristics of such systems may vary in time, ana-
lytical models typically use stationary Poisson arrival
processes. However, many situations exist where the
assumptions of stationary arrivals, and of Poisson
arrivals, will be inaccurate. By “stationary,” we mean
constant arrival rate.

For instance, there is clearly a need for nonstation-
ary arrival processes in the quantitative management
of call centers; see Gans et al. (2003) for background.
Arrival rates to telephone call centers vary widely
with time of day or day of the week, and fluctua-
tions in call rates occur in response to advertising,
seasonal trends, etc. (Testik et al. 2004). To simulate
such systems without accounting for nonstationarity
(e.g., using only the average arrival rate over a day)
may lead to underestimation of key performance mea-
sures due to unidentified system congestion (Harrod
and Kelton 2006, Whitt 1981).

In addition, real-world studies of telecommunica-
tion networks, manufacturing systems, and consumer
behavior have revealed that arrival processes may be
either more variable or more regular than Poisson pro-
cesses. For example, various Internet traffic studies
have shown that network traffic is often too bursty to
be accurately modeled by Poisson processes (Paxson
and Floyd 1995), while studies in consumer behavior

notice the importance of models for buying incidence
of frequently purchased goods that may be less vari-
able than Poisson (Wu and Chen 2000).

Thus, there exists the need for simulation input
models for nonstationary, non-Poisson (NSNP) arrival
processes. In this paper, we exploit two well-known
methods that generate a nonstationary Poisson pro-
cess (NSPP) by transforming a stationary Poisson pro-
cess: inversion (Çinlar 1975) and thinning (Lewis and
Shedler 1979). We apply analogous methods to trans-
form a stationary renewal process that is either more
variable or more regular than a Poisson process to
obtain an NSNP process. Our methods are easy to
use and intuitive, but each only models one form of
departure from “Poissonness.”

The remainder of this paper is organized as fol-
lows. In §2 we provide algorithms for applying the
inversion and thinning methods to general stationary
renewal processes; we analyze the resulting process
and discuss the NSPP as a special case. We describe
advantages of using phase-type (Ph) distributions as
specific choices for the stationary renewal process
in §3. Section 4 contains techniques for specifying the
renewal base process for both methods when pro-
vided properties of, or data on, the resulting non-
stationary process. We also provide analysis of the
variability of the fitted NSNP process in §4, examin-
ing the NSNP process empirically as well as perfor-
mance statistics when the NSNP process acts as the
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arrival process to a queue. We conclude with sugges-
tions for future research in §5.

2. Methods
2.1. Renewal Processes
We begin with a set of nonnegative interevent times
�Xn� n≥ 1�, where the subset �Xn� n≥ 2� are indepen-
dent and identically distributed (i.i.d.) with cumula-
tive distribution function G, while X1, the time until
the first event, may not have distribution G. We let
Sn denote the time of the nth event; that is, S0 = 0
and Sn =

∑n
i=1Xi for n= 1�2� 	 	 	 	 Let N�t denote the

number of events that have occurred on or before
time t; that is, N�t = max�n ≥ 0� Sn ≤ t� for t ≥ 0.
Therefore, we have renewal sequence �Sn� n≥ 1� and
delayed renewal process �N �t� t ≥ 0� generated by
interrenewal times �Xn� n ≥ 2� ∼ G (Cox and Lewis
1966). We use the following shorthand throughout:
G�t = Pr�X2 ≤ t�, � = Ɛ�X2�, �2 = Var�X2�, and cv2 =
�2/�2. We assume that limh↓0G�h= 0, and that X2 has
density g�t= dG�t/dt, for t ≥ 0.

If X1 has the equilibrium distribution associated
with G, specifically,

Ge�t≡ Pr�X1 ≤ t�=
1
�

∫ t
0
�1−G�u�du�

then N is an equilibrium renewal process (Kulkarni
1995). Notice that Ɛ�X1�= ��2 +�2/�2�. For an equi-
librium renewal process,

Ɛ�N �t�= t
�
� (1)

and

Var�N �t�= t
�
−
(
t

�

)2

+ 2
�

∫ t
0
Ɛ�Ns�u� du (2)

for all t ≥ 0, where Ns is the ordinary renewal process
with i.i.d. interrenewal times �X ′

n� n ≥ 1� from distri-
bution G (i.e., X ′

1 is from the same distribution as the
latter X ′

n; see Cox and Smith 1954). Combining (2)
with a result from Smith (1959, p. 1) regarding the
mean count of an ordinary renewal process, we find
that

Var�N �t�= �
2

�3
t+ o�t	

Thus, for equilibrium renewal process N ,

Var�N �t�≈ cv2 Ɛ�N �t� (3)

for large t; by (3) we mean

lim
t→Var�N �t�/Ɛ�N �t�= cv2 	

Since N is an equilibrium renewal process, N is
therefore a stationary point process. Based on our

assumptions on G, the stationarity of N , and � > 0
(implying �−1 < ), we conclude that N is regular
(or orderly), implying that only one renewal may
occur at a time (Ross 1983).

For the nonstationary process we desire, let r�t
denote its rate function, and let R�t= ∫ t0 r�udu be the
integrated rate function of the process. We assume that
r�t is integrable.

2.2. The Inversion Method
In this section we first present an inversion algorithm
for generating interarrival times for an NSNP pro-
cess, and then analyze the mean and variance of that
process. The inversion method is well known when
the base process is Poisson (with rate 1) but does not
appear to have been studied for stationary renewal
base processes. Since the stationary renewal process
must have rate 1, we specify the distribution G (and
associated Ge) such that � = 1 and cv2 = �2. Notice
that, for s ∈�, R−1�s≡ inf�t� R�t≥ s�.
Algorithm 2.1. The Inversion Method for a Sta-

tionary Renewal Process.
1. Set V0 = 0, index counter n= 1. Generate S1 ∼Ge.

