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An ARTA (AutoRegressive-to-Anything) Process is a time se-
ries with arbitrary marginal distribution and autocorrelation
structure specified through finite lag p. We develop an efficient
numerical method for fitting ARTA processes and discuss its
implementation in the software ARTAFACTS . We also present the
software ARTAGEN that generates observations from ARTA pro-
cesses for use as inputs to a computer simulation. We illustrate
the use of the software with a real-world example.

D ependent, time-series input processes occur naturally in
the simulation of many service, communications, and man-
ufacturing systems. For example, the sizes of the demands
on an inventory system in successive periods are often de-
pendent because a large demand in one period implies that
fewer items will be needed in the following period. Ware et
al.[13] observed that the times between file accesses on a
computer network frequently exhibit burstiness, as charac-
terized by a sequence of short interaccess times followed by
one or more long ones. Similarly, Melamed et al.[9] observed
autocorrelation in sequences of compressed video frame
bitrates. Later in this article, we model a pressure variable of
a continuous-flow production line that is measured at fixed
time intervals; these measurements exhibit strong series de-
pendence.

Because of the lack of a widely available, general-purpose
method for modeling and generating time-series input pro-
cesses, simulation practitioners often approximate these pro-
cesses as sequences of independent random variables. This
practice may lead to serious errors in the output perfor-
mance measures of the simulation, as illustrated in Livny et
al.,[7] which examined the impact of autocorrelation on
queuing systems.

AutoRegressive-To-Anything (ARTA), which was intro-
duced in Cario and Nelson,[2] is a transformation-oriented
approach for modeling and generating a stationary time
series {Yt; t 5 1, 2, . . . } with an arbitrary marginal distribu-
tion and autocorrelation structure specified through lag p.
ARTA takes a process with a known and easily controlled
autocorrelation structure, the base process {Zt}, and trans-
forms it to achieve the desired marginal distribution for the
input process, {Yt}. The target autocorrelation structure of
{Yt} is obtained by adjusting the autocorrelation structure of
the base process. The base process is a standardized Gaus-

sian autoregressive process of order p, denoted AR(p). The
critical step in constructing an ARTA process is finding the
autocorrelations for the AR(p) base process, {Zt}, that yield
the desired autocorrelations for the ARTA process, {Yt}.

Cario and Nelson[2] established the theoretical basis for
ARTA processes, including the relationship between the
AR-process autocorrelations and the ARTA-process autocor-
relations. In this article, we apply that theory to develop an
efficient numerical procedure for fitting ARTA processes,
and we describe its implementation in the software ARTA-
FACTS (ARTA Fitting Algorithm for Constructing Time Se-
ries). We also describe ARTAGEN (ARTA GENeration), which
uses the output of ARTAFACTS to generate random variates
from the fitted ARTA process. ARTAFACTS and ARTAGEN are
Fortran programs available without fee at http://www.
iems.nwu.edu/ ;nelsonb/ARTA/ .

The article is organized as follows: Section 1 critiques
alternatives to the ARTA approach. Section 2 reviews the
basic theory of ARTA processes. The numerical procedure
and software implementation are presented in Sections 3–5,
and illustrated by an application. Conclusions are offered in
Section 6. Portions of this article were previously published
in Cario.[1]

1. Competitors
Stated abstractly, our goal is to construct a stationary time
series {Yt; t 5 1, 2, . . . } with given marginal cumulative
distribution function (cdf) FY, and given first p autocorrela-
tions r1, r2, . . . , rp, where rh 5 Corr[Yt, Yt1h]. There are two
basic approaches:

1. Construct such a process using properties specific to the
particular marginal distribution of interest, FY.

2. Construct a process {Ut; t 5 1, 2, . . . } with marginals that
are uniformly distributed on the interval [0, 1], denoted
U(0, 1), and whose autocorrelations are easily controlled.
Then form the input process via the transformation Yt 5
FY

21(Ut). This transformation guarantees that the desired
marginal distribution is obtained.

