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Abstract 

We develop a model for representing stationary time series with arbitrary marginal distributions and autocorrelation 
structures and describe how to generate data based upon our model for use in a simulation. 
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1. Introduction 

Dependent input processes arise naturally in 
many applications; for example, the interarrival- 
time gaps between opening, reading, writing or 
closing a computer file are sometimes autocorre- 
lated because file activity tends to occur in bursts. 
Stochastic simulation is often used to analyze such 
systems. Due to the lack of general-purpose meth- 
ods for representing and generating-dependent pro- 
cesses, simulation practitioners frequently use in- 
dependent processes to approximate them. This 
practice may result in output performance mea- 
sures that are seriously in error (see, for example, 
[6]). 

In this paper we present a model for representing a 
stationary time-series input process {Yt; t -- 1,2 . . . .  } 
with an arbitrary marginal distribution and any feasi- 
ble autocorrelation structure specified through lag p. 

* Corresponding author. 

We use a transformation-oriented approach to repre- 
sent {Yt}. This approach takes a process with a known 
autocorrelation structure, the base process {Zt}, and 
transforms it to achieve the desired marginal distribu- 
tion for the input process, { Yt }, The target autocor- 
relation structure of  { Yt } is obtained by adjusting the 
autocorrelation structure of  the base process. In our 
model, the base process is a standardized Gaussian 
autoregressive process of order p (AR(p)) ,  so we re- 
fer to {Yt} as an ARTA (autoregressive to anything) 
process. 

Song and Hsiao [10] use a transformation-oriented 
approach with an AR(1 ) base process. However, they 
attempt to match only the lag-1 autocorrelation, and 
they use simulation to find the lag-1 autocorrelation of 
the base process that gives the desired lag-1 autocor- 
relation of the input process. This approach becomes 
computationally prohibitive if extended to more than 
two or three autocorrelations. Our approach matches 
p ~> 1 autocorrelations, and is computationally more 
efficient. 
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TES [7] is another transformation-oriented ap- 
proach that attempts to match any arbitrary marginal 
distribution and autocorrelation structure, and that 
is guaranteed to match any feasible lag-1 autocor- 
relation. TES, which is implemented in the com- 
puter software package TEStool [8], uses a series 
of autocorrelated uniform random variables as the 
base process. Users of TEStool interactively adjust 
the base process until they achieve an input pro- 
cess that approximates the desired characteristics. 
However, the adjustment is applied to the distribu- 
tion of the noise term in the base process, which 
indirectly results in an adjustment to the autocor- 
relation structure of the input process. We believe 
that our model is both theoretically simpler and 
easier to use than TES because we directly change 
the autocorrelations of the base process to ad- 
just the corresponding autocorrelations of the input 
process. 

A completely different approach, for which there is 
a large literature, is to construct a time-series process 
that exploits properties that are specific to the partic- 
ular marginal distribution of interest for { Yt }. An ex- 
ample is Lewis et al. [5], who construct time series 
with gamma marginals. The primary shortcoming of 
this type of approach is that it is not general: a differ- 
ent model is required for each marginal distribution 
of interest. In addition, the sample paths of these pro- 
cesses, while adhering to the desired marginal distri- 
bution and autocorrelation structure, sometimes have 
unexpected features. 

We present our model in Section 2. In Section 3 
we develop some relationships between the AR(p) 
base process and the input process. We then discuss 
how to use these relationships to select the autocor- 
relations for the base process that give the desired 
autocorrelations for the input process. In Section 4 
we describe how to generate time series based upon 
our model for use as simulation inputs and we present 
some sample output. Our conclusions appear in 
Section 5. 

2. Model 

The goal of our model is to define a stationary time 
series {Yt} with the following properties: 

1. Yt ~ Fy, t = 1,2 . . . . .  where Fr  is an arbitrary 
cumulative distribution function (cdf); and 

2. ( Corr[ Yt , Yt + l ], Corr[ Yt , rt+2] . . . .  , Corr[ Yt , Yt + p ] )' 
= (pl,p2 . . . .  ,pp)t = p, 
where Fr  and p are given. We represent {Yt} as a 
transformation of a standardized Gaussian AR(p) 
process. 

