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In this paper we address the problem of finding the simulated system with the best (maximum or minimum) expected performance when
the number of systems is large and initial samples from each system have already been taken. This problem may be encountered when
a heuristic search procedure—perhaps one originally designed for use in a deterministic environment—has been applied in a simulation-
optimization context. Because of stochastic variation, the system with the best sample mean at the end of the search procedure may not
coincide with the true best system encountered during the search. This paper develops statistical procedures that return the best system
encountered by the search (or one near the best) with a prespecified probability. We approach this problem using combinations of statistical
subset selection and indifference-zone ranking procedures. The subset-selection procedures, which use only the data already collected, screen
out the obviously inferior systems, while the indifference-zone procedures, which require additional simulation effort, distinguish the best
from the less obviously inferior systems.

Received August 1999; revision received June 2002; accepted September 2002.
Subject classifications: Simulation, statistical analysis: selecting the best system. Simulation, efficiency: large-scale screening.

Programming/stochastic: terminal inference.
Area of review: Simulation.

1. INTRODUCTION

This paper presents novel ranking-and-selection procedures
that identify the system with the best expected perfor-
mance when presented with a large number of systems,
each of which has been simulated, but not necessarily for
an equal number of observations. This situation is likely to
be encountered at the end of a simulation-optimization run,
where a heuristic search procedure may have uncovered
very good systems, but cannot guarantee which system is
the true best of those visited, due to sampling variability.

Interest in the topic of simulation optimization has been
revived in the past several years. For recent overviews, see
Andradóttir (1998), Fu (2002), Fu et al. (2000), and Banks
et al. (2001). There are two reasons behind this renewed
interest:
• Commercial add-on products that employ heuristic

optimization techniques in conjunction with simulation
models written in an existing simulation package are read-
ily available.
• Increased computer processing speeds make the

approaches used in the add-on products feasible by allow-
ing faster evaluations of systems via simulation.

Typically, these add-on products, such as SimRunner®

(PROMODEL Corporation) and OptQuest (OptTek Sys-
tems, Inc.), employ a combination of heuristic optimization
methods (genetic algorithms, tabu search, etc.) originally

designed for use in a deterministic setting. Rather than eval-
uating each alternative system with an objective function,
each alternative is evaluated by a simulation model writ-
ten in an existing simulation package (Glover et al. 1996,
Benson 1997). In the past, the sample mean (based on
several simulation replications) was often used in the opti-
mization algorithm as though it were the output of a deter-
ministic objective function; more recent versions employ
some error control to keep the search from being badly
misled by stochastic variation.

At the end of a simulation-optimization run, there is typ-
ically a database with a large number of different systems
visited by the search, each with output data from one or
more replications. The system with the best sample mean is
returned as the best. There is no practical way to tell if this
system is the best in the entire search space. In a stochastic
setting, heuristic search algorithms usually do not guarantee
convergence to a globally optimal solution, while provably
convergent algorithms are only guaranteed to work as sim-
ulation effort goes to infinity. Suppose, however, that the
search algorithm does actually visit the true best alternative
in the solution space. Even with this supposition, there is
no assurance that the algorithm will correctly identify the
best system.

A key feature of simulation optimization that makes it a
difficult problem is the need to address the search versus
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selection trade-off. Given a limited computing budget, how
should that budget be allocated between searching over the
feasible space for (potentially) better solutions, and deter-
mining which of the solutions that have been examined
are actually good? In deterministic optimization problems
the selection issue does not exist because the solutions are
evaluated without noise; in simulation comparison prob-
lems to which ranking and selection procedures are typi-
cally applied, the focus is entirely on selection because all
solutions will be evaluated.

Consider trying to allocate the next unit of simula-
tion effort—say a replication—effectively in a simulation-
optimization search. To do so requires at least partial
knowledge of the following:
• How much improvement is possible, or how likely is

the search to find better solutions, relative to the solutions
that have already been examined? More simply, is it worth
continuing to search?
• Are the “good” solutions clustered together in the

solution space, or are they isolated from each other? Will
following the response surface in improving directions tend
to lead to the best solutions, or should the search be kept
diverse?
• How much variability is there in the performance esti-

mates for solutions that have already been visited and those
that have not yet been discovered? In other words, can we
recognize good solutions (and perhaps good search direc-
tions) easily, or do we need to expend significant compu-
tational effort to do so?