The first approach is not general because it requires exploit-
ing different properties for each marginal distribution of
interest. In addition, the sample paths that are obtained from
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these methods often exhibit unusual characteristics. See
Lewis et al.[6] for an example of this approach for time series
with Gamma-distributed marginals.

A number of articles have described methods based on
the second approach, among them Song et al.[12] and Wille-
main and Desautels.[15] However, the only method that ap-
proaches the generality of ARTA, and that has been imple-
mented in a general-purpose software package, is TES
(Transform-Expand-Sample, see Melamed[8]). Therefore, we
describe TES and the software TEStool in some detail.

The TES processes can attain the full range of feasible
lag-1 autocorrelations for a given marginal distribution, and
can frequently match autocorrelations at higher lags. TES1

covers the positive lag-1 range [0, 1] and TES2 covers the
negative lag-1 range [21, 0]. TES1 is defined as

Ut
1 5 HU0

1

^Ut21
1 1 Vt&

t 5 0
t 5 1, 2, . . .

whereas TES2 is defined as

Ut
2 5 HUt

1

1 2 Ut
1

t is even
t is odd

where U0
1 ; U(0, 1), and Vt is a random variable that is

independent of {U0
1, U1

1, . . . , Ut21
1 }. The notation ^x& denotes

modulo-1 arithmetic.
The key result is that these recursions define random

variables with U(0, 1) marginals, and the autocorrelation
structure of {Ut} depends only on the distribution of Vt.
Therefore, the autocorrelations can be manipulated by mod-
ifying the distribution of Vt without changing the marginal
distribution of Ut. However, altering the distribution of Vt

typically changes the autocorrelations of {Ut} at all lags.
One feature of a TES process is that extreme jumps may

appear in the sample path due to the modulo-1 arithmetic;
specifically, Ut21 can be very near 1 while Ut is very near 0,
or vice versa. A stitching transformation, Sj(Ut), mitigates
this effect. The function Sj, which is parameterized by j with
0 ¶ j ¶ 1, is

Sj~Ut! 5 HUt/j ,
~1 2 Ut!/~1 2 j!

0 < Ut , j
j < Ut , 1.

The process {Sj(Ut); t 5 1, 2, . . . } still has U(0, 1) marginals,
but no longer has extreme jumps. Unfortunately, stitching
changes the autocorrelation structure of Sj(Ut), and the
change is not a simple function of j.

TEStool allows the user to interactively change j and the
distribution of Vt, and then it displays the implied autocor-
relation structure. The user tweaks the distribution until the
autocorrelations of the input process match the desired au-
tocorrelations. Experience is required to adjust the distribu-
tion in a systematic way. TEStool is described in Melamed et
al.[9] An extension to TEStool, described in Jelenkovic and
Melamed,[4] provides automated fitting with respect to a
particular family of distributions for Vt when FY is restricted
to be the empirical cdf. Regrettably, the TEStool software is
no longer available.

Comparing TES to ARTA, ARTA processes are guaran-
teed to match p Ä 1 autocorrelations automatically without
user intervention, for any marginal distribution, and ARTA

processes always have smooth sample paths. We describe
ARTA processes in the next section.

2. ARTA Processes
This section reviews the definition of an ARTA process and
summarizes the results of Cario and Nelson.[2] Formally, an
ARTA process is a model of a stationary time series {Yt} with
the following properties:

1. Yt ; FY, t 5 1, 2, . . . , and
2. (Corr[Yt, Yt11], Corr[Yt, Yt12], . . . , Corr[Yt, Yt1p]) 5 (r1,

r2, . . . , rp) 5 r,

where FY and r are given. In an ARTA process, {Yt} is
represented as a transformation of a standardized Gaussian
AR(p) process, as follows:

ARTA Process
1. Let {Zt; t 5 1, 2, . . . } be a stationary Gaussian AR(p)

process

Zt 5 a1Zt21 1 a2Zt22 1 · · · 1 apZt2p 1 « t ,

where {«t} is a series of independent N(0, s2) random
variables, and N(0, s2) denotes the normal distribution
with mean 0 and variance s2. We select s2 so that the
marginal distribution of the {Zt} process is N(0, 1). Spe-
cifically,

s2 5 1 2 a1r1 2 a2r2 2 · · · 2 aprp ,

where rh 5 Corr[Zt, Zt1h].
2. Define the ARTA process Yt 5 FY

21[F(Zt)], t 5 1, 2, . . . ,
where F is the standard normal cdf.