ARTA process 

1. Let {Zt; t  = 1,2 . . . .  } be a stationary Gaussian 
AR(p) process 

Zt = ~ lZt_ l  --b ~2Zt_2 + . . .  q- o~pZt_p q-- ~t, 

where {~t} is a series of independent N(0,0- 2) 
random variables and 0-2 is selected so that the 
marginal distribution of the {Zt} process is N(0, 1). 
Specifically, 

0 -2  = 1 - -  G i r l  - -  ~ 2 r 2  . . . . .  ~prp,  

where rh = Corr[Zt,Zt+h]. 
2. Define the ARTA process lit = F ~ t [ ~ ( Z t ) ] , t  = 

1,2 . . . . .  where ~ is the standard normal cdf. 
The transformation F~- 1 [~(.)] ensures that { Y, } has 

the desired marginal distribution Fr ,  since U = ~(Z t )  
is uniformly distributed on the interval (0, 1), implying 
that Y, = F~ -1 [U] has distribution F r  by well-known 
properties of the inverse cdf. Therefore, the central 
problem is to select the autocorrelation structure r = 
(rl,  r2 . . . . .  rp)'  for the AR(p) process, {Zt},  that gives 
the desired autocorrelation structure p for the input 
process, { Yt}. 

3. Properties of ARTA processes 

The autocorrelation structure of the AR(p) base 
process {Zt} directly determines the autocorre- 
lation structure of the input process {Yt} ,  since 
Corr[Yt, Yt+h] = Corr {F;-* [,I'(Z,)], F ;  -1 [¢(Zt+h)] }. 
To adjust this correlation, we can restrict attention to 
adjusting E[ Yt Yt+h], since 

E [ r t  Yt+h] - (ELY]) 2 
Corr[Yt, Y,+h] = 

Var[Y] 

and ElY]  and Var[Y] are fixed by Ft .  Then, since 
(Zt,Zt+h) has a standard bivariate normal distri- 
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bution with correlation Corr[Zt, Zt+h] = rh, we 
have 

result follows since F r l [ # ( . ) ]  is nondecreasing a 

function. [] 

E[Yt Yt+h] = E{F~ 1 [~(Z  t)]FYl [~(gt+ h )] } 

/?f? = F;" 1 [qb(zt)]F; -1 [~(Zt+h )] 
o 0  o Q  

x q)~(zt, zt+h) dzt dz~+h, (1) 

where ~0rh is the standard bivariate normal probabil- 
ity density function (pdf) with correlation rh. We are 
only interested in processes for which this expectation 
exists. 

Observe from Eq. (1) that the lag-h autocor- 
relation of {It}  is a function only of  the lag- 
h autocorrelation of {Zt}, which appears in the 
expression for q~r,. We denote the implied lag- 
h autocorrelation of {Y t} by the function p(rh). 
Thus, the problem of determining the autocorre- 
lations for {Zt} that give the desired autocorre- 
lations for {Y t} reduces to p independent prob- 
lems: For each lag h = 1,2 . . . . .  p, find the value 
rh for which p(rh)= Ph. Unfortunately, it is not 
possible to find the rh-values analytically; how- 
ever, we establish some properties of the function 
p(rh) that enable us to perform an efficient nu- 
merical search to find the rh-values to within any 
precision. 

The first two properties concern the sign and the 
range of p(rh) for - 1 .N< rh ~< 1. 

Proposition 1. For any distribution Fr, p(O) = O, 
and rh >1 ( <~ ) 0 implies that p(rh) >~ ( <~ ) O. 

Proof. If rh = 0, then 

E[ Yt rt+h] ~ "  E { F r  1 [~(Zt)]F{-1 [~(Zt+h)] } 

= E{F~ 1 [q~(Zt)] } E { F f  I [~(Zt+h )] } 

= E[Yt]E[Yt+h] 

since rh = 0 implies that Zt and Zt+h are indepen- 
dent when they are bivariate normal. If rh ~> (~<)0, 
then Cov[#1 (Zt, Zt+h), 92(Zt, Zt+h)] t> ( ~< ) 0 for all 
nondecreasing fimctions 91 and 92 such that the co- 
variance exists [11, p. 20]. Taking 91(Zt,Zt+h) -- 
Fyl[~(Zt)] and g2(Zt, Zt+h) = Fyl[~(Zt+h)], the 

It follows from the proof of Proposition 1 that taking 
rh = 0 results in an input process in which Yt and Yt+h 
are independent, as well as uncorrelated. Proposition 
2 shows that the maximum and minimum possible 
correlations are attainable. 