Without knowing a great deal about the problem struc-
ture, these questions are difficult, if not impossible, to
answer. See Yakowitz et al. (2000) for an illustration of how
they can be addressed when there is structural information.

The present paper does not solve the search versus selec-
tion problem. Instead, we take a practical perspective: In a
simulation-optimization problem that employs an effective
search heuristic, we assume the search will be successful in
uncovering some very good solutions (and perhaps a large
number of inferior ones). The user would like to spend as
much of the budget as possible on search—to maximize the
chance of encountering the optimal solution—but would
also like to be confident that the selected solution is the
best or near-best of all solutions that the search actually did
encounter. Further, the user is able to quantify what “near-
best” means in units of the performance measure (dollars,
minutes, etc.).

In this paper we present ranking-and-selection proce-
dures that take over when the search ends. Therefore, we
are faced with the following situation:

1. The number of solutions we have to compare (all
those encountered by the search) is large, and they may not
have been simulated equally. Thus, we need to be able to
handle unequal sample sizes.

2. There are some (apparently) very good solutions.
Thus, we need to be able to exploit their performance esti-
mates to discard (in a statistically precise way) inferior
solutions without generating much or any additional data.

3. We do not insist on finding the unique best of all the
solutions visited by the search, but we do want one that is
close enough. Thus, we need to be able to incorporate the
user’s measure of “close enough.”

4. We want the comfort of a statistical guarantee, but do
not want to spend any more simulation effort than neces-
sary to get it.

It is perhaps worth asking if the premise in Item 2 above
is reasonable. In other words, when we use a heuristic opti-
mization technique, is it safe to assume that it will uncover
better and better solutions without having estimates pre-
cise enough to determine the true best solution at every
step? We believe that the answer is yes, and our position
is supported by research in the area of ordinal optimization
(see, for instance, Dai 1996). Ordinal optimization demon-
strates that less simulation effort is required to approxi-
mately order solutions than is required to estimate their
actual performance values. In particular, it is much easier to
identify solutions that are highly ranked than it is to deter-
mine the unique or near-best. We believe that the ultimate
goal in simulation optimization is to identify the best or
near-best, but a search does not have to do so at each step
in order to make progress.

This paper combines and extends two types of statis-
tical ranking-and-selection (R&S) techniques. The first of
these techniques, known as screening, or subset selection,
requires only one set, or stage, of simulation replications to
be performed on each system. In a simulation-optimization
setting, this means that no additional simulation effort
beyond what has taken place in the search is required.
Unfortunately, this type of procedure is not guaranteed to
identify the single best system; instead, it only eliminates
systems that are clearly inferior. If many systems have
closely spaced sample means and large sample variances,
such a procedure may be ineffective, eliminating few infe-
rior systems and leaving the analyst with a large subset of
indistinguishable systems, one of which is the best.

The other R&S technique, known as selection, or two-
stage indifference-zone �IZ� ranking, guarantees to iden-
tify the single best system, but requires us to take two
stages of simulation replications on each system. In a
simulation-optimization setting, this means that we must
perform additional simulation replications on top of those
done during the search. More formally, a two-stage IZ
procedure guarantees the selection of the best system
with probability at least 1− � whenever the best is at
least a user-specified amount, �, better than the others
(Bechhofer et al. 1995). Furthermore, these procedures
often guarantee returning a system within � of the best
if the best system is not � better than the next best
(Nelson and Matejcik 1995). This user-specified quan-
tity, �, defines the indifference zone, and it represents
the smallest difference worth detecting. Regrettably, an
IZ procedure can require a large number of additional
replications from each system. The number of addi-
tional, or second-stage, replications required per system
increases as the probability guarantee, 1−�, increases; the
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indifference level, �, decreases; the number of replications
taken in the first stage, n0, decreases; the sample variance
of each system increases; or the number of systems being
compared increases.