Set V1 =R−1�S1.
2. Return interarrival time Wn = Vn−Vn−1.
3. Set n= n+1. Generate Xn ∼G. Set Sn = Sn−1+Xn

and Vn =R−1�Sn.
4. Go to Step 2.
Thus, the sequence �Wn� n ≥ 1� is a potential real-

ization of interarrival times for the nonstationary pro-
cess from the inversion method.

Let �I�t� t ≥ 0� denote the counting process gen-
erated by the inversion method; that is, I�t =
max�n≥ 0� Vn ≤ t�. Then we have the following prop-
erties of I�t:
Result 2.1. Ɛ�I�t� = R�t for all t ≥ 0, and

Var�I�t�≈ cv2R�t for large t.
Proof. Since N is an equilibrium renewal process

and � = Ɛ�X2� = 1, then Ɛ�N �t� = t for all t ≥ 0,
from (1); Var�N �t�≈ cv2 t for large t, from (3). Thus,

Ɛ�I�t� = Ɛ
{
Ɛ�I�t �N�R�t�}

= Ɛ�N �R�t�

= R�t
for all t ≥ 0, while

Var�I�t� = Ɛ
{
Var�I�t �N�R�t�}+Var

{
Ɛ�I�t �N�R�t�}

= 0+Var�N �R�t�

≈ cv2R�t

for large t. �

When N is Poisson with rate 1, the resulting
process from the inversion method is an NSPP. In
this case, cv2 = 1 and the equilibrium distribution
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Ge�t = G�t = 1 − e−t for t ≥ 0. Result 2.1 holds
exactly, since Var�N �t�= t at all times, by (2). Thus,
Var�I�t�/Ɛ�I�t�= 1 for all t ≥ 0.

The inversion method is useful when R�t is eas-
ily invertible. Forms for the rate function r�t that
have used the inversion method for NSPP gener-
ation include piecewise-linear (Klein and Roberts
1984), trigonometric (Chen and Schmeiser 1992), and
piecewise-constant (Harrod and Kelton 2006). The
inversion method may not be useful if R�t is difficult
to invert or otherwise intractable. We discuss a second
method that is unaffected by analytical complications
in R�t in §2.3.

Notice that cv2 provides a measure of the devia-
tion of the stationary renewal process from Poisson;
Cox and Isham (1980) use cv2 to classify renewal pro-
cesses as either overdispersed (for cv2 > 1) or under-
dispersed (for cv2 < 1). From Result 2.1 we see that
this deviation measure is effectively preserved by the
inversion method; that is,

Var�I�t�
Ɛ�I�t�

≈ cv2 ≈ Var�N �t�
Ɛ�N �t�

for large t. Thus, cv2 provides a single parameter with
which to construct arrival processes that are more or
less variable than Poisson in a particularly intuitive
way.

Of course, any method represents a choice as to
how to depart from NSPP arrivals. For instance,
the doubly stochastic Poisson process D�t (see, for
instance, Avramidis et al. 2004) is an NSPP with rate
function Zr�t, conditional on random variable Z ≥ 0
with Ɛ�Z�= 1 and Var�Z�= cv2. For this process it is
easy to show that

Var�D�t�
Ɛ�D�t�

= 1+ cv2R�t�

which is a distinctly different choice since it becomes
increasingly variable as time passes. The thinning
method in the following section yields yet another
choice.

2.3. The Thinning Method
As with the inversion method in §2.2, we present an
algorithm for generating interarrival times by thin-
ning a stationary renewal process to obtain a nonsta-
tionary process, and then offer analysis of the mean
and variance of the generated NSNP process. We
begin by selecting a value r∗ ≥maxt≥0 r�t, which we
assume to be finite. We assign the stationary renewal
process the arrival rate r∗, and specify the distri-
bution G (and associated Ge) with � = �r∗−1 and
�2 = cv2 /�r∗2.

Algorithm 2.2. The Thinning Method for a Sta-
tionary Renewal Process.

1. Set index counters n= 1, k= 1, and T0 = 0. Gen-
erate S1 ∼Ge.

2. Generate U1 ∼ Uniform�0�1�. If U1 ≤ r�S1/r∗,
then

(a) Set T1 = S1.
(b) Return interarrival time Y1 = T1 − T0.
(c) Set k= 2.

3. Set n= n+1. Generate Xn ∼G. Set Sn = Sn−1+Xn.
4. Generate Un ∼ Uniform�0�1�. If Un ≤ r�Sn/r∗,

then
(a) Set Tk = Sn.
(b) Return interarrival time Yk = Tk− Tk−1.
(c) Set k= k+ 1.

5. Go to Step 3.
Thus, the sequence �Yk� k≥ 1� is a potential realiza-

tion of interarrival times for the nonstationary process
generated from the thinning method.

Let �M�t� t ≥ 0� denote the counting pro-
cess generated by the thinning method; that is,
M�t=max�k≥ 0� Tk ≤ t�. Then we have the following
property of M�t:
Result 2.2. Ɛ�M�t�=R�t for all t ≥ 0.