Proposition 2. Let -~ and p be the maximum and 
minimum feasible bivariate correlations, respectively, 
for random variables havino marginal distribu- 
tion Fr (notice that -p = 1). Then, p(1) = -~ and 
p ( - 1 )  = p. 

Proof. A correlation of 1 is the maximum possi- 
ble for bivariate normal random variables. There- 
fore, taking rh = 1 is equivalent (in distribution) 
to setting Zt~--#- i (U)  and Zt+h*--¢~-l(U), where 
U is a U(0,1) random variable [12]. But this def- 
inition of Zt and Zt+h implies that Yt *-- Fr1[U] 
and Yt+h,---F~-t[U], from which it follows that 
p(1) = ~ by the same reasoning. Similarly, tak- 
ing rh = -1  is equivalent to setting Yt ':-- Fr- t [u ]  
and Yt+h-~---F~l[1 --U], from which it follows that 
p ( - 1 )  = p. [] 

Our next two results shed light on the shape ofp(rh). 

Theorem 1. The function p(rh ) is nondecreasing for 
- 1  ~<rh~<l. 

Proof. For 0 ~< rh ~< 1, the result follows directly from 
[11, p. 119]. See the appendix for the case when 
- l  <~rh < O. [] 

Theorem 2. I f  there exists e > 0 such that 
E[I YtYt+h 11+~] < oc for all values o f  - l  <<.rh <~l, 
where Yt, Yt+h are defined by an A R T A  process, then 
the function p(rh ) is continuous for -1  <<.rh <~ 1. 

Proof. See the appendix. [] 

Since p(rh) is a continuous, nondecreasing func- 
tion under the mild conditions stated in Theorem 2, 
any reasonable search procedure can be used to find 
rh such that p(rh) ~ Ph. Proposition 1 provides the 
initial bounds for such a procedure. Proposition 2 
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shows that the extremal values of  Ph are attainable 
under our model. Furthermore, from Proposition 2, 
Theorem 2 and the Intermediate Value Theorem, 
any feasible bivariate correlation for F r  is attainable 
under our model. Theorem 1 provides the theoret- 
ical basis for adjusting the values of  rh, and is the 
key to establishing convergence of  a search proce- 
dure. 

To illustrate how these results are useful, suppose 
that F r  is the exponential distribution with mean 1.0 
and we require the autocorrelation structure to be 
specified to p = 2 lags as p = (p l ,p2) '  = (0.9,0.6)'.  
We used a crude search procedure to find r = 
( r l , r2) '  = (0.9,0.65)/, for which Pl = p(0.9) = 0.883 
and p2=p(0 .65 )=0 .607 .  All that is required for 
greater precision is a more stringent convergence 
criterion. 

Throughout the previous discussion we assumed 
that there exists a stationary process with marginal dis- 
tribution F r  and autocorrelation structure p. However, 
not all combinations of  F r  and p are feasible. Clearly, 
for p to be feasible we must have P__<~ph <~-fi for each 
h = 1,2 . . . .  ,p .  In addition, the ( p  + 1) x ( p  + 1) 
autocorrelation matrix defined by 

r, 

rl 1 p_! 

p r p - I  

must be nonnegative definite. These two conditions 
are necessary, but not sufficient, for the existence of  
a stationary {Yt} process with marginal distribution 
F r  and autocorrelation structure p. Our next result 
indicates that the input process { Yt} is stationary if 
the base A R ( p )  process {Zt} is. 

Proposition 3. I f  {Zt} is strictly stationary, then 
{ Yt} is strictly stationary. 

Proof.  The proof  follows immediately from the defi- 
nition of  strict stationarity. 

Proposition 3 enables us to check the stationarity of  
the A R ( p )  process - which is easy to do (e.g., [3, pp. 
80-81])  - to determine the stationarity of  {It} .  