The transformation FY
21[F(z)] ensures that {Yt} has the

desired marginal distribution FY, because Ut 5 F(Zt) is
U(0, 1) by the probability-integral transformation. Therefore,
the central problem is to select the autocorrelation structure
r 5 (r1, r2, . . . , rp) for the AR(p) process, {Zt}, that gives the
desired autocorrelation structure r for the input process,
{Yt}.

The autocorrelation structure of the AR(p) base process
{Zt} directly determines the autocorrelation structure of the
input process {Yt}, because

Corr@Yt , Yt1h# 5 Corr$FY
21@F~Zt!# , FY

21@F~Zt1h!#% .

To adjust this correlation, we can restrict our attention to
adjusting E[YtYt1h], because

Corr@Yt , Yt1h# 5
E@YtYt1h# 2 ~E@Yt#!

2

Var@Yt#
, (1)

and E[Yt] and Var[Yt] are fixed by FY. Then, because
(Zt, Zt1h) has a standard bivariate normal distribution with
correlation Corr[Zt, Zt1h] 5 rh, we have

E@YtYt1h# 5 E$FY
21@F~Zt!#FY

21@F~Zt1h!#%

5 E
2`

` E
2`

`

FY
21@F~ zt!#FY

21@F~ zt1h!#w rh~ zt , zt1h!

dzt dzt1h , (2)
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where wrh
is the standard bivariate normal probability den-

sity function (pdf) with correlation rh. We are only interested
in processes for which this expectation exists.

Observe from Equation (2) that the lag-h autocorrelation
of {Yt} is a function only of the lag-h autocorrelation of {Zt},
which appears in the expression for wrh

. We denote this
function by r(rh). Thus, the problem of determining the
autocorrelations for {Zt} that give the desired autocorrela-
tions for {Yt} reduces to p independent problems: For each
lag h 5 1, 2, . . . , p, find the value rh for which r(rh) 5 rh. This
is distinctly different from a TES process in which the entire
autocorrelation structure is a function of the distribution of
the error term, Vt.

Cario and Nelson[2] prove that, for each lag h, all feasible
values of rh are attainable under the ARTA transformation.
By feasible, we mean that r ¶ rh ¶ 1, where

r 5
*0

1 FY
21~u! FY

21~1 2 u! du 2 ~E@Yt#!
2

Var@Yt#
(3)

is the minimum feasible bivariate correlation for FY (see
Whitt[14]).

In general, it is not possible to find the rh values analyti-
cally. In the next section we describe an efficient numerical
procedure to find the rh values to within any precision. Cario
and Nelson[2] prove that r(r) is nondecreasing and, under
very mild conditions on FY, it is also continuous. These
results guarantee that our numerical procedure will con-
verge.

3. Numerical Procedure
There are two main considerations in constructing an effi-
cient numerical procedure for finding the autocorrelation
structure of {Zt}, which gives the target autocorrelation
structure for {Yt}. The first is the choice of a method to
integrate Equation (2). The second is the development of a
numerical search procedure that selects and updates the
values of rh in an efficient manner. We discuss the numerical
integration method and the search procedure in Subsections
3.1 and 3.2, respectively.