The proof is presented in Appendix A.
When the renewal base process N to be thinned

is Poisson (with rate r∗), the resulting process M
is an NSPP (Lewis and Shedler 1979). In this case,
Var�M�t�/Ɛ�M�t�= 1 for all t ≥ 0. If N is not Poisson,
an expression for Var�M�t� will depend on the inter-
renewal distribution G. The following result provides
some insight on the effect of thinning on the arrival
process variance.
Result 2.3. Suppose r�t= r̄ > 0 for all t ≥ 0. If M

is the resulting counting process when we thin equi-
librium renewal process N (with rate r∗ ≥ r̄ , and inter-
renewal variance �2 = cv2 /�r∗2), then

Var�M�t�
Ɛ�M�t�

≈
(
1− r̄

r∗

)
+
(
r̄

r∗

)
cv2 (4)

for large t.
Proof.

Var�M�t�

= Ɛ�Var�M�t �N�t��+Var�Ɛ�M�t �N�t�� (5)

= Ɛ

{(
r̄

r∗

)(
1− r̄

r∗

)
N�t

}
+Var

{(
r̄

r∗

)
N�t

}
(6)

=
(
r̄

r∗

)(
1− r̄

r∗

)
Ɛ�N �t�+

(
r̄

r∗

)2

Var�N �t�

≈
(
r̄

r∗

)(
1− r̄

r∗

)
r∗t+

(
r̄

r∗

)2

cv2 r∗t

for large t, from(1)and(3).FromResult2.2,Ɛ�M�t�= r̄ t
for t ≥ 0; Result 2.3 then follows by rearranging terms.
To see how (5) yields (6), notice that we generate M
by thinning N with constant probability �1 − r̄/r∗;
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thus, conditional on N�t, M�t ∼ Bin�N �t� r̄/r∗
for t ≥ 0. Therefore, Ɛ�M�t �N�t�= �r̄/r∗N �t and
Var�M�t �N�t�= �r̄/r∗�1− r̄/r∗N �t. �

Much of the thinning literature extends Rényi’s
(1956) result on Bernoulli thinning of point pro-
cesses that converge to Poisson; see Gnedenko
and Kovalenko (1989), Miller (1979), Rolski and
Szekli (1991), and references therein. Shanthikumar
(1986) uses thinning of simulated Poisson arrivals
in estimating renewal functions, while Ogata (1981)
extends Lewis and Shedler (1979) to simulate multi-
variate point processes. Manor (1998) provides com-
plementary analysis to Result 2.3 here for the second
moment of the resulting nonstationary interevent
times when constant Bernoulli thinning is performed.

2.4. Are Inversion and Thinning Equivalent?
Although the two methods proposed in this sec-
tion can achieve the same arrival rate r�t, they are
not equivalent in general, as the following example
shows.
Example 2.1. Let R�t= t/2 and let N be stationary

with rate 1 and interrenewal variance cv2.
• Inversion: Vn =R−1�Sn= 2Sn.

Ɛ�Vn� = Ɛ�2Sn�

= 2Ɛ
{
X1 +

n∑
k=2

Xk

}
= 2�Ɛ�X1�+ �n− 1Ɛ�X2��

= 2n+ cv2−1	

• Thinning: Since r�t = 1/2, we can generate
�Tn� by thinning N with probability 1/2. Therefore,
Tn = SBn , where Bn ∼NegBin�n�1/2. Thus,

Ɛ�Tn� = Ɛ�Ɛ�Tn � Bn��

= Ɛ

{
X1 +

Bn∑
k=2

Xk

}
= Ɛ�X1�+ Ɛ�X2�Ɛ�Bn− 1�

by Wald’s lemma, and therefore,

Ɛ�Tn� = 2n+ cv2−1
2
	

Even in this simple example, we see that Ɛ�Vn�= Ɛ�Tn�
only in the case that cv2 = 1. Of course, they are equiv-
alent when N is Poisson.

3. When the Stationary Renewal
Process Is Phase-Type

Although we can use any renewal process as the input
for either method described in the previous section,
we prefer to use a process that is easy to initialize,

easy to simulate, and has an interrenewal distribu-
tion easily fit to � and cv2. In this section we dis-
cuss one such class of renewal processes known as
the phase-type, or Ph, processes. We describe a rep-
resentation for the Ph process, provide some analysis
of the resulting nonstationary process from the thin-
ning method, and detail benefits of using specific Ph
processes as the input to both inversion and thinning.

3.1. The Ph Process
The Ph process (Neuts 1981) has interrenewal times
that describe the time it takes an underlying continu-
ous-time Markov chain, or CTMC, to reach a single
absorbing phase from a finite number mT < of tran-
sient phases. The most common representation for
the Ph process is attributed to Lucantoni (1991). We
use a related representation here that characterizes
the Ph interrenewal distribution by transitions within
the embedded discrete-time Markov chain, or DTMC,
along with a vector of time-dependent rate functions
(one for each transient phase) and a vector of the
initial transient phase probabilities. Notice that along
with the rate functions, the phase transition and ini-
tial phase probabilities may vary with time. This rep-
resentation is used by Nelson and Taaffe (2004) and
recounted here.

We let A�t denote the time-dependent, one-step
transition probability matrix of the embedded DTMC:

A�t=
(
A1�t �A2�t

�,�t� 0

)
	

The mT × mT matrix A1�t represents the time-de-
pendent one-step transition probabilities between the
mT transient phases, while the mT ×1 vector �A2�t rep-
resents the time-dependent one-step transition prob-
abilities from the transient phases to phase mT + 1,
the instantaneous absorbing phase representing an
arrival. The mT × 1 vector �,�t is the time-dependent
initial probability vector for the next interarrival time.

We define the mT × 1 vector �-�t, whose jth argu-
ment is -j�t, the time-dependent, integrable nonnega-
tive transition rate function corresponding to phase j ,
for j=1�2�			�mT . We use the convention -mT+1�t=
for all t, corresponding to an instantaneous sojourn
time in that phase.

