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Other than common random numbers, control varlates is the most promising variance reduction technique in terms of
its potential for widespread use: Control variates is applicable in single or multiple response simulation, it does not
require altering the simulation run in any way, and any stochastic simulation contains potential control variates. A rich
theory of control variates has been developed in recent years. Most of this theory assumes a specific probabilistic structure
for the simulation output process, usually joint normality of the response and the control variates. When these assumptions
are not satisfied, desirable properties of the estimator, such as unbiasedness, may be lost. A number of remedies for
violations of the assumptions have been proposed, including jackknifing and splitting. However, there has been no
systematic analytical and empirical evaluation of these remedies. This pap>er presents such an evaluation, including
evaluation of the small-sample statistical properties of the proposed remedies.

Variance reduction techniques (VRTs) are exper-
imental design and analysis techniques used to

increase the precision of sampling-based point esti-
mators without a corresponding increase in sampling
effort. In this paper, sampling means a computer
simulation experiment. We only consider one VRT,
called control variates (CVs), and a specific form of
control variates, the linear CV. Comprehensive sur-
veys of variance reduction in computer simulation
include Wilson (1984) and Nelson (1987a), a:nd more
general characterizations of control variates are given
by Nelson (1987b) and Glynn and Whitt (1989). For
convenience, we use the term CVXo mean the linear-
control variate VRT, and use the term control io refer
to the auxiliary random variables on which the tech-
nique is based.

CVs have the potential for widespread, even auto-
mated, use in general stochastic simulation experi-
ments. Using CVs is feasible in any stochastic
simulation, and applying CVs to estimate one param-
eter does not conflict with estimating other parame-
ters. Also, there is a rich theory of CVs for a variety
of problems, including estimating a univariate mean
{Lavenberg and Welch 1981), a multivariate mean
{Rubinstein and Markus 1985, Venkatraman and
Wilson 1986), and linear metamodels (Nozari, Arnold
and Pedgen 1984, Porta Nova and Wilson 1986, Tew
and Wilson 1989). Perhaps most importantly, the
software required to employ CVs—a simulation lan-
guage that collects or stores simulation outputs and a
least-squares regression package—is readily available.

There are, however, at least three outstanding prob-
lems that restrict widespread use of CVs: The problem
of selecting effective controls from among the many
that are (usually) available, the absence of methods
for applying CVs in steady-state simulations with
single-replication experiment designs, and the lack of
theory or guidance for addressing violatiotis of the
standard assumptions on which the theory of CVs is
based. The problem of selecting controls has been
addressed by Bauer (1987) and Anonuevo and Nelson
(1988). Batching and regenerative output analysis
methods have been proposed to solve the steady-state
simulation problem (e.g., Lavenberg, Moeller and
Sauer 1979, Wilson and Pritsker 1984a, b and Nelson
1989). This paper concentrates on violations of the
standard assumptions.

The theory of CVs assumes a particular joint distri-
bution for the response variable of interest and the
controls, usually multivariate normality. Several rem-
edies for violation of this assumption have been pro-
posed, including jackknifing and splitting. We also
consider batching, using known correlation structure,
and bootstrapping. These remedies are general pur-
pose, and require little or no special knowledge beyond
what is needed to use CVs. We do not consider
specialized transformations that might be ideal for
certain classes of problems.

There are two fundamental questions regarding any
CV remedy: How well does it work when it is needed,
and how much does it hurt when it is not needed? In
addressing the ftrst question, small-sample pror>erties
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of the linear CV and remedies are important, since,
asymptotically, violations of the assumptions do not
matter. The second question is not always considered,
but is equally important, because the standard
assumptions can seldom be verified in practice. We
should also consider the additional computational
burden, if any, imp>osed by the remedies.

In the next section we define the crude experiment,
which is where efforts at variance reduction begin.
The linear CV and the proposed remedies are intro-
duced and examined next. Finally, we summarize the
results of an extensive simulation study of the esti-
mators. All derivations and proofs are given in the
appendices or in Nelson (1988).

1. CRUDE EXPERIMENT

We consider estimating a real, scalar parameter B that
is the expected value of an observable random variable
y. denoted 6 = E[K]. Estimation of multivariate
means or metamodels is beyond the scope of this
paper, although the estimators we consider can be
applied one-at-a-time to estimate a multivariate mean.

In the crude expwriment we observe V,, 7 2 , . . . . Y^,
independent and identically distributed (i.i.d.) copies
of Y\ it may be convenient to think of Y, as the output
from the /th rephcation in a simulation experiment.
The point estimator is the sample mean

and an estimator of Varfflt ] = c'r/n is

- 1))-

Both estimators are unbiased.
If y is normally distributed, then a {1 - a)lOO%

confidence interval for d is 6c± Hc> where He =
LMn - ^)S( • l../2in - I) is the 1 - a/2 quantile of
the t distribution with n - I degrees of freedom,
and 0 < rt < 1. If y is not normally distributed,
then the confidence level is only approximately the
nominal 1 — a, but the approximation improves as
n increases.

Variance reduction, as the name implies, refers to
reducing point-estimator variance. The Var[flr] is the
standard against which CV pjoint estimators are com-
pared. However, point-estimator variance is not the
only important performance measure. For instance.
the CV estimator and some of the remedies may be

biased. Let i9 be a point estimator of fl. Then its bias
is Bias[9l = E[d — 6]. A summary measure that
combines both variance and bias is the mean squared
error, MSE[^] = Var[0] + Bias(e]-.

One of the effects of bias is degradation of the
probability that the confidence interval covers 6. If the
interval is of the form B ± //, then the probability of
coverage is Pr{ | fl - 0 | =e / / | . The probability of
coverage may also depend on properties of the esti-
mator of Varl^]. Coverage greater than the nominal
level can always be achieved by making the interval
excessively long, so it is important to compare E[H],
the expected halfwidth of the interval, for alternative
estimators. These performance measures and others
will be used to evaluate the linear CV and the
remedies.

2. LINEAR CONTROL VARIATES

Assume that, in addition to the response of Interest
y,, we can also observe a f/X 1 vector C, = ( d , C2,
. . .,Cifl)', whose mean M = (MI,M2 M^)'is known.
The tC (, called the controls, are also i.i.d.. but Y, and
C, are (hopefully) dependent. Let Z, = [y,. C; ] ' , / =
1, 2 , . . . , w be the (^ + 1) x 1 vector of the response
and controls from the /th replication. Then we assume
that the \Z,\ are i.i.d., and let

aye

where acr is the ^ x 1 vector whose _yth element
is Cov[C,,, y,] and 2(t = Var[C,]. All variance-
covariance matrices are assumed to be positive defi-
nite, and the covariance structure above is assumed
to hold throughout the paper. We use the convention
that vectors and matrices are indicated by boldface
type, and the order of random variable subscripts
specifies the dimension of the vector or matrix. Thus.
aye is a 1 X ^ vector, while aci is a t/ X 1 vector.
Otherwise, vectors are column vectors.