3.1 Numerical Integration Method
Although numerical integration is necessary in general,
there are some distributions that have special properties
which simplify the evaluation of Equation (2). For instance,
when FY is a continuous uniform distribution, a closed-form
expression for r(r) is given in Li and Hammond,[5] Equation
(7), as

r~r! 5 2 sin
p

6 r . (4)

Furthermore, when Yt is a discrete random variable with
finite support, such as the empirical cdf, we use a special-
purpose numerical-integration method. In this case it is easy
to show that Equation (2) is a finite sum of terms of the form

~constant! 3 ~area under the bivariate normal pdf! .

Formally, let (y1, y2, . . . , ym) be the mass points of Y
in ascending order and let (p1, p2, . . . , pm) be their corre-
sponding probability masses. Let z0 5 210, zi 5 F21(p1 1
p2 1 . . . 1 pi) for i 5 1, 2, . . . , m 2 1, and zm 5 10. Then,

E@YtYt1h# < O
i51

m O
j51

m

yiyjS E
zi21

zi E
zj21

zj

w r~w , v! dv dwD . (5)

The only approximation on the right-hand side of Equation
(5) results from truncating the integrals with limits z0 and zm

at z0 5 210 and at zm 5 10, rather than at 2` and `,
respectively. We use Algorithm AS 195 (Schervish[11]) to
calculate the rectangular areas under the bivariate normal
pdf.

For the general case, properties of the integrand make it
nontrivial to integrate Equation (2) numerically. Foremost is
the fact that the integrand is bivariate, and there are few
general-purpose numerical-integration methods for multi-
variate integrals. Our application requires a general-purpose
method because we do not make any restrictions on the
functional form of the marginal distribution FY other than
those required for it to be a cdf and for the integral (2) to
exist. For instance, we do not require FY to be continuous.
The doubly infinite ranges of the inner and outer integrals
further complicate the integration because many numerical-
integration methods for multivariate integrals apply to sub-
spaces with special shapes, such as spheres and cubes. Fi-
nally, because Equation (2) must be calculated for many
values of rh, and it is often computationally expensive to
evaluate FY

21, we need a method that efficiently manages the
number of function evaluations.

Taking these factors into consideration, our solution is to
iteratively apply a univariate numerical-integration method
to compute Equation (2). Specifically, we use a bivariate
implementation of the Gauss–Kronrod quadrature rule
(Piessens et al.,[10] pp. 16–17). Dropping the time subscripts
t and t 1 h from z, the Gauss–Kronrod quadrature rule
approximates Equation (2) as:

E@YtYt1h# < Ê@YtYt1h# (6)

5 O
i51

15 O
j51

15

w~zi!w~zj!FY
21@F~zi!#FY

21@F~zj!#wrh~zi , zj!,

where w(z) is a weight function and the zi and zj values are
abscissae. Specific values of the weights and the abscissae
appear in Piessens et al.,[10] p. 19. The abscissae are given for
the interval (21, 1), but they may easily be mapped onto the
range of interest. In our implementation, we truncate each
doubly infinite range to the finite range (210, 10), and use a
linear mapping of the abscissae from (21, 1) to (210, 10).
Using the finite range does not decrease the accuracy of the
approximation significantly because the value of the bivari-
ate normal pdf is effectively zero outside of this range.

The Gauss–Kronrod rule uses two sums of the form given
in Equation (6): the Gauss sum for which w(zk) 5 0 for odd
values of k and w(zk) . 0 for k even, and the Kronrod sum
for which w(zk) . 0 for k 5 1, 2, . . . , 15. Although the
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weights differ for the Gauss and Kronrod sums, the abscis-
sae are the same. The Kronrod sum is used as the estimate of
the integral, and the integration error is estimated as the
difference between the Gauss and Kronrod sums.

To iteratively apply the Gauss–Kronrod procedure, we
compute the inner sum in Equation (6) at each abscissa of the
outer variable. If the estimated absolute error of the inner
integral exceeds a preset tolerance, tolin 5 0.0005, using the
initial integration range (210, 10), then we bisect the inner
integration range using two new linear mappings of the
abscissae: one mapping to (210, 0) and one mapping to
(0, 10). We then compute the inner sum for each new set of
abscissae. This bisection procedure is repeated until the
inner tolerance is met. We use a similar approach for the
outer sum with an absolute-error tolerance of tolout 5
0.0001.