The Ph arrival process is �N �t� J �t, where N�t is
the number of arrivals (i.e., renewals) by time t and
J �t is the current phase of the next arrival. Notice that
N�t increases by 1 when the chain hits phase mT +1.
The Nelson and Taaffe (2004) characterization for the
Ph process �N �t� J �t is the pair (A(t), �-�t).
3.2. Adjustments to the Algorithms for

a Stationary Ph Process
We describe adjustments made to the algorithms pre-
sented in §§2.2 and 2.3 when the stationary renewal
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process is Ph with representation (A, �-). Since the
input Ph process is not time dependent, we have
dropped the “�t” from its Ph representation.

The distribution G of interrenewal times is given by

G�t= Pr�Xn ≤ t�= 1− �,� exp�L�A1 − It��e

for n≥ 2, where L is a diagonal matrix with nonzero
elements -j for j = 1�2� 	 	 	 �mT , I is the identity
matrix, and �e is a column vector with all coordinates
equal to 1 (Kulkarni 1995). From this we derive the
equilibrium distribution

Ge�t= Pr�X1 ≤ t�= 1− �0� exp�L�A1 − It��e�

where �0 is the stationary mT × 1 vector for the phase
process J �t; that is, �0 solves �0�L�A1 + �A2 �,�= �0�L
such that �0� �e = 1. Notice that the parameters of the
Ph arrival process �N �t� J �t must satisfy

�−1 = �0�L �A2� (7)

where � = 1 in the inversion algorithm or � = �r∗−1

in the thinning algorithm.
Many techniques exist for fitting a Ph process

to a tuple of its first two interrenewal moments.
These techniques involve establishing the parame-
ters in a particular Ph subclass that yield the given
moments. Two-moment methods typically consist of
specifying an order-two hyperexponential or Coxian
when cv2 > 1, and specifying an Erlang (or mixture
of Erlangs) when cv2 < 1; for example, see Marie
(1980), Sauer and Chandy (1975), and Whitt (1981).
Notice that the Poisson process is a special case of Ph
where interrenewal times are exponential and cv2 = 1.

The particular choices we recommend for the two-
moment fit are a hyperexponential of order two with
balanced means, or h2b, when cv2 > 1, and a mix-
ture of two Erlangs of consecutive order and common
rate, or MECon, when cv2 < 1. Formulas for setting
the parameters of these processes, given � and cv2,
are presented in Appendix B. Benefits to using these
particular Ph choices are twofold. First, they provide
coverage over the range of all cv2 > 0. Second, simu-
lating these choices is efficient in that at each renewal,
the generation of the next interrenewal time can be
done in a single step (i.e., the generated interrenewal
time is either an exponential or an Erlang) rather than
having to simulate each phase transition individually.

3.3. Properties of the Nonstationary Ph Process
If the base process for inversion is Ph, then the result-
ing NSNP process is not necessarily Ph. However,
when the renewal base process is a stationary Ph
with representation �A� �-, the process �M�t� J �t,

generated by the thinning method, is a nonstationary
Ph process with representation �C�t� �- such that

C�t=
A1 +

(
1− r�t

r∗

)
�A2 �,�

(
r�t

r∗

)
�A2

�,� 0

 	
Furthermore, we can show that for the counting
process M ,

Var�M�t�

=R�t+ 2
r∗

∫ t
0
r�u

∫ u
0
r�z

( �,�exp��L�A1−I+ �A2 �,��

·�u−z�L �A2

)
dzdu−R2�t	 (8)

Let 3�t≡Var�M�t�/R�t for t ≥ 0. A useful conse-
quence of (8) is that we can identify bounds for 3�t
when the renewal base process to thin is a specific
stationary Ph process.
Example 3.1. Stationary Ph is balanced hyperexpo-

nential of order two for unspecified r�t≥ 0.
If X ∼ h2b�-�,, then �0 = �1/2�1/2�, and

cv2�X= 1− 2,+ 2,2

2,�1−, > 1	

To satisfy (7), -= 2,r∗. The Ph representation for the
fitted h2b is then

A=
 0 0 1

0 0 1
, 1−, 0

 � �-= �2,r∗�2�1−,r∗�	

Plugging these into (8), we find

Var�M�t� = R�t+ 4,�1− 2,2

·
∫ t
0
r�u

∫ u
0
r�ze−4,�1−,r∗�u−z dzdu	

For unspecified r�t, we cannot find a closed-form
expression for Var�M�t�, but by noticing that r�t≤ r∗
for all t ≥ 0, we can provide an upper bound for 3�t:

Var�M�t�

=R�t+4,�1−2,2
∫ t
0
r�u

∫ u
0
r�ze−4,�1−,r∗�u−z dzdu

≤R�t+ 4,�1− 2,2
∫ t
0
r�ue−4,�1−,r∗u

·
∫ u
0
r∗e4,�1−,r

∗z dzdu

= 1− 2,+ 2,2

2,�1−, R�t−
�1− 2,2

1−,
∫ t
0
r�ue−4,�1−,r∗u du

≤ 1− 2,+ 2,2

2,�1−, R�t	
Therefore,

R�t≤Var�M�t�≤ [�1− 2,+ 2,2/�2,�1−,]R�t�
and 3�t ∈ �1� cv2�X�.
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Example 3.2. Stationary Ph is a mixture of
Erlang2�- and Erlang1�- (a MECon) for unspecified
r�t≥ 0.