The type of simulation output process assumed here
typically arises in terminating or finite horizon simu-
lations. Examples include: 1) the response Y is the
time to complete a stochastic activity network and the
control C is the time to complete selected paths;
2) the response Y is the number of customers served
per day in a bank where balking occurs and the control
C is the number of customers that arrive; 3) the
response Y is the total cost to operate an inventory
system over a finite horizon and the control C is the
total demand over that time horizon; and 4) the
response Y is an indicator variable that equals 1 if a
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new test statistic exceeds a given critical value and C
is the indicator for a second statistic with known
power. A queueing example is given in Section 8.
Such output processes may also arise in steady-state
or infinite horizon simulations when the experiment
design specifies replications.

The linear CV point estimator, d^, is

where C = n"' SJ'-i C , 0 = S^^Sc,-, C is the « x ,7
matrix whose /th row is C,', Sec = (n - i r ' ( C ' C -
«CC'), Scy = (n - 1)-'(C'Y - nCY) and Y =
(Xi, . . . . ¥„)'. An estimator of Varfg/.] is

SI =

where

+{n-

'- = (n-Q- 1)- , - k - (Q - 11)'$?.

The associated (1 — «)100% confidence interval is
St ± //i. where H, = L/iin - q- \)Si.

For the purposes of this paper, the following theo-
rem is the fundamental theorem of CV estimators.

Theorem 1. (Lavenberg and Welch 1981, Appendix A)
Suppose that IZ, Z,,t are i.i.d. q + \'\'ariate
normal vectors with mean vector {6, fi')' and variance
Xz,.. Then

= e

E[Sl] =

and

= \ - a

\y the square of the multiplewhere R^ = aYc
correlation coefficient.

Under the assumptions of Theorem 1, the CV
[xiint estimator is unbiased, the associated variance
estimator is unbiased, and the confidence inter-
val achieves the nominal coverage level. \{ R^ >
q/{n ~ 2). then Var[fl, ] < Var[^V]. Our goal is to
examine the consequences of, and remedies for. vio-
lation of the assumption on which this result is based.

There is a close connection between least-squares
regression and CVs that makes the reason we refer
to dL as the linear CV apparent. Let X be the « x
{q + 1) matrix whose /th row is X; = (1, (C, — M)')-

Then 61^ is the first element of the (^ -t- 1) x 1 vector

7 = (X'X)-'X'Y = GX'Y

and Si = 5^Gii. where G,, is the 11-element of G
and S^ is the residual variance defined above.

Stated differently. §1. is the estimator of the intercept
term in the least-squares regression of Y, on C, — M-
This makes sense because, under the assumption of
multivariate normality, Yi can be represented as

where 0 = SccacK. and t , („ are i.i.d. normal
random variables with mean 0, variance (1 — i?̂ )ff y,
and are independent of C. This representation suggests
that some of the results of Theorem 1 will hold under
weaker assumptions analogous to those of least-
squares regression when X is a fixed design matrix.
Lavenberg. Moeller and Welch (1982) state the follow-
ing results, which we prove in Nelson (1988); see also
Cheng (1978).

Theorem 2. Let y bea{q+ 1) x 1 -vector of constants.
If: i) E[y,|C,] = \:y, then E[0J = 6. If in addi-
tion, ii) Var[y, |C,] = a' independent of C,, then
E[S'Gu] = Var[flz.l, 7 ' = (̂ . 0') and c^ = {I -
R^)(T]-. Finally, if it is also true that: iii) the conditional
distribution of Y, given C, is univariate normal, then
Pv\\d,,-d\ =e//z.I = 1 - «.

Theorem 2 shows that a linear regression implies
that di, is unbiased, the addition of constant condi-
tional variance ensures that the variance estimator is
also unbiased, and normality of the conditional distri-
bution of y leads to a valid confidence interval. Mul-
tivariate normality is sufficient, but not necessary, for
these three conditions to hold. The following theorem
states that, asymptotically, neither the assumptions of
Theorem 1 nor 2 are required. A proof is given in
Nelson (1988).

Theorem 3. As n^^oo

nSl

and

- 0) => N(0, a^)
p

where o-̂  = (1 — R^)a\, —• denotes convergence
in probability, =^ denotes weak convergence, and
N(0, (T̂ ) denotes a normally distributed random vari-
able with mean 0 and variance a^.
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Theorem 3 justifies using the linear CV point, var-
iance and interval estimators when n is large. In
contrast, 9c and Si are always unbiased, and the
central limit theorem gives -^n($c -• 6) => N(0, o-v).
Thus, if/?- > 0, then 6L has an asymptotically smaller
variance than dc-.

How do departures from the assumptions of Theo-
rem 2 affect 6i^ in small samples? We give two exam-
ples that relax conditions i and ii, respectively,
replacing them with more general relationships.
Although we cannot say whether these examples rep-
resent what would be encountered in practice, they do
give an indication of the problems that might arise
when the assumptions of Theorem 2 are not satisfied.

Suppose that

= V + (C - + '/2(C, - M) 'A(C, - (1)

where ^ is a ^ x 1 vector and A is a ^ x 17 symmetric
matrix of constants. Then

E[Y] = V + V2trace[A2ccl

= V

and

= —trace[A2cc]

(Beale 1985). Thus, nonlinear regression leads to a
biased CV point estimator. The bias is 0(«^') when
the true regression is quadratic, which could be severe
in small samples.

Next, suppose that g = 1 and condition i of Theo-
rem 2 holds, but Var[F, |C,] = uC,, where u is a
constant; that is, the conditional variance is propor-
tional to C,. In Appendix B we show that

+ E

However,

= E

Sec ( « - if Se

-nn vc\ 1

- . (2)

« Sec n-2

+ -
n See

. (3)

Clearly Si is biased, but since (n — !)/« +
iC - nf/Sec ~ I the first terms on the right-hand
sides of (2) and (3) are nearly the same. Unfortunately,
the second terms differ in sign for all values of «, and
decrease in absolute value with n at different rates.
Thus, nonconstant conditional variance leads to a
biased CV variance estimator.

In the simulation study (Section 8) we include
examples with nonlinear regression and nonconstant
conditional variance.

The computation required to calculate the CV
point, variance and interval estimators is clearly
greater than the computation required for the corre-
sponding crude estimators. The most significant ad-
ditional calculation is G = (X 'Xr ' . However,
the difficulty of this calculation depends only on
q, the number of controls, not on «, because G is
(q + \) X {g + 1). Typically q is small in the range
of 1 =e ^ ^ 5.

3. BATCHING

For integers m and A: such that km = n, define the j th
batch mean to be

l.,{k) = Z,

fory = 1 , 2 , . . . , ^ . The batch means are, of course,
i.i.d. because so are the \Z,\. If the original process
is normally distributed, then so are the batch means.
However, when the original process is not normal, the
batch means will tend to be more nearly normal as
the batch size m increases (the number of batches k
decreases). This property suggests forming the
CV estimator from the k batch means Zj{k), J =
1,2 k.

Batching is a well known output analysis method
for estimating the variance of the sample mean of a
dependent output process (e.g., Schmeiser 1982). In
that context, it is hoped that the batch means wil!
more nearly be independent and normally distributed
than the original process. Our concern here is only
the nonnormality of [Z, i, which may result in 6, being
biased.