Although both subset-selection and IZ ranking proce-
dures have shortcomings, the two approaches can work
together. A straightforward combined procedure uses sub-
set selection to eliminate the clearly inferior systems, then
applies an IZ procedure only on the survivors. Because
no second-stage data are collected on the inferior sys-
tems, it can deliver the single best system with less sim-
ulation effort than would be required by the IZ proce-
dure alone. (Nelson et al. 2001). The combined procedures
presented in this paper, which are outlined below, require
even less simulation effort than a straightforward combined
procedure.
• Screen and Restart. Given the search data, we per-

form a subset-selection procedure to screen out inferior sys-
tems. Then, rather than going directly to the second stage of
the IZ procedure, we perform an entirely new two-stage IZ
procedure. (For technical reasons we will discuss later, this
effectively reduces the number of systems being compared,
which reduces the additional effort required.) Furthermore,
restarting allows us to choose an adjusted first-stage sam-
ple size n0, which reduces the total number of replications
required.
• Sort and Iterative Screen. Given the search data,

we sort the systems by sample mean and take additional
second-stage replications on the most promising system
before performing any screening. These additional repli-
cations reduce the sample variance of the most promising
system, making it much more effective at screening out
inferior systems. One by one, the next-most-promising sys-
tem faces screening by those who have gone before. Only if
a system passes screening do we perform additional repli-
cations on it.

The Sort-and-Iterative-Screen procedure is a direct
descendant of a Group-Screening procedure presented in
Nelson et al. (2001) which extended ideas from ranking
and selection to contexts in which the number of alterna-
tives is large. A brief description of the Group-Screening
procedure, and the differences between it and the Sort-and-
Iterative-Screen procedure, can be found in §6 of the jour-
nal’s online companion. Boesel et al. (2003) implemented
ideas from Nelson et al. (2001) and the present paper in
software that combines heuristic optimization, via a genetic
algorithm, with statistical ranking and selection. The practi-
cal experience obtained in creating and using that software
provided much of the research direction for the present
paper.

Chick and Inoue (2001) have developed procedures for
selecting the best simulated system based on Bayesian
expected value-of-information arguments, rather than on
the frequentist R&S techniques used in this paper. Their
procedures, which allocate simulation effort adaptively,
tend to be less conservative than those presented here and

have produced good results on a number of empirical prob-
lems (see, for instance, Inoue et al. 1999, and Chen 1996).
Unlike the procedures presented in this paper, however,
they do not provide a probability of correct selection guar-
antee, nor have they been designed for very large numbers
of alternatives.

The remainder of this paper is organized into three sec-
tions. Section 2 provides a more thorough overview of
screening and selection procedures, and presents extensions
that allow them to work when the initial number of replica-
tions varies from one system to another. Section 3 presents
two distinct strategies for combining screening and selec-
tion. Section 3.1 describes the Screen-and-Restart Proce-
dure; an algorithm to find the best first-stage sample size
when restarting is also given. Section 3.2 describes the
Sort-and-Iterative-Screen Procedure. An empirical evalua-
tion and comparison of both approaches, and some earlier
variants, is provided in §4. For brevity’s sake, proofs of the
validity of the procedures developed in the paper, as well
as other supporting procedures and results, are included in
the journal’s online companion.

2. BASIC METHODS AND EXTENSIONS

2.1. Setting and Notation

We assume that a preliminary or first-stage set of simula-
tion output data (possibly generated by a search procedure)
are “dropped into our laps.” Let k be the number of differ-
ent systems in the data set, and let n0i be the number of
replications already performed on system i. Notice that we
do not require equal first-stage sample sizes, since a search
procedure may revisit systems or take differing numbers of
replications from them. Let Xim be the output from replica-
tion m of system i. Systems are to be compared based on
their true means, 
i = E�Xim
, and we assume that larger

i is better throughout this paper.