If X ∼MECon2�1�-�,, then

�0 =
(
1−,
2−,�

1−,
2−,�

,

2−,
)�
�

and

cv2�X= 2−,2

�2−,2 ∈ �1/2�1�	
To satisfy (7), -= �2−,r∗. The Ph representation for
the fitted MECon2�1 is

A=


0 1 0 0
0 0 0 1
0 0 0 1

1−, 0 , 0

 �
�-= ��2−,r∗� �2−,r∗� �2−,r∗�	

We plug these into (8) to derive a lower bound
for 3�t:

Var�M�t�

=R�t−2�1−,2
∫ t
0
r�u

∫ u
0
r�ze−r

∗�2−,2�u−z dzdu

≥R�t−2�1−,2
∫ t
0
r�ue−r

∗�2−,2u
∫ u
0
r∗er

∗�2−,2z dzdu

=R�t
(

2−,2

�2−,2
)
+2
(
1−,
2−,

)2∫ t
0
r�ue−r

∗�2−,2u du

≥R�t
(

2−,2

�2−,2
)
	

Therefore, R�t ≥ Var�M�t� ≥ ��2 − ,2/�2 − ,2�R�t,
and 3�t ∈ �cv2�X�1�.

4. Fitting an NSNP Process
The minimum information required to define an
NSNP process of the form described in this paper is
a desired rate function r�t and a cv2 for the renewal
base process; the mean time between renewals �
for the base process is either 1 for inversion or
1/r∗ = 1/maxt≥0 r�t for thinning. See Appendix B for
translating these properties into specific Ph renewal
processes.

In this section we propose techniques for estimat-
ing r�t and cv2 for both inversion and thinning when
we have data on the actual arrival process, and illus-
trate them on a real data set. This is preliminary work,
and we believe improvements should be possible. We
leave open the important question of statistically ver-
ifying that the observed data are well represented by
transforming a stationary renewal process via inver-
sion or thinning.

4.1. Fitting to Data Using the Inversion Method
Several techniques, both parametric and nonparamet-
ric, have been explored for estimating the rate func-
tion (or integrated rate function) of an NSPP given a
set of n realizations of the observed arrival process.
In parametric estimation, a form for the rate function
is assumed, and maximum likelihood or other tech-
niques are used to solve for the parameters of the spec-
ified rate function; see Kuhl et al. (2006), Massey et al.
(1996), and related papers. In nonparametric estima-
tion, the data are used to create a piecewise constant
rate function, either by defining a single interval for
each data point (Leemis 1991) or by setting the respec-
tive interval lengths exogenously (Harrod and Kelton
2006). Henderson (2003) provides an analysis of the
asymptotic behavior of nonparametric estimators of
the latter form, both when the interval length 4 is con-
stant in n and when 4 decreases with n. The nonpara-
metric techniques apply to NSNP data as well, so we
adopt them here. Therefore, our primary task is esti-
mating cv2.

We assume we have n > 1 i.i.d. realizations on
time interval �0�TE� for known constant TE > 0; each
realization represents the sequence of times at which
arrivals occur. We let Vkj denote the time of the jth
observed arrival in the kth realization (with Vk0 = 0,
and define Ik�t to be the number of arrivals that have
occurred in the kth realization by time t; that is, Ik�t=
max�j ≥ 0 � Vkj ≤ t� for k = 1�2� 	 	 	 �n, t ∈ �0�TE�. We
further define

�R�t= 1
n

n∑
k=1

Ik�t� (9)

and
�V �t= 1

n− 1

[( n∑
k=1

Ik�t
2

)
−n �R�t2

]
	 (10)

Thus, �R�t and �V �t are the sample mean and variance
for the number of arrivals that have occurred on or
before time t ∈ �0�TE�.

If we assume that the observed data were cre-
ated by a process of the form Vn = R−1�Sn, then
Var�I�t�/R�t≈ cv2 for large t, by Result 2.1. This sug-
gests that we select a set of times 0 = t0 < t1 < t2 <
· · ·< tm = TE and estimate cv2 by fitting the line �V �t=
cv2 �R�t+6t to the set of sample pairs � �R�ti� �V �ti for
i= 1�2� 	 	 	 �m.

Although we might be tempted to use ordinary
least-squares regression, the residuals 6ti are neither
independent nor have equal variance. To account for
the latter concern, we perform weighted least-squares
regression, weighting the ith squared error in the sum
by an amount inversely proportional to the variance
of the dependent variable �V �ti for i = 1�2� 	 	 	 �m.
Notice that Var��V �t� depends on moments of Ik�t
higher than the second, but if we treat �V �t as
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approximately 72 (that is, �V �t∼Var�I�t�72
n−1/�n−1),

then

Var� �V �t� 	= �Var�I�t�
2

�n− 12
2�n− 1

= 2�Var�I�t�2

n− 1
≈ 2�cv22

n− 1
R�t28 (11)

the “
	=” in (11) indicates that this first relationship

holds exactly if �V �t is 72 with these parameters.
Thus, Var� �V �t� ∝ R�t2; therefore, we weight each
residual by 1/R�t2, using 1/ �R�t2 as a substitute. Our
estimator is

ĉv2 = argmin
cv2

{ m∑
i=1

1
�R�ti2

� �V �ti− cv2 �R�ti�2
}
	 (12)

A closed-form solution exists for ĉv2 in (12), namely,
ĉv2 =m−1∑m

i=1� �V �ti/ �R�ti�. This is intuitive, as the fit-
ted cv2 is equal to the average value of �V �t/ �R�t
across the chosen sample of times.