The penalty for batching is a loss of degrees of
freedom. Nelson (1989) quantified this penalty with
respect to the performance of the point and interval
estimator when the iZ, j process is actually multi-
variate normal. Let 6i)(k) be the linear CV point esti-
mator based on k batch means of size m = n/k, so
that 8^ = ds(n).
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Theorem 4. (Nelson 1989. Result 1) Suppose that
|Z| Z,,! are i.i.d. q + 1 variate normal vectors. If
0<q<k<n. then

(k - 2){n - q - 2)
{n- 2)(A: - q - 2)

> 1.

The ratio in Theorem 4 quantifies the loss in vari-
ance reduction due to batching when batching is not
needed. An important conclusion is that the loss is
negligible when '̂ > 60 for 0 < ? ^ 5, no matter how
large n is. Nelson (1989) also examined properties of
the confidence interval and found that a similar state-
ment holds: There is little penalty for batching pro-
vided that no fewer than 30 batches are used: up to
60 batches are worthwhile if as many as 5 controls are
employed.

When the (Z, j process is not multivariate nor-
mal, batching tends to reduce point-estimator and
variance-estimator bias, and improves the coverage
probability of the confidence interval, because the
batch means are more nearly normal. Since the pen-
alty for batching when it is not needed is negligible,
provided the number of batches is not too small, it
appears that the outputs should always be batched to
between 30 and 60 batches when « is large. Within
this range, the number of batches, k, should be selected
so that it divides n evenly. The additional computation
beyond the linear CV is slight: n vector additions and
k vector divisions. The difficulty of calculating G is
unaffected by batching.

4. KNOWN COVARIANCE CONTROLS

The coefficient 0 that appears in the expression for
6/ is an estimator of ^ = ZcrCci, the vector that
minimizes Var[^( — (C — fi)'0] overall g x 1 vectors
ff, regardless of the assumptions that apply. Although
acY is rarely known in practice. S t t is often known or
can be calculated (e.g., Bauer, Venkatraman and
Wilson 1987. and the M/M/l example in Section 8).
Bauer proposes a CV estimator that makes use

where /? = So

n-2

ScY. The variance estimator is

n{n - 1) n(n - 1)

where 5?- = nSl- and

fl - (7 - 1 M l -

The associated confidence interval Is ^A: ± fh, where
^K = t../2in - g - U^A. The following theorem
summarizes the theoretical properties provided or
implied by Bauer.

Theorem 5. (Bauer 1987) Suppose that [ Z , , . . . , Z«|
are i.i.d. q + 1 variate normal vectors with mean vector
(O,fi'y and variance X7J,. Then

n + g - I
n - 1

1 -
n-2
+ q- \

and

Notice that, under the assumptions of Theorem 5,
Var[̂ i_] < Var[^A] < Var[^t ] if /̂ "̂  > g/in — 2). the
same requirement for a variance reduction as the
hnearCV. However, Var[eV] =s Var[0A] >S Var[fl;] if
R'^q/in-2).

The weaker assumption i of Theorem 2 is not
sufficient to guarantee that 8^ is unbiased. In fact,
properties unique to the normal distribution are crit-
ical in the proof of unbiasedness. The confidence
interval proposed by Bauer is approximate, even
under the assumptions of Theorem 5. However, it was
found to be robust in extensive experiments by Bauer
(1987) and Bauer, Venkatraman and Wilson (1987).
For that reason Â was included in this study. The
computation required is somewhat more than the
linear CV because of the calculation of Si c. which
cannot be obtained directly from G.

5. JACKKNIFING

Jackknifing is a well known resampling technique that
is used to reduce point estimator bias, provide an
estimate of standard error, and yield a robust confi-
dence interval For a review of jackknifing see Efron
(1982) and Efron and Gong (1983): for a discussion
of jackknifing in simulation see Lavenberg. Moeller
and Welch (1982) and Bratley, Fox and Schrage
(1987).

We begin with a traditional presentation of jack-
knifing as it applies to the control variate problem.
Let 61' be the linear CV computed without Z,; that
is, the linear CV computed from n — 1 replications,
excluding the /th. The superscript - / is used through-
out to indicate the absence of the /th replication. Let
6, = n6j_ - {n - \)6i', which is sometimes called the
/th pseudovalue. The jackknife point and variance
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estimators are, respectively

and

- 1))

with associated confidence interval Bj ± where

Before we establish properties of these esti-
mators we present a computational result. Let JS, be a
{q + 1) X 1 vector whose /th element is 1, and other
elements are 0, and let I,,xn be the « x n identity
matrix, Let H = \„^„ - XGX' = (//„). Finally, let V
be an n X 1 vector whose /th element is

y. =

In Appendix B we show that Oj = 6i_ + {{n —
l)/n)V'HY = St + {{n ~ l)/fl)V'«. where t = Y -
X0 is the vector of residuals from the least-squares
regression that forms 0,. In terms of computation, the
implication is that only one matrix inversion, G, is
required to compute Sj.

The following theorem establishes the asymptotic
normality ofBj, which justifies, to some extent, using
the / distribution to form confidence intervals. In the
simulation literature the results cited to establish nor-
mality apply when X is a fixed design matrix (e.g..
Miller 1974 and HinkJey 1977). While it is possible to
prove the asymptotic normality of ,̂/ using the results
of Arvensen (1969) for C-statistics, the computational
formula above permits a direct proof.

Theorem 6. As n -^ «, N(0, where

The next theorem establishes some properties of 0j
in smalt samples.

Theorem 7. Suppose thai condition i of Theorem 2 or
Equation (1) holds. Then E[6j ] = 6. I/conditions i and
ii hold, then

—

Theorem 7 shows that Oj is unbiased when the
regression is linear or quadratic. In general, jackknif-
ing eliminates O(«"') bias, which is precisely the
quadratic case. Theorem 7 also shows that jackknifing

tends to inflate point-estimator variance. We examine
this inflation in more detail in Theorem 8. which
quantifies the penalty for jackknifing when it is least
needed.

Theorem 8. Suppose that conditions i and ii of Theo-
rem 2 hold. Then Var[0y] - Var[e"i] =

Thus, as n increases, the variance inflation becomes
small relative to the variance of ^^.

Regarding the variance-estimator Sj, results due to
Efron and Stein (1981) suggest that S) will tend to
overestimate

6. SPLITTING

The linear CV estimator 6i_ = Be - (C - n)'0 would
be an unbiased estimator of £*—even in the absence of
condition i of Theorem 2—if C and 0 were independ-
ent, which they are not in general. However, they are
independent '\f 0 is computed from a preliminary or
pilot sample, rather than from Z,, . . . , Z^. Ripley
(1987) analyzes this approach: If/?* is the estimator
of ;S based on an independent sample Z*, . . . , ZJ-,
then under the assumptions of Theorem 1

«* - 2

n* — q — 2

Even if a pilot experiment is not feasible, Ripley's
analysis suggests that, when n is quite large, a reason-
able strategy might be to dedicate a portion of the
sample to estimate 0.