4. Generating simulation input 

Let r be a p x 1 vector ofrh-values such that p(rh) 
Ph, for h = 1,2 . . . .  , p. Given r, we can generate values 
of  { Yt}. We must first solve for the p x 1 vector of  
AR parameters, ~t, using the Yule-Walker  equations 
(e.g., [3, pp. 70-71])  

r '  = e'~v, (2) 

where 

1 rl • • • r p _ l  

rl 1 " "  rp-2 

p-1 r p - 2  "'" 1 

We then use ~t to check the stationarity of  {Zt}. I f  {Zt} 
is stationary, then we generate values of  {Yt} using 
the following procedure. 

ARTA generation procedure 

1. Generate p initial values { g p _ l , l p _  2 . . . . .  / 0 }  

from a multivariate normal distribution with/~ = 0 
and variance-covariance matrix ~ (see, for example, 
[4, pp. 505-506])• Set t+--p. 

2. Set Z, ~ ~lZt- i  + ~2Zt-2  + "'" + ~ p Z t - p  + gt 

where et is an independent N(0, tr 2) random variable 
w i t h  o "2 = 1 - c~lri - ~2r2 . . . . .  gprp. 

3. Return Y, ~ F~-l[q~(Zt)]. 
4. Set t *--- t + 1 and go to step 2. 
Continuing the exponential distribution example 

from the previous section (recall that p = (0.9, 0.6)' 
and r = (0.9,0.65)') ,  we solved (2) for the AR(2) 
parameters • = (1 .66 , -0 .842) ' .  The resultant AR(2) 
process is stationary; hence, so is { Yt}. A time series 
plot of  200 values of  { Y, } generated by our procedure 
appears in Fig. 1. Figs. 2 and 3 are plots o f  Yt+l vs. 
Yt and Yt+2 vs. Yt, respectively, for the same values. 
The sample autocorrelations for the {Zt} and {Yt} 
processes were (0.893,0.632) and (0.882,0.600), 
respectively. Figs. 1-3 indicate that the generated 
values of  { Yt } have the desired properties and exhibit 
plausible sample paths. 
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Fig. 1. Sample path of  an ARTA process with exponential marginals and autocorrelations/21 = 0.9 and P2 = 0.6. 
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Fig. 2. Scatterplot of  (Yt, Yt+l ) for the ARTA process with exponential marginals and lag-1 autocorrelation Pl = 0.9. 
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Fig. 3. Scatterplot of  (Yt, Yt+2 ) for the ARTA process with exponential marginals and lag-2 autocorrelation P2 = 0.6. 

5 .  C o n c l u s i o n s  

ARTA processes provide a straightforward method 
for representing time series with arbitrary marginal 
distributions and autocorrelation structures for use as 
simulation inputs. They also provide insight into the 
effect of transformations on time-series processes in 
general. 

Software to fit and generate ARTA processes with 
standard choices for the marginal distribution, includ- 
ing the empirical cdf, is described in [2]. Key features 
of the software are efficient implementation of the nu- 
merical integration for (1) and a fast search procedure. 
The Fortran code is available from the second author. 

Although the focus of this paper is generating 
time series, the ideas also apply to generating finite- 
dimensional random vectors with correlated elements: 
The approach is to transform a k x 1 standard mul- 
tivariate normal (MVN) vector Z to obtain a k x 1 
input vector X with given marginal cdfs and correla- 
tion matrix. Specifically, 

( F£I[~(z~)] ] F£: ~ [~(z2)] 
X = , ' 

F~ l [ q~(Zk )] 

where Z = (Zl, Z2 . . . . .  Zk)' is a standard MVN vector 
with correlation matrix ~, and Fx,, Fx2 . . . . .  FXk are the 
desired marginal cdfs. Each off-diagonal element of 
the correlation matrix of the X vector is a function only 
of the corresponding element of ~. Carlo [2] extends 
the results of Section 3 to the case of random vectors. 

Appendix 

L e m m a  A.1. Let 
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and let (X,,X2)' and (Z1,Z2)' be bivariate normal 
random variables with common mean !~ and variance- 
covariance matrices Zm and Xp,, respectively, where 
0 ~< Pl  < P 2  < 1. Let g(x) be a nondecreasingfunction 
o f  x .~Or - c ~  < x < oo. Then for any g for which 
E[g2( X ) ] exists, E[g( X, )0(-)(2)] ~ E[g( Z, )g(-Z2 )]. 