We can extend the idea for estimating cv2 from
a set of sample points to minimize the cumulative
weighted residual along the entire �0�TE� interval.
Here, the estimator is

ĉv2 = argmin
cv2

{∫ TE
0

1
�R�u2 �

�V �u− cv2 �R�u�2 du
}
� (13)

with closed-form solution

ĉv2 = 1
TE

∫ TE
0

( �V �u
�R�u

)
du	

As expected, ĉv2 in (13) is the average value of
�V �t/ �R�t across �0�TE�.
Using ĉv2 in (13) rather than ĉv2 in (12) eliminates

the dependence of the fitting technique on the selec-
tion of �ti� i = 1�2� 	 	 	 �m�. However, this advantage
disappears when only counts over time intervals are
available (which frequently occurs in the literature;
e.g., see Jongbloed and Koole 2001), since we must
treat �R�t and �V �t as constant during the intervals.
With these ideas in mind, we use ĉv2 in (13) as the
estimator for cv2 in the presence of individual arrival
time data; when only counts over time intervals are
available, we use ĉv2 in (12). We leave an investigation
comparing the two estimators for future research.

To assess the quality of fit we can use standard
regression measures, such as R2 or confidence inter-
vals on the parameter estimate, with the caution that
these will be approximate since the residuals are not
independent and may well be nonnormal. Future
improvements to the fitting technique may incorpo-
rate models for autocorrelation within the residuals,
using ideas such as those in Channouf et al. (2007)
and references therein.

Notice that �R�t, as defined in (9), could be an esti-
mate of the integrated rate function R�t for t ∈ �0�TE�,
by Result 2.1. However, �R�t is a step function that
increases in value only at the observed arrival times
(i.e., when t ∈ �Vkj�). Thus, the inversion algorithm
may return interarrival times of size zero for the
NSNP process using �R�t as the estimator for R�t.
Instead, we suggest an estimator that uses linear inter-
polation, similar to one proposed by Leemis (1991).

Let Ak denote the number of observed arrivals on
�0�TE� in the kth realization, with AT =

∑n
k=1Ak. Let

T ′
q denote the qth smallest observed arrival time Vkj

across all n realizations (we assume no ties), q =
1�2� 	 	 	 �AT , with T ′

0 = 0 and T ′
AT+1 = TE . We suggest

using the linear interpolation

�R�t = �R�T ′
q−1+

(
t− T ′

q−1

T ′
q − T ′

q−1

)( �R�T ′
q − �R�T ′

q−1
)

= �R�T ′
q−1+

1
n

(
t− T ′

q−1

T ′
q − T ′

q−1

)
(14)

for t ∈ �T ′
q−1�T

′
q �, q = 1�2� 	 	 	 �AT + 1.

Therefore, given a set of n realizations of the
observed process, we have defined a technique that
provides an estimate �R�t for the integrated rate func-
tion and an estimate ĉv2 in (12) (or ĉv2 in (13), when
possible) for cv2 of the renewal base process for the
inversion method. Given interrenewal mean � = 1,
we specify a Ph process, as described in §3.2 and
Appendix B, to match � and cv2.

4.2. Example: Specifying the Renewal
Process for Inversion

We apply the fitting technique for the inversion
method to a set of internet traffic data describing
arrivals to an e-mail server. We show here that the
observed arrival process is more variable than Poisson
and use our fitting technique to specify a Ph renewal
base process with cv2 > 1 to simulate this arrival pro-
cess via the inversion method.

The data consist of the timestamps for connections
to the iems.northwestern.edu department server’s
inbound mail port between 8:00 a.m. and 8:00 p.m.
(local time) on Tuesday, Wednesday, and Thursday in
three consecutive weeks. Thus, we have n = 9 real-
izations, with TE = 720 minutes. We calculate Ik�t for
t ∈ �0�TE�, and define �R�t and �V �t, as in (9) and (10),
respectively, and �R�t, as in (14).

Since we have individual arrival times, we use ĉv2,
as in (13); we find ĉv2 = 124	3, with R2 from the
regression of 0.98 indicating a very good fit. Thus, we
specify a renewal base process with � = 1 and cv2 =
124	3, and use �R�t as an estimate for the integrated
rate function R�t, for t ∈ �0�TE�. Since cv2 > 1, the
base process is an h2b with rate -= 1	99 connections
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Figure 1 Ten Sample Paths of an NSNP Process from Inversion for a
Base Process with cv2 = 124�3 (Top) and NSPP (cv2 = 1,
Bottom)

per minute and mixing probability , = 0	996 (see
Appendix B).

To gain a sense of the difference between our fitted
NSNP process and an NSPP with the same rate, Fig-
ure 1 shows sample paths generated from inversion
with cv2 = 124	3 (i.e., the fitted model) and cv2 = 1,
an NSPP. The increased variability is immediately
apparent, and the consequences of ignoring it are
severe. To illustrate this, we simulated 2,000 replica-
tions of NSNP/M/1 and M�t/M/1 queues with inte-
grated rate function �R�t but with cv2 = 124	3 and 1,
respectively, and a service rate of six connections per
minute in both cases. The top plot in Figure 2 is an
estimate of the time-dependent mean number of enti-
ties at the node for both cases. In the model with cv2 =
124	3, the mean number is an order of magnitude
larger than the corresponding values in the model
with cv2 = 1. The effect of misspecifying cv2 is even
more dramatic when we examine the time-dependent
variance of the number of entities at the node, seen in
the bottom graph in Figure 2. Standard errors in both
plots are roughly 2% of the estimated values.