By individually controlling the absolute errors of the in-
ner and outer integrals, we bound the overall integration
error. Let Ain(zt1h) be the Gauss–Kronrod approximation of
the inner integral at a fixed value of the outer variable, and
let Din(zt1h) be the error of the approximation. In our pro-
cedure, the fixed value of the outer variable will always be
an abscissa value. Then, assuming that the effect of truncat-
ing the integration range of Equation (2) to (210, 10) 3
(210, 10) is negligible, we can express Equation (2) as

E@YtYt1h#

5 E
210

10 E
210

10

FY
21@F~ zt!#FY

21@F~ zt1h!#w rh~ zt , zt1h! dzt dzt1h

5 E
210

10

~ A in~ zt1h! 1 D in~ zt1h!! dzt1h

5 E
210

10

A in~ zt1h! dzt1h 1 E
210

10

D in~ zt1h! dzt1h (7)

5 Ê@YtYt1h# 1 dout 1 E
210

10

D in~ zt1h! dzt1h , (8)

where dout is the error that results from using the Gauss–
Kronrod sum to approximate the first integral in Equation
(7). Because we bisect the intervals until uDin(zt1h)u ¶ tolin,
for all zt1h, and udoutu ¶ tolout, it follows from Equation (8)
that

uÊ@YtYt1h# 2 E@YtYt1h# u < tolout 1 E
210

10

tolin dzt1h (9)

5 tolout 1 20tolin

5 0.0011. (10)

Recall that the validity of Equation (9) is subject to the
accuracy of the Gauss–Kronrod error-approximation
method, which is based on the difference between the Gauss
and the Kronrod sums. In our experience, this error-estima-
tion procedure works well.

3.2 Numerical Search Procedure
Given a value of r, we can compute the value of r(r) using
special properties when available, or the Gauss–Kronrod
quadrature rule in general. The remaining step is to con-
struct an efficient numerical search procedure to find the
autocorrelations r* 5 (r*1, r*2, . . . , r*p) of {Zt} such that r* 5
(r(r*1), r(r*2), . . . , r(r*p)) ' r.

In words, the numerical search procedure, outlined be-
low, selects a grid of rh values at each iteration. Initially,
these grid points depend upon FY and r. The Gauss–Kron-
rod quadrature rule is used to integrate Equation (2) simul-
taneously for all of the grid points. For each autocorrelation
lag h, the procedure finds the two grid points rjh

and rjh11

such that r(rjh
) ¶ rh ¶ r(rjh11). If one of these two grid points

meets the relative error criterion, then the search is complete
for lag h. Otherwise, several points between rjh

and rjh11
are

added to the grid for the next iteration. The procedure is
repeated until the relative error criteria are met for all p lags.

Observe that in Equation (6), wrh
is the only term that is a

function of the autocorrelation rh. So, at each pair of abscis-
sae (zi, zj), we can calculate w(zi)w(zj)FY

21[F(zi)]FY
21[F(zj)]

once, but calculate wrh
(zi, zj) for several values of rh. After

multiplying the two terms together, we keep track of both
the Gauss and the Kronrod sums for each value of rh sepa-
rately. The error for each integration interval is taken to be
the maximum absolute error over all values of rh, and the
interval is bisected if the error does not meet the given
tolerance. By simultaneously computing Equation (6) for
several values of rh, we potentially decrease the number of
evaluations of FY

21 by a factor of n, where n is the number of
grid points. This reduction is critical because the evaluation
of FY

21 is computationally expensive for many distributions.
To further reduce the number of evaluations of FY

21, the
search procedure also exploits the special properties of some
distributions. For distributions that belong to a scale fam-
ily—such as the exponential distribution with rate parame-
ter l—r(r) is independent of the distribution parameters.
When r(r) is parameter-independent, we can find an excel-
lent starting point for the search procedure by accessing a
precomputed vector of r values, rFY 5 (r(r1

FY), r(r2
FY), . . . ,

r(rn
FY)), where (r1

FY, r2
FY, . . . , rn

FY) 5 rFY is a vector of initial r
values. Furthermore, for symmetric distributions, r(2r) 5
2r(r) (Song et al.[12]); thus, it is only necessary to integrate
Equation (2) for positive values of r.