The first-stage sample mean of system i is

�Xi�1� =
1
n0i

n0i∑
m=1

Xim�

while S2
i �1� is the first-stage sample variance of system i;

that is

S2
i �1� =

1
n0i −1

n0i∑
m=1

�Xim −�Xi�1��
2�

Let �X�i
�n� be the nth-stage sample mean of the sys-
tem whose true mean is the ith smallest (thus, �k
 is the
index of the best system among the k that are available).
To use the procedures described in this paper, we need the
sample mean, sample variance, and number of replications
taken from each system visited by the search. Define cor-
rect selection (CS) as the event where a procedure returns
system �k
, the one with the best true mean. The probabil-
ity of making a correct selection is denoted by PCS.

The procedures presented in this paper are derived under
the assumption that the simulation output data are normally
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distributed, and our empirical evaluation retains this set-
ting. The assumption is reasonable when simulation per-
formance estimates are averages of large numbers of more
basic observations, either within a replication or “batch.”
Nevertheless, the issue of robustness to nonnormal output
data is relevant. Both Nelson et al. (2001) and Nelson and
Goldsman (2001) report empirical studies that evaluate the
robustness of R&S procedures—similar to the ones in this
paper—to departures from normality. Their results showed
that mild departures cause no significant degradation in per-
formance, as measured by probability of correct selection.
Severe departures, however, do degrade PCS, as one would
expect.

Our procedures assume that the search heuristic deliv-
ers i.i.d. samples from each system that it visits, and
further that the samples across systems are also indepen-
dent. These assumptions raise two issues in our setting:
the first involves the use of common random numbers
(CRN), and the second involves the possibility of depen-
dence among systems visited by a simulation-optimization
search procedure.

It is well known that the use of CRN to induce depen-
dence across systems can sharpen comparisons, where in
our context “sharpening” means reducing the total num-
ber of observations required to achieve the desired PCS.
There are IZ procedures that exploit CRN (e.g., Nelson and
Matejcik 1995), but they either become extremely conser-
vative, or invalid, as the number of systems becomes large.
We suspect that the procedures introduced in this paper will
still preserve the required PCS if CRN is employed, but that
is not the same as exploiting CRN to improve efficiency.
Development of procedures that do exploit CRN when the
number of systems is large is an open research problem.

If a simulation-optimization search takes a fixed num-
ber of replications from each solution it examines, then
our assumptions of i.i.d. sampling and independence across
systems will stand up. However, if the search adjusts sam-
ple sizes based on observed performance or variability, then
some dependence within and across systems’ output data
could be introduced. However, since the search heuristic is
not trying to enforce overall statistical error control, and
(at best) is exercising error control in local search steps,
the induced dependence (if any) should be negligible.

2.2. Screening

In many cases there will be systems visited by the search
that are clearly inferior to others visited by the search.
We will use a subset-selection procedure to screen out
these clearly inferior systems. A subset-selection proce-
dure returns a subset (whose size can be random or pre-
determined) that contains the best of the k systems with
probability �1−�0 (Bechhofer et al. 1995). Nelson et al.
(2001) developed a single-stage subset-selection proce-
dure that permits unequal and unknown variances. Our
Extended Screen-to-the-Best Procedure, presented below,
extends their procedure to allow the unequal sample sizes

that may be the result of a search. In the following proce-
dure, the best system is the one with the largest true mean:
Extended Screen-to-the-Best Procedure.
1. Set 1−�0 such that 1/k < 1−�0 < 1.
2. Given Xim� i = 1�2� � � � � k, m = 1�2� � � � � n0i, let

Wij =
(

t2i S
2
i �1�
n0i

+ t2j S
2
j �1�

n0j

)1/2

� ∀ i �= j

where ti = t�1−�0�
1/�k−1�� n0i−1 and t��� is the � quantile of the

t distribution with � degrees of freedom.
3. Set H = �i� 1 � i � k and �Xi�1� � �Xj�1� − Wij�

∀ j �= i�.
4. Return H as the subset of retained systems.

A complete description of a slightly more general version
of this procedure, and a proof of its validity �Pr��k
 ∈
H� � 1− �0 for all configurations of the means), are
included in §2 of the journal’s online companion. The sim-
ulation package Arena (Rockwell Software) has incorpo-
rated the screening procedure described above into its out-
put analysis package.