A related approach, which was first suggested by
Tocher (1963), is to split the sample Z|, .. . , Zn into
two or more groups, compute an estimate of/? from
each group, then exchange the estimates among the
groups. The primary difficulty with this approach is
to compute a variance estimate. In this section, we
consider an extreme form of splitting—splitting into
n groups—that permits a variance estimate and
approximate confidence interval. Our point estimator
is similar to Beale {1985).

The splitting estimator is

with variance estimator

1=1

and associated confidence interval .̂s ± Ms. where
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^s = Lni" — ^)S.s and -/' indicates calculations with-
out Z,. Clearly .̂v is unbiased, and 5.1 is the appropriate
variance estimator under the (incorrect) assumption
that the {̂ , | are independent. We establish additional
properties below.

Let W be an n X 1 vector whose ith element is

w, = "̂' "'

In Appendix B we obtain a computational result that
is analogous to jackknifmg: §s = di. + H ' W ' H Y ==
§,_ + n"'W'<. Thus, the computation required to
calculate <̂, is about the same as dj. This formula can
be used to establish properties analogous to those
estabhshed for §>:

Theorem 9. As n^^ =», - 0)=^ N(0, o-̂ ). where

Theorem 10. Suppose that conditions \ and i\ of Theo-
rem 2 hold, then

— E[W'HW]

Like the jackknife, splitting inflates the variance.
The following theorem shows that, as n increases, the
inflation from splitting is of the same order as jack-
knifmg. However, the simulation results reported later
indicate that §s is superior to h for small n.

Theorem 11. Suppose that conditions i and ii of Theo-
rem 2 hold. Then NB.T{BS] - Var[e",.] =

The next result justifies using S% to estimate

. IfTheorem 12. /^j « -> w, «5"i-^ ff^ = (1 -
conditions \ and ii of Theorem 2 hold, then

— - ( - ^ E [ W ' H W ]
n + q - I

n - 1

n(n - 1) *

The first part of Theorem 12 shows that 51 is a
reasonable estimator in large samples. The second part
is a small-sample result for a special case. If we also
assume that the [Z,| are normally distributed, then
Theorems 1 and 10 imply that

n - q -

W e c a n s h o w that {n + q - \ ) l { n - \ ) < { n - 2)/{n -
q - 2) when ^ > 0, which means that Si underesti-
mates the leading term in Var[^s] in small samples.
The simulation results bear out this tendency.

7. BOOTSTRAPPING

For completeness, we describe how bootstrapping
(Efron 1982) can be used to form a CV estimator.
However, we also discuss why we did not include the
bootstrap in the full simulation study.

Let JZ], . . . , Znt be a realization of IZi. . . . , ZHI,
and let Fbe the probability distribution that puts mass
l/«on each of {z , , . . . , z,,}. Consider drawing an i.i.d.
sample of size n with replacement from P. If we let a
subscript F denote calculations with respect to such
sampling, then the bootstrap point estimator is
EF{BL\, with associated variance estimator Varjt[^t].
Here 6i is the linear CV computed from a sample of
size n from F.

Directly calculating these estimates Is computation-
ally expensive when n is large because there are ('"T,^)
distinct samples of size n from F, and the linear CV
must be computed for each sample. The standard
approximation is to draw h > n random samples of
size n from 7-"and let estimates replace the calculations.

Let fit be the linear CV computed from the / t h
bootstrap sample of size «, for / = 1 ,2 , . . . , ^ . Then
the bootstrap point and variance estimators are,
respectively

and

(E stands for Efron). As ^ ^ «> these sample versions
converge to the bootstrap estimates defined above.

Computational expense is one obvious drawback of
bootstrapping for CVs, even when exact calculations
are replaced by sampling. Bootstrapping requires the
equivalent of drawing b samples from a multinomial
distribution with n equiprobable cells, and then com-
puting h linear CV estimators 8'^_. Efron recommends
b in the range of 50 to 200.

An additional problem is to construct a confidence
interval. The theory of bootstrap interval estimation
is still developing, and there is currently no standard
procedure. A crude confidence interval is B,: ± ~.,,2Si:,
where z«/2 is the 1 — a/2 quantiie of the standard
normal distribution. A different interval can be
formed by estimating the a/2 and 1 — a/2 quantiles
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of the random variable 6L from the b i.i.d. bootstrap
estimates §].,. ..Jl; e.g., the interval {d\'_\ d^) where
/ = L/ja/2J + I, M = L/j(I - a/2)\ + I, and 6'C is
the / t h largest value of 6L, • • •, &'!.. Refinements of
this interval have been proposed (e.g., Efron and
Tibshirani 1986). However, it is apparent that an even
larger number of bootstrap samples is needed for
interval estimation than for point and variance
estimation.

Since computational expense makes it impractical,
and since there is not yet a satisfactory interval esti-
mator, we did not include QE in the full simulation
study reported below. We did perform some experi-
ments and the results are summarized.

8. SIMULATION STUDY

In this section, we summarize the results of an exten-
sive simulation study of the estimators described ear-
lier. Rather than use only systems simulation
examples, we also chose several models of simulation
output processes. These models represent factors that
afTect CV performance, including: the joint distribu-
tion of Z; the marginal distribution of Y\ the regres-
sion of y o n C, E[>'|C]; the conditional variance of
Y given C, Var[y|C]; the sample size. «. and the
number of controls, q\ and the squared multiple cor-
relation coefficient, R'. In all cases, models were
selected for which B is known so that confidence
interval coverage could be evaluated. The models, the
experiment design, and the results are described below.
All experiments were performed on a Pyramid 90x
supermini computer, and all analysis, including
graphics, was done using the S-system (Becker and
Chambers 1984). Random variates were generated
using either the IMSL library, version 10, with the
default constants for random number generation, or
the S-system.

8.1. Models

To investigate the penalty for applying CV remedies
when they are not needed, the multivariate normal
distribution was used as a model. Multivariate normal
vectors were generated using IMSL routines chfac and
mmvn to compute the Cholesky decomposition of
2zz and to generate the multivariate normal variates,
respectively.

The multivariate Pearson Type VII distribution
(Johnson 1987) is an elliptically contoured distribu-
tion with a linear regression, both properties shared
by the normal distribution. However, unlike the
normal distribution, Var[y|C] is not constant. The
variance-covariance matrix can be specified, and the

shapw of the marginal distributions can be controlled
through a single parameter, w. A FORTRAN program
was written to implement the algorithm of Johnson
(p. 118). IMSL routines chfac, mmvn, and mchi were
used for variate generation.

Plackett's bivariate distribution (Johnson 1987) also
has a linear regression, but the marginals are uniform
on the interval (0, 1). Other marginals can be obtained
through the method of inversion: we used exponential
marginals with mean I. Dependence is controlled
through a single parameter, * . A FORTRAN program
was written to implement the algorithm of Johnson
(p. 193); IMSL routine rnun was used to generate
uniform (0, 1) random variates.