Numerical Search Procedure
Inputs.

FY( z ub), where b is a vector of parameters for FY.
r 5 (r1, r2, . . . , rp), the vector of target autocorrelations
for {Yt}.
e 5 (e1, e2, . . . , ep), the relative error criteria for lags 1,
2, . . . , p.

Comment: In the procedure, r denotes the current grid
of autocorrelations for the AR process; s denotes the grid
of autocorrelations for the ARTA process implied by r;
and L is the set of autocorrelation lags for which the
relative error criterion has not yet been achieved.
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Step 0. L 4 {1, 2, . . . , p}.

Let k1 and k2 be positive integers. (We use k1 5 k2 5 5 in
ARTAFACTS.)
If there exists a closed-form solution for r(r), then:
a. r* 4 (r21(r1), r21(r2), . . . , r21(rp)).
b. Stop.

If r(r) does not depend on b, then:
a. r 4 rFY.
b. s 4 rFY.
c. n 4urFYu.
d. Go to Step 2.

If rh . 0 for all h 5 1, 2, . . . , p, or FY is symmetric, then:
a. r 4 (0, 1/k1, 2/k1, . . . , (k1 2 1)/k1, 1).
b. n 4 k1 1 1.
c. Go to Step 1.

If rh , 0 for all h 5 1, 2, . . . , p, then:
a. r 4 (21, 2(k1 2 1)/k1, 2(k1 2 2)/k1, . . . , 21/k1, 0).
b. n 4 k1 1 1.
c. Go to Step 1.

Otherwise,
a. r 4 (21, 2(k1 2 1)/k1, 2(k1 2 2)/k1, . . . , 21/k1, 0,

1/k1, 2/k1, . . . , (k1 2 1)/k1, 1).
b. n 4 2k1 1 1.
c. Go to Step 1.

Step 1. Use the Gauss–Kronrod quadrature procedure to
integrate Equation (2) numerically for all elements of r si-
multaneously.

Compute s 5 (s1, s2, . . . , sn) 5 (r(r1), r(r2), . . . , r(rn))
using Equation (1).
Go to Step 2.

Comment: Do not integrate for rh [ {0, 1, 21}, since r(0)
5 0, r(1) 5 1, and r(21) 5 r, the minimum feasible
bivariate correlation for FY. Also, do not repeat any
calculations that were already performed during a pre-
vious iteration.

Step 2. For each autocorrelation lag in L, find the closest grid
points that bracket the autocorrelation and test whether the
relative error criterion has been met.

rnew 4 A .

For each h [ L, do
a. Find 1 ¶ jh ¶ n 2 1 such that sjh

¶ rh ¶ sjh11.
(Or, if FY is symmetric and rh , 0, then find 1 ¶ jh ¶
n 2 1 such that 2sjh11

¶ rh ¶ 2sjh
.)

b. dhk 4u rh 2 sk u/u rh u, k 5 jh, jh 1 1.
c. eh 4 mink[{jh,jh11} {dhk}.

mh 4 argmink[{jh,jh11} {dhk}.
d. If eh ¶ eh, then:

i. L 4 L 2 {h}.
ii. r*h 4 smh

.
iii. r*h 4 rmh

.

Otherwise,
i. fh 4 (rjh11 2 rjh

)/k2.

ii. rnew4 rnew ø {rjh
, rjh

1 fh, rjh
1 2fh, . . . , rjh

1 (k2 2
1)fh, rjh

11}.