Although a single-stage subset-selection procedure, such
as the one presented above, requires no additional sampling
effort, the number of systems included in the subset is ran-
dom. If one is fortunate, the subset includes only a single
system, the best. If one is unfortunate, no systems are obvi-
ously inferior, so the subset includes all k systems and the
procedure has not reduced the field.

Even if it does not identify the single best system, a
screening procedure can provide useful information about
the quality of the search. If one is left with just a few sys-
tems in the subset, this means that the ratio of between-
system variation to within-system variation (stochastic
noise) is relatively high, and that the search procedure
found some systems that were clearly better than the oth-
ers. If, on the other hand, the subset is very large, then
the search procedure found no clear winners; perhaps addi-
tional effort could be spent allowing the search procedure
to seek out some better systems, or perhaps the search did
not take enough replications at each system.

2.3. Selection

To choose the single best system from among those sys-
tems that are not obviously inferior, we will employ a two-
stage IZ ranking procedure, which requires one additional
sampling stage from the competitive systems. Two-stage IZ
procedures guarantee to select the best system with proba-
bility �1−�1 whenever the best is at least a user-specified
amount, �, better than the others. If there are some near-
best systems within � of the best, our procedures will
return the best or one of these near-best systems. The user-
specified quantity � defines indifference zone, and it repre-
sents the smallest difference worth detecting. In a typical
IZ procedure, such as Rinott’s (1978) procedure, the total
sample size required of system i is:

Ni =max
{
n0�

⌈(
h′Si�1�

�

)2⌉}
� (1)
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where 
·� means to round up, h′ = h�k�1−�1� n0� is a
constant determined by k, the number of systems being
compared; 1−�1 is the desired confidence level; and n0

is the number of first-stage observations. The constant h′

increases in k, and decreases in � and n0. Rinott’s origi-
nal paper assumed that the initial sample sizes were equal,
but we have extended Rinott’s procedure to allow unequal
initial sample sizes.
Extended Rinott Procedure.
1. Set 1−�1 such that 1/k < 1−�1 < 1, and let nmin =

mini�n0i�.
2. Set h = h�2� �1−�1�

1/�k−1�� nmin�.
3. Given Xim, i = 1�2� � � � � k, m = 1�2� � � � � n0i, deter-

mine the total required sample size for system i

Ni =max
{
n0i�

⌈(
hSi�1�

�

)2⌉}
�

4. Take Ni − n0i additional replications from each sys-
tem i.

5. Select as best the system i with the largest overall
sample mean �Xi�2� =

∑Ni

m=1 Xim/Ni.
The validity of this extension (specifically, Pr�select �k
��
1−�1 whenever 
�k
 −
�k−1
 � �) is proved in §3 of the
journal’s online companion. Furthermore, as a result of
Theorem 1 in Nelson and Matejcik (1995), we guarantee
that if 
�k
 −
�k−1
 < �, then the procedure will select the
best system or one within � of the best.

Remark. Notice that the constant

h = h�2� �1−�1�
1/�k−1�� nmin�

used to determine the second-stage sample size is based on
the smallest of the first-stage sample sizes. Further, it is
not h′ = h�k�1−�1� nmin�, the standard Rinott constant for
comparing k systems. We conjecture that the procedure is
still valid if h is replaced by h′, but have been unable to
prove this (unless all the n0i are equal, in which case the
proof is trivial). The constant h is in fact an upper bound
on h′; in §3 of the journal’s online companion, we provide
some numerical examples showing that h is a tight upper
bound, so we feel that little is lost in using h rather than h′.

IZ ranking satisfies our overall goal of finding the best
or near-best system, but it may be statistically inefficient
because it assumes that the systems’ true means are arrayed
in the so-called “Least-Favorable Configuration” (LFC).
The LFC is the configuration of system means that would
give a procedure the smallest probability of returning the
statement “system i is the best” when system i is indeed
the true best and is at least � better than anything else. For
IZ procedures, the LFC is typically the “slippage” configu-
ration in which the true mean of the best system is exactly
� larger than the means of all the other systems. Of course,
because nature rarely (if ever) places systems in the LFC,
1−�1 is a lower bound on the probability that the IZ pro-
cedure returns a true statement. This makes IZ procedures
inherently conservative.