To obtain more direct control over the factors of
interest, we extended the "functional approach" of
Kottas and Lau (1978) for bivariate random variables
to multivariate random variables; we call this the
extended K.L distribution. Let Q be a <? x 1 random
vector having distribution N(O^xi, Sec), where O,xi is
a ^ X 1 vector of zeros, and let t, be a random variable
with mean 0 and variance 1 that is independent of C,.
Then for scalar TJ, ^ X 1 vectors l̂  and 0. and q y- q
symmetric matrix A, all constants, let

Y- T; + -H C ; A C , +

If we further restrict A to be diagonal, and let the
operator sum add all the elements in a matrix, then
the following properties can be derived by direct
calculation

Var[ y,] = <t> 'Sec* + ̂ ' Sccl^ + 2 sum[ASrrA]

Var{y,|C, = c,] = (c,»^

and

Cov[C, y j = Sccî .

The regression of y on C and the conditional variance
are quadratic. The conditional distribution of Y is
determined by the marginal distribution oft; e.g., if*
is normally distributed then the conditional distribu-
tion of Y is normal. When designing experiments
Sex: can be specified directly and R^ controlled indi-
rectly through the parameters ^, A and 0. For exam-
ple, if Sec = ItfXtf. then

The controls, C, were generated using the S-function
rnnorm, and e was generated using either S-function
rnorm or rgamma.
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The distribution-sampling models above were
selected to test the linear CV and remedies over the
factors that affect their performance, factors that are
usually not controllable in systems simulation exam-
ples. However, three systems simulation examples
were also selected. The selection was based on com-
mon use, rather than because they are representative
of real problems. Although these examples are less
controllable than the distribution sampling models,
they may include features not captured in those
models.

The system simulation examples are a classical
machine-repair system, an (s, S) inventory system,
and an M/M/1 queue. Only results for the queueing
system are reported here. The arrival rate to the queue
is 0.9 customers/unit time and the service rate is
1 customer/unit time. Let 6 be the expected delay in
the queue for the lOth arriving customer. The four
controls are: the sum of the interarrival times of the
first 10 customers, the sum of the service times of the
first 9 customers, the interarrival time of the 10th
customer, and the service time of the 9th customer.
The VartC] can be calculated directly for these con-
trols, so OK can be employed. IMSL routine rnexp was
used to generate exponential random variates.

8.2. Experiment Design

Large d îta sets of i.i.d. vectors were generated from
the models just described. An experiment, as defmed
here, used the first mn vectors of a data set to compute
m realizations of the six estimators 0^ . §t, Bsik). ^A,
6j and .̂v, and their associated variance and interval
estimators, each based on a sample of size n; in some
cases 6i: was also computed. We call the m subsets of
n vectors macrorepUcations. and the n vectors within
a subset microreplications.

In initial experiments, m = 100 macroreplications
were used for reasons described below; some follow-
up experiments set wi = 400. The number of micro-
replications was n = 10- 30 or 60. When « = 10 there
are at least 4 degrees of freedom for each estimator.
Sample sizes larger than « = 60 were not used because
the results in Section 3 imply that larger samples
should first be batched to form 30 to 60 batch means.
For hlk) we set k = 10, 10 and 30 when n = 10, 30
and 60, respectively. The number of controls ranged
from q= 1, 2 , . . . , 5, which was chosen by a subjective
judgment that there are rarely more than five effective
controls in a simulation.

The number of macroreplications, m, was chosen
to allow confidence interval and variance compari-
sons. In all experiments, the nominal confidence level
was 1 - a = 0.95. If the interval estimator's true

coverage probability is close to the nominal level, then
the standard error of the estimated coverage, based on
m macroreplications, is V(O.95)(O.O5)/m, which is
approximately 0.023 when m = 100 and approxi-
mately 0.0 II when m = 400. This was considered
adequate resolution, and it provides a guide for decid-
ing which observed differences are significant.

Because CVs is a variance reduction technique,
point-estimator variance comparisons are especially
important. Rather than compare the values of the
variance estimators (e.g.. Si versus Sj), which may
be biased, we used an unbiased estimator of variance.
To be specific, if ^i, . . . , fl^ are the m values of an
estimator 6, then we estimate Var[^] for the purpose
of comparison by Sj = {m — 1)"' £;'-i {Bt - 6)^, where

If the {Y,\ are normally distributed, then

w ic-2 1 -, yar[6cf la\-

implying that the coefficient of variation of S\^ is
^2/{m — 1), or approximately 0.14 when m = 100
and 0.07 when m = 400. We exp>ect the variance of
the CV estimators to be smaller than the variance of
Be, so Var[5| ] for the CV estimators should be smaller
as well. Thus, designing experiments based on the
crude estimator is conservative. The coefficient of
variation was used as a guide to determine the number
of significant digits to report in Table II below, and
this resolution was considered adequate to evaluate
differences, particularly if we also consider the favor-
able effect of comparing estimators computed from
the same data set.

Recall that

27.7 ~
ay

As far as possible we controlled experimental condi-
tions across models. The following covariance mat-
rices were used for several models

1 0.7 0.5 0.3 0.2 0.1

2 a _
7.7. —

0.7
0.5
0.3
0.2
D.I

1
0.7
0.5
0.3
0.2
0.1

I
0
0
0
0

0
1
0
0
0
0

.7

.2

.1

0
1
0
0
0

0.5
0.2
I
0.08
0
0

0
0
1
0
0

0.3
0.1

0
0
0
I
0

0.08
1
0
0

0.
0
0
0
1
0

0
0
0
0
1

2 0
0
0
0
0
1
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1
0.5

0.5
1

1 0.7
0.7 1

In 2zz the controls are mutually independent and
R' = 0.88. In Xiz some of the controls are dependent
and R^ = 0.72. The covariance vector. <Tyc = (0.7.0.5.
0.3, 0.2. 0.1). was selected to examine the efTect of
adding controls from the most to least effective.

Table I summarizes the experimental cases for the
distribution-sampling models. A boldface constant
with a subscript denotes a matrix with all elements
that are constant. For the Pearson examples the value
of o! is the smallest value that permits 2/^, to be
specified; we want w small because as ui increases the
Pearson Type VII approaches the multivariate nor-
mal. In the first two extended KL examples only the
covariance matrix of the controls could be matched
with the normal and Pearson examples: 2(( implies
R' = 0.78. and 2iV implies R' = 0.81. In the last four
bivariate KL examples R- = 0.5. In all the KL exam-
ples ( was modeled as a N(0. 1) and as an ^(1) - I
random variable, where ^'{l) is a random variable
with an exponential distribution and mean I. For the
Plackett example R' = 0.84 for uniform marginals
and 0.76 for exponential marginals.

8.3. Results

We do not attempt lo present detailed results from
such a large simulation study. Instead, we summarize
general conclusions based on studying all the results,
and present details of some typical examples.

8.3.1. Point Estimators

All the point estimators performed similarly in terms
of variance, bias and mean squared error when the
sample size reached n = 60. There were clear differ-

ences in many data sets when n = 10, which often
persisted when « = 30.