End do.

r 4 rnew.
If L 5 A, then stop.
Otherwise, go to Step 1.

4. ARTAFACTS
ARTAFACTS is a Fortran implementation of the numerical
search procedure outlined in Section 3. User input, which is
read from a file, includes the marginal distribution family
FY, the number of autocorrelation lags p to match, the auto-
correlations r to match, the relative error vector e, the dis-
tribution parameters b, and the name of the output file. The
following marginal distributions are supported: Normal,
Student’s t, Continuous Uniform, Exponential, Gamma,
Weibull, Lognormal, Johnson Unbounded, Discrete with fi-
nite support, and Empirical. The output consists of the first
p autocorrelation lags of the AR(p) process, along with the
resultant autocorrelation values for the ARTA process,
which are within the user-specified relative errors. The out-
put also includes the AR parameters a 5 (a1, a2, . . . , ap).

Figure 1. Sample ARTAFACTS output file, weib.out .
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If necessary, ARTAFACTS can read in time-series data from
a file, calculate the sample autocorrelation function of the
series and test whether each autocorrelation is significantly
different from 0. For this option, the user specifies the num-
ber of autocorrelation lags to calculate and the name of the
file to which the results are to be written.

Before invoking the numerical search procedure, ARTA-
FACTS performs several checks on the feasibility of the user
input. For instance, ARTAFACTS checks that the correlation
matrix implied by the autocorrelation structure for the input
process is positive definite. Furthermore, ARTAFACTS checks
that r ¶ rh ¶ 1, for h 5 1, 2, . . . , p, where r, the minimum
feasible bivariate correlation for FY, is also calculated by
ARTAFACTS. These two conditions are necessary, but not suf-
ficient, for the ARTA process to be stationary. After the
numerical procedure terminates, ARTAFACTS determines
whether or not the underlying AR(p) process is stationary. If
the AR(p) process is not stationary, a warning appears in the
output file and no ARTA representation is possible.

To demonstrate ARTAFACTS, we use data recorded at fixed
time increments on a pressure variable of a continuous-flow
production line at a large chemical manufacturing plant.
Continuous-flow production lines, such as those used to
extrude plastics, are common in the chemical industry. Pro-
cess variables, including temperatures and pressures, are
often key parameters of this type of production line, and
understanding their effects on the manufacturing system is
critical. Systems simulation is sometimes used to model new
and existing lines, as well as to train new operators in proper
responses to process changes.

For our example, the input to ARTAFACTS includes the
name of a file into which the output should be written
(weib.out ); a code number for the marginal distribution
family (we used 6 for Weibull); the number of autocorrela-
tions to match (the first 3 in this case), the autocorrelation
values to be matched (0.749 , 0.409 and 0.121 ) and the
corresponding relative errors (0.01 for all three); and any
parameters of the marginal distribution (scale parameter
0.9432 and shape parameter 5.14 for our Weibull). We
chose the marginal distribution family and determined the
parameters with the aid of the Input Processor of the
commercial software package, ARENA (Systems Modeling
Corporation, Jewickley, PA). ARTAFACTS has no capabilities
for fitting marginal distributions, because there are many
good software products available for this purpose. The au-
tocorrelations were estimated by ARTAFACTS from a data set
of 519 observations.

Figure 1 displays the ARTAFACTS output file weib.out
corresponding to this input. The output file reiterates that
the desired marginal distribution is a Weibull(0.9432, 5.14)
distribution and that we want to match the first three lag
autocorrelations. The output file also gives the desired au-
tocorrelations and the required relative errors. Next, the
output file displays three columns of program output—the
three ARTA-process autocorrelations r* 5 (0.751, 0.407,
0.121), their underlying AR-process autocorrelations r* 5
(0.752, 0.408, 0.122) such that r(r*h) ' rh, for h 5 1, 2, 3, and
the actual relative errors that were attained. The final col-
umn of output contains the parameters a1, a2, and a3 of the
AR(3) base process. Execution of this example took approx-
imately 4 seconds of clock time on a Sun Sparc 5 Model 110.