3. COMBINING SCREENING AND SELECTION

Both subset-selection and IZ ranking procedures have
shortcomings that hamper their usefulness in a simulation-
optimization setting. As mentioned above, a single-stage
subset-selection procedure requires no additional simula-
tion effort after the search has finished, but it may not
eliminate many (or any) systems. On the other hand, an IZ
procedure guarantees the return of a single system within
� of the best with a prespecified probability, but it may
require an enormous amount of additional simulation effort
to do so. As Equation (1) shows, Ni, the total number of
replications required for system i, can become quite large,
especially if the S2

i �1� are large and � is small. For this
reason, IZ procedures are best when k, the number of sys-
tems in contention, is small. In our environment, however,
we may have hundreds or thousands of systems to consider.
The simulation effort required to use an IZ procedure alone
in such a setting quickly becomes prohibitive.

Fortunately, the two approaches (subset and IZ) can work
together to deliver a single system that meets our require-
ments with less simulation effort than would be required
by the IZ procedure alone (Nelson et al. 2001). As men-
tioned earlier, the IZ procedures assume that the means of
the competing systems are arrayed in the LFC. Even after
the first-stage data have been collected, the IZ procedures
retain the LFC assumption, making no use of the informa-
tion provided by the first-stage sample means. This strict
adherence to the LFC assumption makes the IZ procedures
wastefully conservative. Combining a subset-selection pro-
cedure with an IZ procedure can reduce this effort by using
the first-stage sample data to “screen out” clearly infe-
rior systems. This makes the IZ procedure more efficient
by reducing the number of systems from which additional
sampling is required.

In the next two subsections we describe procedures that
employ various combinations of screening and selection,
and discuss their application in a simulation-optimization
setting. The first subsection describes a simple screen-and-
restart procedure, then proposes a method that takes advan-
tage of the variance estimates from the discarded first-stage
samples to choose the size of the new first-stage samples.
The second subsection describes a procedure that does not
rerun any first-stage samples, but instead collects second-
stage sample information from a few of the better systems,
which decreases their sample variance and makes them
tougher screeners. This increases the chance that they will
eliminate inferior systems, reducing the total number of
second-stage samples required.

3.1. Combination of Screen, Restart, and Select

Nelson et al. (2001) developed a provably valid screen-
and-select procedure, which we will call the Screen-and-
Continue procedure. Unfortunately, the validity guarantee
for this procedure requires that the critical value h used in
the IZ procedure be determined as though all k systems
remain in contention, rather than just those that survive
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screening. This is because the procedure uses the initial
samples from the search in the IZ procedure (note that the
conditional probability of selecting the best system, given
it passed screening, depends upon whether or not the first-
stage data are retained). Thus, h remains large, so Ni is also
large. On top of this, because we must calculate h using
nmin (the smallest of all of the initial sample sizes n0i taken
during the search) and because h is a decreasing function
of n0i, Ni will be further enlarged.

If, however, we rerun the first-stage samples of the sys-
tems that survive screening, then we can eliminate some
of these problems. Let M be the number of systems
that survive screening. Restarting allows us to use M ,
rather than the original k, in our determination of h. This
could reduce h, perhaps dramatically. Furthermore, restart-
ing gives us an opportunity to increase n0i, which further
reduces h. In many cases, the savings gained through these
reductions in h more than offset the losses involved in
rerunning the first-stage samples.

The combined procedure presented below is simple and
statistically valid; it employs a subset-selection procedure
to screen out inferior systems, then employs an independent
IZ procedure on the survivors by taking a new first-stage
sample from each.
Screen-Restart-and-Select Procedure.
1. Select the desired confidence level 1−� such that

1/k < 1−� < 1, and the indifference level � > 0.
2. Given Xim, i = 1�2� � � � � k, m = 1�2� � � � � n0i, run the

subset procedure (described below). To obtain an overall
confidence level of 1−�, we set 1−�0 =

√
1−� for the

subset procedure and 1− �1 =
√
1−� for the selection

procedure; however, any decomposition whose product is
1−� could be used.