The estimated MSE[^/] was less than MSE[eV] in
all the data sets at all sample sizes. However. Bias[^; ]
was significant for the extended KL examples with
quadratic regression and the M/M/1 queue example,
particularly at « = 10. When bias was present for 6[_,
it was also present to the same degree in 0j<; however,
in cases with nonnormal data, Bf, sometimes showed
bias when Bt_ was unbiased. In all the examples with
nonlinear regression Bj showed no bias; recall that dj
is unbiased when the regression is quadratic. Of
course, 8s is always unbiased.

Variance comparisons were surprisingly consistent
across examples, with Var[^,.] always less than
Var[0r]. The W^r[Bsik)] was sometimes significantly
larger than the Var[^/ ] when n = 30 and k= 10, but
negligibly different when n = 60 and k = 30. The
Var[̂ A:] was always greater than or equal to Var[fft],
and seemed to be much lai^er in the examples with
nonconstant conditional variance. In some cases {see
the example below), the variance of §K was signifi-
cantly larger than the variance of the crude estimator,
and 9n was often beaten by Bj and ^.s.

At all sample sizes it appeared that Varffi^] «
Var|i9/]. and at« = 10 the inequality was nearly always
strict. The Var[fl",v] typically was less than Vdsibc], and
had the same variance as B, for n = 30 or 60.

The effect of changing q. which we examined by
adding controls one-at-a-time from most to least ef-
fective, was the same for all CV estimators.

Figures 1. 2 and 3 show box plots of m = 100
realizations of each estimator for samples of size « =
10 and 60. The box in a box plot contains the middle
half of the data (0.25 to 0.75 sample quantiles), the
center line is the median, and the whiskers extend to
± 1.5 times the interquartile range beyond the median,
or to the most extreme value, which ever is least;
an asterisk indicates a value beyond ±1.5 times the

Table I
Experiment Cases for Distribution-Sampling Models

Distribution Covariance Matrices Additional Parameters

Normal
Pearson Vll :
Peanion VII :
Extended KL :
Extended KL '.
Extended KL
Extended KL
Extended KL
Extended KL
Plackett

E M , -V = a, b, c. d
Eiz, x= a,b
Zzz. x = c,d
l'tx:,x~a,b
ScT. x= a, b

w ^ 5
io ^ 3
» = - 5 .

n =0, ^
n =0. j

1? = -Vi,

1, = - V ^

• = 30

^ ' = (1.2.
y = (1.2,3.
[.= s/i^, A

i, ^ = -ŷ ^

3.4,5), A =
4,5). A = 0,
= 0, « = y/V:

. A — s/*^, 4

i ^ /3- A ^
\, A=v/^.

_
= V3sx
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interquartile range. A line has been drawn across the
entire plot at height 6.

Figure 1 shows the results for multivadate normal
data with covariance matrix S/v.. This model is one
for which none of the remedies is needed. The variance
inflation from jackknifing, relative to fl^., is apparent
at the smaller sample size. Although §i_ is superior at
both sample sizes, fl.v is close.

Figure 2 shows an analogous plot for Pearson Type
VII data with the same covariance structure as the
data in Figure 1. This model has linear regression, but
nonconstant conditional variance. The estimator Â
performs poorly in this example, as it did in several
examples with nonconstant conditional variance.

The extreme value of 6ji in Figure 2a is worthy of
discussion. Because Sec = l5x5,/?= S o . Examination
of the data set that yielded the extreme value revealed
one vector whose elements were exceptionally large in
absolute value. This resulted in the elements of S o
being different from <FC> by an order of magnitude.
The same effect was present in Sec, but was a com-
pensating effect for 0 since 0 = S^Sc i . Box plots for
the same model with m = 400 macroreplications
showed several more extreme points for Â . This result
contradicts the conventional wisdom that variance
is always reduced by incorporating all available
information.

Figure 3 shows analogous plots for the first extended
KL example in Table I with 2cc the covariance matrix
of the controls and ( normally distributed. In addition
to nonconstant conditional variance, the regression is

quadratic in this model. The resulting bias is apparent

Table II gives complete numerical results for these
three examples and the M/M/1 queue, including
estimated MSE. variance, bias, expected halfwidth.
expected value of the variance estimator, and
coverage.

8.3.2. Variance Estimators

In each experiment, we compared the m variance
estimators to Sj to assess how well each one estimated
Var[^], where ^is generic for any of the six estimators.
The estimator Si, and thus Sltk), performed well
throughout. When n was small. SJ tended to over-
estimate Var[^j] substantially, while 5 | tended to
underestimate Varf^^] slightly. In the data sets where
Varl^/,] was large relative to the other estimators. Si
underestimated the true variance. Some of these traits
are apparent in the confidence interval comparisons
below.

8.3.3. Confidence Intervals

Point-estimator bias from nonlinear regression was
the most significant factor that affected the coverage
probability for 6,. but even that was not a major
problem when n = 60. Batching improved coverage
somewhat. The confidence intervals associated with
Of: and $j often showed robust coverage, but their
halfwidths were consistently larger than the other
interval estimators. The coverage probability for

o

9

9

crude linear batch known jk split ' crude linear batch Known jk split

(a) (b)

Figure I. Box plots of point estimators for multivariate normal data with Xzz and a) n = 10. b) « = 60.
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Figure 2. Box plots of point estimators for Pearson type VII data with S3:j. and a) « = 10, b) « = 60.
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Figure 3. Box plots of point estimators for extended KL data with 2cc and a) n = 10, b) n = 60.

the interval associated with ^s was often lower than
the nominal level when n = 10, typically about 0.88.
This can be explained partly by underestimation of
the variance, as mentioned above. The effect of non-
normal marginal distributions was only apparent
when n was small.

Figures 4. 5 and 6 show midpoint by halfwidth plots
for pairs of confidence intervals {Kang and Schmeiser,
1990). Points inside the 45-degree angle with the
vertex at 8 represent intervals that cover 8. There are

100 confidence intervals of each type in a plot, so
coverage can be assessed by counting the number of
points outside the lines. Points that are lower (shorter
halfwidth) and centered within the 45-degree angle
(midpoint close to 6) are preferred. In Figures 4 and
5 the circles are §i^ ± HL intervals, and the pluses are
a remedy.