4.3. Fitting to Data Using the Thinning Method
In this section we propose a technique for specifying
the rate r∗ and the cv2 of a (potentially) non-Poisson
stationary renewal base process for the thinning

t
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Figure 2 Time-Dependent Mean (Top) and Variance (Bottom) of
Number of Customers at an NSNP/M/1 Node with cv2 =
124�3 (Solid Line) and cv2 = 1 (Dashed Line) Using Inversion

method, assuming the same sort of data as in §4.1 are
available. We again calculate Ik�t and define �R�t and
�V �t as in (9) and (10), respectively.
We select a set of times 0 = t0 < t1 < t2 < · · · <

tm = TE such that within each interval we believe the
arrival rate is approximately constant. We define r̃i =
� �R�ti− �R�ti−1�/�ti − ti−1 for i= 1�2� 	 	 	 �m. This pro-
vides an estimate r̃ �t for the rate function r�t, where
r̃ �t = r̃i for t ∈ �ti−1� ti�, i = 1�2� 	 	 	 �m. We set the
arrival rate for the renewal process to be thinned at
r∗ =max1≤i≤m r̃i.

We previously used Result 2.1 in our fitting tech-
nique for the inversion method; that result quantifies
the asymptotic relationship between the variation of
the resulting counting process I�t and the cv2 of its
renewal base process. We have no analogous result
for the thinning method for general rate function r�t.
However, we can use Result 2.3 in specifying cv2 if
we assume that we are thinning the renewal process
to achieve a target constant arrival rate. To exploit
this, we find the largest time window in �0�TE� during
which the rate function r̃ �t is nearly constant. That is,
we examine the set of interval arrival rates �r̃i� i =
1�2� 	 	 	 �m�, with the goal of selecting the largest sub-
set of consecutive intervals across which the values of
r̃i are approximately equal.



C
o
p
yr
ig
h
t:

IN
F

O
R

M
S

ho
ld

s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs

io
n,

w
hi

ch
is

m
ad

e
av

ai
la

bl
e

to
in

st
itu

tio
na

ls
ub

sc
rib

er
s.

T
he

fil
e

m
ay

no
tb

e
po

st
ed

on
an

y
ot

he
r

w
eb

si
te

,i
nc

lu
di

ng
th

e
au

th
or

’s
si

te
.

P
le

as
e

se
nd

an
y

qu
es

tio
ns

re
ga

rd
in

g
th

is
po

lic
y

to
pe

rm
is

si
on

s@
in

fo
rm

s.
or

g.

Gerhardt and Nelson: Transforming Renewal Processes for Simulation of Nonstationary Arrival Processes
INFORMS Journal on Computing, Articles in Advance, pp. 1–11, © 2009 INFORMS 9

Let � ⊂ �1�2� 	 	 	 �m� denote the selected subset
of interval indices of maximum size across which
the arrival rate is approximately constant. Define
j ′ = ���, and i′ = min�1 ≤ i ≤ m� i ∈ ��. Let Mk
denote the number of observed arrival times in the
kth realization during these j ′ consecutive intervals;
that is, Mk = Ik�ti′+j ′−1 − Ik�ti′−1 for k = 1�2� 	 	 	 �n.
Let R̄ and �V denote the sample mean and vari-
ance, respectively, of Mk; that is, R̄= n−1∑n

k=1Mk, and�V = �n− 1−1�
∑n
k=1M

2
k −nR̄2. Finally, let r̄ denote the

average arrival rate over these j ′ consecutive intervals;
therefore, r̄ = R̄/�ti′+j ′−1 − ti′−1.

We now assume that we want to thin the renewal
process with arrival rate r∗ to achieve that target
arrival rate r̄ . We replace Var�M�t� with �V and
Ɛ�M�t� with R̄ in (4), and solve for cv2:

�cv2 = r
∗

r̄

[ �V
R̄

−
(
1− r̄

r∗

)]
	 (15)

Given interrenewal mean � = �r∗−1, we then specify
a Ph process to match � and �cv2, as described in §3.2
and Appendix B.

Several potential limitations exist for this fitting
technique. If the arrival rates r̃i vary widely across
intervals, it may prove impossible to find a subset
of consecutive intervals with similar arrival rates of
size greater than one. Another limitation is that the
resulting NSNP process from thinning may not be a
good fit for those arrivals occurring during intervals
with indices not in �; this would be particularly prob-
lematic if the time interval �ti′−1� ti′+j ′−1�, representing
those intervals with indices in �, is only a small frac-
tion of the total interval �0�TE�. Although this tech-
nique will do a good job approximating the arrival
rate, by Result 2.2, the variation of the resulting NSNP
process on the other intervals may not be representa-
tive of the actual arrival process.

4.4. Example: Specifying the Renewal
Process for Thinning

We apply the fitting technique for the thinning
method described here on the example data set that
we previously examined in §4.2 and generate analo-
gous plots. Upon examining the data, we find that a
15-minute time window is reasonable for observing
approximately constant arrival rates. Thus, we have
n = 9 realizations, m = 48 sample points, TE = 720,
and interval length 4 = 15; we select sample points
ti = i4 for i = 1�2� 	 	 	 �m, and calculate Ik�ti (for
k= 1�2� 	 	 	 �n), �R�ti, and �V �ti. From these we derive
interval arrival rates r̃i for i = 1�2� 	 	 	 �m, and define
r̃ �t for t ∈ �0�TE�, as in §4.3. We set r∗ = 11	32 connec-
tions per minute.

In finding � ⊂ �1�2� 	 	 	 �m�, we notice that inter-
vals 29 through 34 have similar arrival rates
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Figure 3 Ten Sample Paths of an NSNP Process from Thinning
for Base Process with cv2 = 47�96 (Top) and NSPP
(cv2 = 1, Bottom)

(approximately 4.6 connections per minute). Thus,
� = �29�30�31�32�33�34�, j ′ = 6, and i′ = 29. Setting
these parameters yields R̄= 413	67, �V = 8�296	25, and
r̄ = 4	596; therefore, �cv2 = 47	96, from (15), which is
smaller than we estimated for the inversion method.
Thus, we specify the renewal base process with
arrival rate r∗ = 11	32 and �cv2 = 47	96, and use r̃ �t as
an estimate for the rate function r�t, for t ∈ �0�TE�.
Since �cv2 > 1, the renewal base process we specify
is an h2b with rate - = 22	92 and mixing probability
,= 0	99 (see Appendix B).