(a) Let

Wij =
(

t2i S
2
i �1�
n0i

+ t2j S
2
j �1�

n0j

)1/2

(2)

where ti = t�1−�0�
1/�k−1�� n0i−1.

(b) Set H = �i� 1 � i � k and �Xi�1� � �Xj�1� −
Wij�∀ j �= i�.

(c) Return H , the group of systems that survive the
screen, and let M = �H �.

3. Take independent samples of size nri � 2 from each
system i ∈H (discarding the initial first-stage sample), and
calculate a new sample variance estimate, S2

i �r1�. (The
best setting of nri is discussed after the description of this
procedure.)

4. Calculate the total required sample size from system
i ∈ H , Ni, as

Ni =max
{
nri�

⌈(
hSi�r1�

�

)2⌉}
� (3)

where h=h�2� �1−�1�
1/�M−1�� nmin� is Rinott’s (1978) con-

stant with k= 2, confidence level �1−�1�
1/�M−1�, and first-

stage sample size nmin =mini∈H�nri�.

5. Take Ni−nri additional replications from each system
i ∈ H .

6. Of the M surviving systems, select as best the sys-
tem i with the largest overall sample mean �Xi�2� =∑Ni

m=1 Xim/Ni� i ∈ H .
In §4 of the journal’s online companion, we prove that

Pr�select �k
� � 1− � whenever 
�k
 −
�k−1
 � � under
this procedure. Furthermore, as a result of Theorem 1
in Nelson and Matejcik (1995), we are guaranteed that
if 
�k
 −
�k−1
 < �, the probability of selecting a system
within � of the best is greater than or equal to 1−�.

Restart provides an opportunity to reduce a system’s total
required sample size by increasing its initial sample size.
Recall that n0i is system i’s initial sample size as a result
of the search, and nri is i’s initial sample size in the new
sample. Under our procedure, the total required sample size
for system i (after discarding the first n0i replications) is
given in Equation (3). The critical value, h, which helps to
determine the total sample size, Ni, decreases as the initial
sample size increases. The impact on Ni is illustrated in
Figure 1, which plots Ni as a function of nri for k = 25
and 1−�= 0�95 for a fixed value of �Si�r1�/��

2 = 1. This
figure suggests increasing nri, at least up to a point, to
decrease Ni. Of course, if nri is increased too much, it will
exceed 
�hSi�r1�/��

2�, which defeats the purpose.
Given that we have seen the results of the first-stage

sample, how might we use that information to better set nri?
Suppose we take a simplistic view, by assuming that the
effects of rounding are negligible and that S2

i �r1�= S2
i �1�,

where S2
i �1� is the sample variance of the initial first-stage

sample and S2
i �r1� is the sample variance of the restarted

first-stage sample. Let h�nri�
represent h as a function of nri

for fixed values of k and �. In Figure 1, notice that Ni is
quite low at the point where

nri =
(

h�nri�
Si�r1�

�

)2

� (4)

Figure 1. Sample size N as a function of the initial
sample size nr for �S/��2 = 1, k = 25, and
1−� = 0�95.
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We will assume (without proof) that Ni is minimized at or
near this point. The graphical analysis of Figure 1 applies
only to setting nri for a single system; in our context the
decision on how to set nri will be complicated by the
fact that we have many systems with unequal variances.
Although initial sample sizes need not be equal for an IZ
procedure to be valid, h is set according to the smallest n0i.
Clearly, then, if one system is given a small initial sam-
ple size, then the benefit of giving other systems greater
initial sample sizes is diminished. For this reason, we set
a single nr for use by all systems under restart. Notice
that with nr all equal, we can use h�M�1−�1� nr� instead
of h�2� �1−�1�

1/�M−1�� nmin�. To find the single best nr ,
we will take advantage of the fact that the line Ni = nr

is convex, and our conjecture that h�nr �
is convex.1 If our

conjecture is correct, then �h�nr �
Si�r1�/��

2 is also convex.
Therefore, the upper envelope

max
{
nr�

(
h�nr �

Si�r1�

�

)2}

is also convex. Because this is true for every system, the
sum

M∑
i=1

{
max

{
nr�

(
h�nr �

Si�r1�

�

)2}}

is convex as well. Thus, we can use a search procedure
such as the Golden-Section method (Bazaraa et al. 1993)
to find the minimum. We defer discussion of a method
for selecting [nlow, nhigh], the minimum-containing interval
needed to start the Golden-Section method, to §5 of the
journal’s online companion.