5. ARTAGEN
After fitting an ARTA process with ARTAFACTS, we can use
the AR parameters a to generate simulation input. For com-
pleteness, we include the ARTA generation procedure be-
low; the procedure requires the variance–covariance matrix

C 5 3
1 r*1 · · · r*p21

r*1 1 · · · r*p22

···
···

· · ·
···

r*p21 r*p22 · · · 1
4 .

This matrix is also part of the Yule–Walker equations (e.g.,
Cryer,[3] pp. 70–71), which connect the autocorrelations of
the AR(p) base process to the parameters of the process via
the relationship r* 5 aC. For further details, see Cario and
Nelson.[2]

ARTA Generation Procedure
1. Generate p initial values {Zp21, Zp22, . . . , Z0} from a

multivariate normal distribution with mean vector all
zeros and variance–covariance matrix C. Set t 4 p.

2. Set Zt4 a1Zt21 1 a2Zt22 1 . . . 1 apZt2p 1 et where et is
an independent N(0, s2) random variable with s2 5 1 2
a1r*1 2 a2r*2 2 . . . 2 apr*p.

3. Return Yt 4 FY
21[F(Zt)].

4. Set t 4 t 1 1 and go to step 2.

Figure 2. Sample ARTAGEN summary file, weib.sum .
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ARTAFACTS automatically writes an input file for ARTAGEN,
a software package that implements the ARTA generation
procedure. The input file is called input.gen , and it spec-

ifies the name of a file into which the generated observations
are to be written; the name of a file into which summary
statistics about the generated observations should be placed;

Figure 3. Time-series plot of the empirical pressure data.

Figure 4. Time-series plot of the ARTA-process data.
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the code number for the marginal distribution; the number
of autocorrelations that have been matched; the number of
observations to be generated (1000 by default); the autocor-
relations for the AR(p) base process; the autocorrelations for
the ARTA process; and any parameters of the marginal
distribution. This file can be edited to change the default file
names or number of observations.

The ARTAGEN summary statistics file for our example ap-
pears in Figure 2. These sample statistics are very close to
those of the empirical data, for which m̂ 5 0.88, s2 5 0.039,
and the sample autocorrelation function through lag 3
equals (0.749, 0.409, 0.121). The differences between the sam-
ple statistics and the theoretical values are due to sampling
error—they converge to the theoretical values as the number
of generated observations increases.

Figures 3 and 4 display time-series plots of the empirical
data and the fitted ARTA process, respectively. The sample
paths are qualitatively similar, although the height of the
spikes appears more variable in the empirical time series,
and the ARTA process varies more consistently about its
mean. The differences between the two time series reflect
sampling error as well as the fact that the marginal distri-
bution and autocorrelation structure do not capture all of the
characteristics of a time-series process.

Scatterplots of (Yt, Yt11, Yt12) for the empirical pressure
data and the ARTA data appear in Figures 5 and 6, respec-
tively. The two figures are qualitatively similar, although the
ARTA data appears to be more scattered or random than the
empirical data. Similar differences appear in the scatterplot
for lag three, which is not displayed. The differences are

Figure 5. Scatterplot of the empirical pressure data for lags 1 and 2. For instance, the plot in the upper right-hand corner
shows all pairs of observations two apart in sequence.
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compatible with the differences between the fitted distribu-
tion and the empirical distribution, along with the differ-
ences between the time-series plots. Overall, the ARTA pro-
cess provides a plausible model for the empirical time series.

6. Conclusions
The example in Sections 4 and 5 demonstrates the usefulness
of ARTA processes as models of time-series inputs for sim-
ulation. An ARTA process certainly provides a more faithful
representation of this type of data than does a series of
independent and identically distributed random variables,
the model that is often used in practice. The example is one
of many real and synthetic series we used to evaluate ARTA-
FACTS and ARTAGEN, software that greatly simplifies the
tasks of building and generating time-series input models.
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