Proof. The proof extends the one given in [11, 
pp. 119-1201. 

Let T1,T2, V1,V2, and W be i.i.d. N(0,1) random 
variables. Then, 

(X , , -X 2 )  ~ (V/1 - p2T, + v / ~  - p, Vl -4- v/-~W, 

-V /1  - p2T2 - ~ - p, V, - v / -~W) 

and 

( / , , - - /2 )  d (V/1 _ p2T1 + x/r~ -- p, V, + V/-~W, 

-~ /1  - p2T2 - v ~ -  p, V2 - v/~TW) 

where ~ denotes equality in distribution. Therefore, 

E[g(XI )g(- ) (2  )1 

= E[E{E[g(v/I - p2TI + ~ - pl Vl + v ~ W )  

×g(-v/-( - p:T2 - v ~ -  p,V, - v~fiTW) 

I Vl, W ] I W } ]  

= E[E{'Pw(VI)~-w(-VI) I W}], 

where 

~w(V,) = E[g(v /1  - p;T + v/-~2 - p, VI -[- v~W) 

IV, = v,, W = w] 

and the expectation is with respect to T, an indepen- 
dent N(0, 1 ) random variable.' 

For g nondecreasing and fixed W = w, the function 
~w(V, ) is nondecreasing in Vl. Similarly, -~_w(v)  is 
nonincreasing in v (where v is a dummy variable used 
only for clarity). Therefore, 

Var[~w( 111 ) - { -  Y-w( V)}] = Var[~w( V, )] 

+ v a r [ -  ~_w(V)] - 2CovWw(V~), -~_w(V)]  

1 Notice that T1 =d _ T2, and they are independent. 

is minimized with respect to all joint distributions of 
(111, V) with N(0, 1) marginals when 111 = ~ - ' ( U )  
and V = ~ - l ( 1 -  U), where U is a U(0,1) ran- 
dom variable [9, Proposition 1]. For N(0, 1) ran- 
dom variables this implies that V = -/I1. Therefore, 
Cov[~w(V, ), - ~'-w(V)] is maximized (equivalently, 
Cov[~w(V, ), ~-w(V)] is minimized) by letting V = 
- V,. Thus, 

E{~w(VI)~-w(-V,) [ W = w} 

<~E{~w(VI) [ W = w}E{~-w(-V , )  l w --- w} 

(3) 

= E{~w(V , ) l  W = w } E { ~ - w ( - V 2 ) l  W = w } ,  

(4) 

where (3) holds because the minimum expected value 
must be smaller than the expected value under inde- 
pendence, and (4) holds because Vl and II2 are identi- 
cally distributed. Since (3) and (4) hold for any value 
of W, it follows that 

E [ E W w ( V , ) ~ ' - w ( - V , )  I W}] 

<~E[E{~w(V,) [ W } E { ~ - w ( - V z )  [ W}]. 

But notice that 

E[g(Z,)O(-Z2)] = E[E{Y ' r (VI )V ' -w( -V2)}  I W] 

= E[E{~'w(V,)  t W}E{~'-w(-V2) I W}] 

since V, and V2 are independent. [] 

Corol lary .  Let (X1,X2)' and (ZI,Z2) ! have bi- 
variate normal distributions with common mean 

and variance-covariance matrices Z m and Zp,, 
respectively, where -1  < P2 < Pl <.0. Let g(x) be 
a nondecreasing function o f  x for - ~  < x < ~ .  
Then, E[g(X1 )g(Xz)] ~< E[g(Z1 )g(Z2 )]. 

Proof. This follows from Lemma A. 1 since (XI, -X2)' 
and (Y  l , -Y2) '  have bivariate normal distributions 
with mean/l and covariance matrices Z_p2 and Z_p,, 
respectively. [] 

P r o o f  o f  T h e o r e m  1. By taking g = F r 1 [~(.)] in the 
corollary, it follows that p(rh) is nondecreasing for 
-1  ~<rh < 0. [] 
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Lemma A.2. For a given cdf  Fr,  i f  there exists e > 0 
such that 

/ _ ~  / _ ~  sup {IF~'[~(zi)]F;'[~(z2)]l l+': 
oo oo rC[-- 1,1] 

X(pr(Z1,Z2) } dg 1 dz 2 < (X3, (5 )  

then p(r)  is a continuous function for - 1 <~ r <~ 1. 

of  - 1 ~< rh <~ 1, where Yt, Yt+h are defined by our trans- 
formation, which is the condition given in the state- 
ment of  Theorem 2. 