Figure 4 is based on the same multivariate normal
data as Figure la (sample size n= 10). The two plots
are fl/. versus dj and .̂v, respectively. The outstanding
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Table II
Results for Selected Experiments Based on

m = 100 Macroreplications
Measure

Multivariate Normal (a)
MSE
Variance
Bias
Average Variance"
Haltwidth
Coverage

Multivariate Normal (a)
MSE
Variance
Bias
Average Variance
Halfwidth
Coverage

Crude

. n = 10
0.130
0.130

-0.008
0.097
0.687
0.92

. n = 60
0.0171
0.0171

-0.0021
0.0171
0.2605
0.98

Pearson VII (a), n = \0
MSE
Variance
Bias
Average Variance
HalfSvidth
Coverage

0.090
0.086
0.067
0.090
0.646
0.94

Pearson VII (a), n = 60
MSE
Variance
Bias
Average Variance
Halfwidth
Coverage

Extended KL (a), n =
MSE
Variance
Bias
Average Variance
Halfwidth
Coverage

Extended KL (a), n =
MSE
Variance
Bias
Average Variance
Halfwidth
Coverage

M/M/1, n = 1 0
MSE
Variance
Bias
Average Variance
Halfwidth
Coverage

M/M/1. n = 60
MSE
Variance
Bias
Average Variance
Halfwidth
Coverage

0.0189
0.0188
0.0097
0.0166
0.2529
0.93

10
7.6
7.6
0.2
6.9
5.7
0.95

60
1.02
1.00
0.13
1.20
2.18
0.99

0.562
0.562

-0.011
0.542
1.584
0.91

0.1089
0.1070
0.0426
0.0982
0.6216
0.92

Linear

0.043
0.042
0.012
0.037
0.484
0.96

0.0016
0.0016

-0.0007
0.0022
0.0937
0.98

0.023
0.023
0.011
0.020
0.344
0.92

0.0021
0.0021
0.0023
0.0019
0.086 i
0.92

3.8
2.7

-1.1
3.2
4.5
0.95

0.26
0.23

-0.17
0.26
1.02
0.96

0.480
0,411

-0.262
0.440
1.505
0.93

0.0369
0.0369

-0,0021
0.0315
0.3535
0,92

Batch

0.043
0.042
0.014
0.037
0.485
0.96

0.0020
0.0020
0.0007
0.0025
0.1028
LOO

0.023
0.023
0.011
0.020
0.344
0.92

0.0022
0.0022
0.0004
0.0021
0.0930
0.96

3.8
2.7

-1.1
3.2
4,5
0.95

0.31
0.28

-0.15
0,28
L08
0.95

0.480
0.411

-0.262
0.440
1.505
0.93

0.0375
0.0375

-0.0040
0.0331
0.3700
0.93

Known

0.072
0.072

-O.OIO
0.076
0.752
0.97

0.0039
0.0039

-0.0003
0.0037
0.1216
0.97

1.898
1.894
0.067
0.067
0.686
0.91

0.0152
0.0151
0.0112
0,0034
0,1154
0.87

4.9
4.2

-0.8
5.7
6,4
0.99

0.29
0.27

-0.13
0.36
LI9
0.95

0.681
0.613

-0.220
0.446
1.651
0.89

0.0731
0.0728

-0.0167
0.0369
0.3825
0.88

Jackknife

0.141
0.141

-0.019
0,149
0.707
0.96

0.0016
0.0016

-0.0005
0.0024
0.0969
0.99

0.051
0.051

-0.007
0.064
0.480
0.95

0.0025
0.0024
0.0031
0.0022
0.0932
0.91

9.1
9.1

-0.1
12.0
6.8
0.96

0.25
0.25
0.00
0.32
LI2
0.98

0.800
0.792

-0.089
1.146
2.123
0.97

0.0380
0.0376
0.0206
0.0363
0.3777
0.93

Splitting

0,066
0,066

-0.002
0.046
0.440
0.88

0.0016
0.0016

-0.0006
0.0022
0.0930
0.98

0.044
0.044
0.009
0.043
0.398
0.88

0.0024
0.0024
0.0031
0.0022
0.0934
0.91

5.2
5.1
0.2
5.0
4.5
0.94

0.24
0.24
0,00
0.29
1,06
0,97

0.574
0.571

-0.059
0.494
L458
0.90

0.0379
0.0374
0.0226
0,0328
0.3596
0.91

" Average Variance is the average oflOO variance estimates and should be compared
to Variance.
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Figure 4. Confidence interval comparison. Midpoint by halfwidth plots for muitivariate normal data with Xzi
and n = 10. Circles for St, versus pluses for a) §j and b) $s.
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Figure 5. Confidence interval comparison. Midpoint by halfwidth plots for Plackett distribution data with
exponential marginals and n = 30. Circles for 6,_, versus pluses for a) d(_- and b) 6B(, 10).

features are the excessive halfwidth for the jackknife
estimator and the undercoverage for splitting. This
was typical behavior for many data sets at the small
sample size.

Figure 5 is based on the bivariate Plackett distribu-
tion with exponential marginals when n = 30. The

two plots are B,, versus dc and dfl(\O), respectively.
Positive dependence between mean and variance es-
timators is apparent in Figure 5a because the intervals
that fail to cover 6 are too short. Batching appears to
improve coverage somewhat. In this example all the
intervals appear to have acceptable coverage.
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1.0

Figure 6. Confidence interval comparison. Midpoint
by halfwidth plots for M/M/1 data with
n = 30. Circles for ds versus pluses for dj.

Figure 6 shows a plot of ^j versus ds for the M/M/1
data when n = 30. with the circles representing
8s ± Hs- The interval based on splitting appears to
have nearly correct coverage with shorter halfwidth:
this was typical of many examples when « = 30. When
n = 60, all the intervals had acceptable coverage in all
the examples.

8.3.4. Bootstrap Estimators

We computed ^A and the two associated confidence
intervals for a very limited set of experiments on
muitivariate normal and Pearson Typre VII data. In
these experiments the bootstrap estimator seemed to
perform well when n was as large as 30. comparable
to^.v. When « = 10, nearly singular X'X caused erratic
behavior. No general conclusions should be drawn
from these experiments.

9. RECOMMENDATIONS

Based on the theoretical and empirical results of this
study we make the following tentative recommen-
dations based only on sample size n and assuming
q ^ 5 controls. Certainly there are extreme situations
for which these recommendations should be modified,
but they provide reasonable guidance when there is
no other information available.

1. If rt > 60, batch the data as close lo k = 60 batches
as possible, then use i9s(/c) and its associated vari-

ance estimator and confidence interval. We saw no
situation in which the standard linear CV did not
work well when the sample size was 60.

2. If n is near 30. use Os and its associated variance
estimator and confidence interval. This point esti-
mator is always unbiased, its variance is nearly the
same as d,, provided that n is not too small, and
the variance estimator and confidence interval are
reliable when n is not too small.

3. If n « 10. SI, is the most stable point estimator, but
ds also beats 6c in terms of variance, and it is
unbiased. There is an undercoverage problem for
§s ± Hs, however, due to underestimation of the
variance by 5" .̂ We recommend ds as the point
estimator if bias is suspected to be severe, and 8t
otherwise. We recommend none of the confidence
intervals.

4. We do not recommend ^A:- The estimator 6j seems
to be dominated by ds, except for low coverage
when rt = 10.

APPENDIX A

Proofs

Proofs of selected theorems and lemmas needed to
support the proofs are given in this appendix. Proofs
of the other theorems are in Nelson (1988) or the
references.

Lemma Al

G = n

in - l)"'SEc

Proof. See Theorem 8.2.1 in Graybill (1969).

Lemma A2. IfX has rank q + 1 with probability I,
then the matrices G and XGX' are positive definite,
and H is positive semidefinite with probability 1.