Figures 3 and 4 show that the sample paths and the
impact on queue performance are dramatically differ-
ent for the fitted NSNP process and an NSPP with the
same arrival rate.

5. Conclusions
In this paper we have shown how to generate an
NSNP arrival process by transforming a stationary
renewal process. If the renewal base process is more
or less variable than Poisson, then the resulting non-
stationary process will be more or less variable than
an NSPP. Furthermore, we have shown that the cv2

of the interrenewal distribution G provides specific
information on the variation of the NSNP process,
either asymptotically (with inversion) or in the form
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Figure 4 Time-Dependent Mean (Top) and Variance (Bottom) of
Number of Customers at NSNP/M/1 Node with cv2 = 47�96
(Solid Line) and cv2 = 1 (Dashed Line) Using Thinning

of a bound (with thinning). Finally, we have proposed
a technique for specifying a renewal base process for
each method when presented properties of, or data
from, the nonstationary arrival process.

One direction for future research is to move beyond
two-moment techniques and provide analogous meth-
ods for simulating when we have third-moment
(or higher) information that we desire in the resulting
NSNP process. We may also pursue improvements to
the fitting techniques presented here, particularly for
the thinning method, as well as tools for validating the
fit for both methods.
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Appendix A. Proof of Result 2.2
Result 2.2. Ɛ�M�t�=R�t for all t ≥ 0.
Proof. Define the sequence �Bn� n ≥ 0� such that B0 =

0 and Bn = 1 if the nth renewal is accepted as a nonsta-
tionary arrival, while Bn = 0 otherwise for n ≥ 1. Then,

M�t=∑
n=0 I�Sn≤t�Bn, and

Ɛ�M�t� = Ɛ

{ ∑
n=0

I�Sn≤t�Bn

}

=
∑
n=0

Ɛ
{
I�Sn≤t�Bn

}
�

where the interchange can be justified using the monotone
convergence theorem. Therefore,

Ɛ�M�t� =
∑
n=0

Ɛ
{
I�Sn≤t�Bn

}
=

∑
n=0

Ɛ
{
Ɛ�I�Sn≤t�Bn � S0� S1� 	 	 	 � Sn�

}
=

∑
n=0

Ɛ
{
Ɛ�I�Sn≤t�Bn � Sn�

}
=

∑
n=0

Ɛ
{
Ɛ�I�Sn≤t� � Sn� · Ɛ�Bn � Sn�

}
=

∑
n=0

Ɛ
{
I�Sn≤t�Ɛ�Bn � Sn�

}
=

∑
n=0

Ɛ

{
I�Sn≤t�

r�Sn

r∗

}
�

since, conditional on �Sn� n ≥ 1�, the Bns are independent,
while Ɛ�Bn � Sn� = Pr�Bn = 1 � Sn� = r�Sn/r∗ for all n ≥ 1.
Therefore,

Ɛ�M�t� =
∑
n=0

Ɛ

{
I�Sn≤t�

r�Sn

r∗

}

= 1
r∗

∑
n=0

Ɛ
{
I�Sn≤t�r�Sn

}
= 1
r∗

Ɛ

{ ∑
n=0

I�Sn≤t�r�Sn
}

(where this interchange can be similarly justified). For sta-
tionary renewal process N , we can show that

Ɛ�M�t� = 1
r∗

Ɛ

{ ∑
n=0

I�Sn≤t�r�Sn
}

= 1
r∗

∫ 

0
I�u≤t�r�ur

∗ du�

by Proposition 9.1.14 in Çinlar (1975), since the derivative
of the renewal function is r∗ for all t ≥ 0. Finally,

Ɛ�M�t� = 1
r∗

∫ 

0
I�u≤t�r�ur

∗ du

=
∫ 

0
I�u≤t�r�udu

=
∫ t
0
r�udu

= R�t

for all t ≥ 0. �
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Appendix B. Specifying a Ph Distribution to
Match � and cv2

We cite the following techniques for choosing a Ph distri-
bution to match � and cv2:

• If cv2 > 1, then we specify an h2b (Sauer and Chandy
1975), which implies that X is exponentially distributed
with mean -−1 with probability ,, or exponentially dis-
tributed with mean -−1

2 with probability 1−,. We say h2b
has “balanced means” if ,/- = �1 − ,/-2. Thus, h2b has
only two free parameters: , and -. We back these out of the
expressions for the mean and cv2 of an h2b giving

,= 1
2

(
1+

√
cv2−1
cv2+1

)
� -= 2,

�
	

• If cv2 < 1, then we use a MECon distribu-
tion (Tijms 1994). First, we find integer K such that
1/K ≤ cv2 < 1/�K− 1, since cv2 for an Erlang of order K
(denoted by EK�-) is 1/K. Then X is EK−1�- distributed
with probability ,, or EK�- distributed with probability
1 − ,. Again, this leaves only two free parameters: the
mixing probability , and the common rate -. We back
these out of the expressions for the mean and cv2 of a
MECon, giving

,= 1
1+ cv2

�K · cv2−√K�1+ cv2−K2 cv2� -= K−,
�
	

The h2b and MECon are convenient choices, but any Ph
(or other) distribution with the appropriate properties can
be chosen and might provide more desirable sample paths
in some applications. For instance, the h2b will mix expo-
nentials with very different means when cv2 is large.
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