Proof of Theorem 2. Theorem 2 follows immedi- 
ately from Lemma A.2 with Z~ = Zt, Z2 ~ Zt+h, Y1 ~" 

Yt, Y2 =-- Yt+h, and r =- rh. [] 

Proof. Let Z1 and Z3 be i.i.d. N(0,1) random vari- 
r ables. Let r E [ - 1 ,  1] be fixed, and { n}n=l be any 

sequence such that rn E [ - 1 ,  1 ], for n -- 1,2 . . . . .  and 
r n ~ r a s n ~ . F o r n =  1,2 . . . .  ,define 

Zln =- Z1, Z2n =- rnZ1 + ¢ l  - r2Z3, 

Z2 -~ rZl + V/1 - r2Z3 . 

Further, let Yi , -~Frl[~(Zi~)] ,  for i =  1,2, and 
h (z'2) = F~- 1 [~(Zl )]F;- l [~(z2)]. Since h is monotone 
in z~ and z2 individually, it has a countable num- 
ber of  discontinuities. Therefore, by the Continuous 
Mapping Theorem [1, Theorem 29.2] 

h Z2, Z2 as n ---~ cxD, 

since 

Zzn Z2 as n ~ e~, 

where ~ denotes convergence in distribution. Equiv- 
alently, 

YlnY2n ~ YIY2 as n ~ e~, (6) 

where Y,. = Frl[~(Zi ) ] ,  for i = 1,2. It follows from 
(5), (6), and Theorem 25.12 of  [1], that E[YInY2n] 

E[Y1Y2] as n ~ c~; equivalently, p(rn) ~ p(r) as 
n ---~ o<5. []  

Notice that condition (5) of Lemma A.2 is equiva- 
lent to stating that Eli YtYt+h 11+~] < e~ for all values 

References 

[1] P. Billingsley, Probability and Measure, 3rd ed., Wiley, New 
York, 1995. 

[2] M.C. Cario, "Modeling and generating dependent inputs for 
discrete-event simulation", Ph.D. Dissertation. Department of 
Industrial, Welding and Systems Engineering, The Ohio State 
University, Columbus, OH, 1996. 

[3] J.D. Cryer, Time Series Analysis, PWS Publishers, Boston, 
1986. 

[4] A.M. Law and W.D. Kelton, Simulation Modelin9 & 
Analysis, 2nd ed., McGraw-Hill, New York, 1991. 

[5] P.A.W. Lewis, E. McKenzie and D.K. Hugus, "Gamma 
processes", Comm. Statist. Stochastic Models 5, 1-30 
(1989). 

[6] M. Livny, 13. Melamed and A.K. Tsiolis, "The impact of 
autocorrelation on queuing systems", Management ScL 39, 
322-339 (1993). 

[7] B. Melamed, "TES: a class of methods for generating 
autocorrelated uniform variates", ORSA J. Comput. 3, 317- 
329 (1991). 

[8] 13. Melamed, J.R. Hill and D. Goldsman, "The TES 
methodology: modeling empirical stationary time series", 
in: J.J. Swain, D. Goldsman, R.C. Crain and J.R. Wilson 
(eds.), Proc. the 1992 Winter Simulation Conj., Institute of 
Electrical and Electronics Engineers, Piscataway, NJ, 1992, 
pp. 135-144. 

[9] R.Y. Rubinstein, G. Samorodnitsky and M. Shaked, 
"Antithetic variates, multivariate dependence and simulation 
of stochastic systems", Management Sci. 31, 66-77 
(1985). 

[10] W.T. Song, U Hsiao and Y. Chen, "Generating 
pseudorandom time series with specified marginal 
distributions", European J. Oper. Res. 93(1) (1996), forth- 
coming. 

[11] Y.L. Tong, The Multivariate Normal Distribution, Springer, 
New York, 1990. 

[12] W. Whitt, Bivariate distributions with given marginals, Ann. 
Statist. 4, 1280-1289 (1976). 