Proof, The results cited in the proof are from Seber
(1977). Since the matrix X has rank q + 1 with
probability 1. X'X is positive definite (A.4.6), which
implies that G is positive definite (A.4.3). which in
turn implies that XGX' is positive definite (A.4.5).

The matrix XGX' is idempotent. which implies that
H = Î x,, - XGX' is idempotent (A.5.3). Since H is
also symmetric, it is positive semidefinite (A.5.4).

From here on we assume that X has rank q + 1 with
probability 1.



Lemma A3

8IGX, = n-' + (

E [ 5 ; G X , ] = \/n

- ir'(C - C)'

Proof. The expre^ions for 5fGX, and X,'GX; are
directly calculated using Lemma Al. Since

I

and since the |fiiGX/| are identically distributed, their
common expectation must be \/n. Similarly, S"_,
X,'GX, = q + 1, so their common expectation must

Lemma A4. The diagonal elements « /H. //„ = I —
X/GX,, / = 1, . . . . n. have expeciation E[//,,] =
1 - (^ + l)/n. If conditions i and ii of Theorem 2
hold, then the [//„ | are strictly between 0 and 1.

Proof. The expectation can be calculated using
Lemma A3. Since G is positive definite (Lemma A2).
X; GX, > 0. which implies //„ < 1. On the other hand,
under conditions i and ii, a-H,, = Var[€, |C] > 0,
which implies //„ > 0.

Lemma A5. Under conditions i and ii of Theorem 2,
< and 7 are conditionally uncorrelated given C.

Proof

Cov[«, 7 1 0 ] = Cov[HY, GX'Y I C]

= H Cov[V ICJXG

= <T H X G = OflXtf+i.

Proof of Theorem 6. Since Bj = 9,_ + ((« - l)/rt)V'«,
and in light of Theorem 3, the result is proved if we
show that yfn{(n- l)/n)V'«-^O.

Recall that i, = Y, ~ X.'-y. From Lemmas Al
and A4
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We need the following intermediate results

C, — C => C, - M

(c, - ^ysckc, - C) =» (c - M)'2(" (̂c, - M)

Repeated applications of Slutsky's theorem, and the
fact that weak convergence to a constant implies
convergence in probability, gives 1///,, -^ 1 and

Proof of Theorem 7. Under condition i. EI^vIC] =
e + ((n - 1)/«)E|V"<|C1. But E[V'«|C] =
V'E[Y — XY ICJ = 0, which proves unbiasedness. If
Equation (1) pertains, then the result is immediate
after noticing that

-ltrace[AX(T;

= T} + - trace[A2ccl.

Suppose that conditions i and ii hold. Then

But

C] = Var[e,. | C] +
n - I

Var[V'HY|C]

since 8i_ and i = HY are conditionally uncorrelated
(Lemma A5). Finally

Var[V' HY | C] = V H Var(Y | C]H' V

= V'H(a-I)H'V

because H is symmetric, idempotent, and positive
semidefmite (Lemma A2). Thus

= Var[e;.J

Proof of Theorem 8. Lemma A4 implies that //„ can
be expanded in a power series. Thus. I', = 6{G\,/
H,, =S3 ;GX, (1 + X ; G X , ) , except for terms
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in expectation, from Lemma A3. Let D be the n x n
matrix with diagonal elements Da = X,'GX,. and ofT-
diagonal elements 0. Then V w {\.„^„ •¥ D)XG5i. which
in turn implies that

V HV == h\ « + D)XG5,

« - XGX')DXGa,

Thus

t-i

where the inequality holds because both I,,x« and
XGX' are positive definite (Lemma A2). In expec-
tation, the sum is nO{n~'^)O{n'^) = O{n'^) from
Lemma A3.

The proof of Theorem 9 is analogous to the proof
of Theorem 6. The proof of Theorem 10 follows the
same steps as the proof of Theorem 7.

Proof of Theorem U . The proof is similar to the
proof of Theorem 8. The random variable W, ==
(X, - 6,)'GX,, up to the terms of O(«"^) in expecta-
tion. Thus, W a DI,x, - XGdi. and

W'HW ^ - XG5,) - XGfi,)

using the fact that S"-i «. = 0-

Proof of Theorem 12. We first prove that nSl
From Lemma A6 we can write

1
n- i

(4)

Also, (rt - 1) U il = n(n- q- !)/(« - 1)5- -^
(Nelson 1988). The proof is com-

pleted by noticing that W\ -^ 0. which implies that
the other terms in (4) go to 0 in probability.

To prove the small-sample result we need some
intermediate results. First

The last summation is nO{n ^) = O{n ') in expecta-
tion. Thus. n-^E[W'GW] = O(n-^).

Lemma A6

(1

Proof. From the results in Appendix B we can write
- q- \ \ -

//„

n
We'

n

where the last equality comes from the proof of
Lemma A3. Using the fact that i = HY we can show
that

E[W'« W | C ] = ff=W HW.

And finally, we can write ST-i
2 2 i^j Wikitj Wj, so that

= (7-w'HW - 2

= W'«'W -



Thus

n + g -
« - 1 / n n{n - 1)

W'HW

n{n-
I W.Hij Wj - ,̂ W' HW.

Collecting terms and taking the expected value com-
pletes the proof.

APPENDIX B

Derivations

The computational expressions for dj and 6s, and
Equations (2) and (3), are derived in this appendix.
From Beisley, Kuh and Welsch (1980, Chapter 2),
7"' = 7 - GX,c,///,,. where e, = 7, - X/^ and //„ is
the //th element of H = !„.„ - XGX'. If we let 67' be
the first element of 7"', then 61' = 6,, -
Substituting this expression into

collecting terms, and noticing that e = HY, yields

'"^V'HY.
n /

The expression for ds is derived similarly by writing

then substituting the expressions above for 7"' and
Bl' and collecting terms.

Suppose that q = 1 and condition i of Theorem 2
holds, but Var[y, \C,] = eC,, where i' is a constant.
Let A be the n x n matrix with diagonal elements cC,,
and off-diagonal elements 0; that is, A = VarlY | C].
Notice that 5*z. = (n-'lix« - (C - *i)'(L'L)-'L')Y =
K'Y, where !]>,„ is a 1 x « vector of Is and L' =
((C, - C) , . . . , (C« - O). Then

C]] C]]

= E[Var[K'Y

because condition i implies that the second term
on the right-hand side is zero because E[$/, | C] is

Control

a constant. Now

Var[K'Y|C]

= K'Var[Y|

vC v(C
n '.

|C]K

- n) (C
In '
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(« - \fSlc
where we use the fact that L'AI,,^] = {« —
and L'AL = S^i (C - CfuQ. Thus

(C - Hf V S;L, ( C -

On the other hand. E[Sj] = E[E[5''GM | C]]
E[E[5-[C]G,,1, and

{n-2)E[S'\C] = E[Y'HY|C]

- trace[HA] + (X7)'H(X7)

= trace[HA].

Using Lemmas A! and A3

trace[HA]Gn

\

,

n Sec I (fi-\)-S,

Thus

+ I r
n Sec Jn — l] n — 1

J / « l
n Sec } {n-\fSce
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