Because we are restarting, the validity of carefully select-
ing nr is not in question. The amount of simulation effort
saved, however, is less clear. Although the restart procedure
has easily provable statistical properties, it is unfortunate
that it discards data. If the initial sample size is large or if
the screen fails to eliminate many systems, rerunning the
initial samples becomes wasteful. We conjecture that the
biggest gains will occur when there are a large number of
widely spaced systems and initial samples are small. In a
search setting, we are very likely to encounter problems of
this kind because a heuristic simulation-optimization search
procedure (such as a genetic algorithm or a tabu search)
will typically take just a few replications on a large number
of systems with widely varying performance. In the empir-
ical study in §4 we compare the restart procedure with the
Screen-and-Continue procedure from Nelson et al. (2001),
which does not discard data.

Remark. One might wonder if the decision to screen and
continue, or to restart, can be deferred until after examin-
ing the first-stage data to see how many systems survive
screening. Boesel (2000) shows that this is indeed possible,
but only if the confidence levels for screening and selection
are adjusted at the cost of some efficiency.

3.2. Sorting and Iterative Screening

The procedure in the previous section employs screening
and IZ selection in two separate, distinct phases: All sys-
tems are screened using first-stage data, then new first-
stage data and second-stage data are collected to perform
IZ selection. Nelson et al. (2001) describe and prove the
validity of a procedure that completely processes a few sys-
tems at a time, rather than processing all systems in two
distinct phases. Under this procedure, second-stage data are
collected on a small group of systems; a second, distinct
group of systems is formed, and the members of the sec-
ond group are screened against members of the first group.
Additional information is collected on a system in the sec-
ond group only if it survives screening. This procedure then
rolls from one group to the next, screening each subsequent
system against all previously surviving systems. The use of
second-stage information makes each screen much tighter,
eliminating more systems and potentially reducing the total
simulation effort required.

More formally, when screening system i against sys-
tem j , screening is based on

W̃ij =
(

t2i S
2
i �1�

Ñi

+ t2j S
2
j �1�

Ñj

)1/2

�

where

Ñj =




n0j � if system j has only received first-stage
sampling

Nj� if system j has received second-stage
sampling.

For systems j from previous steps that have already
received second-stage sampling, we typically have Nj �
n0j , which shortens W̃ij , providing a tighter screening pro-
cedure. Notice that S2

i �1� and S2
j �1� are based on the first-

stage data only.
In Nelson et al. (2001), the authors point out that if the

procedure happens to encounter a system with a good sam-
ple mean early in the process, then that system will likely
receive second-stage sampling and act as a very tough
screen, eliminating many inferior systems, and reducing the
total simulation effort required. Because we come in at the
end of a simulation-optimization search procedure, our set-
ting differs from that envisioned in Nelson et al. (2001), and
we can assume that the first-stage samples from all of our
systems have been given to us. Because all of this informa-
tion is available at the same time, we can sort the systems
from best to worst based on first-stage sample means. So,
rather than hope that the procedure happens to encounter a
good system early, we can cause the procedure to encounter
a good system early by sorting. We call this the Sort-and-
Iterative-Screen procedure, and present it below.
Sort-and-Iterative-Screen Procedure.
1. Select overall confidence level 1 − � such that

1/k < 1− � < 1, and the indifference level � > 0. Let
�0 = �1 = �/2. Set ti = t�1−�0�

1/�k−1�� n0i−1 and h = h�2�
�1 − �1�

1/�k−1�� nmin�, where nmin = mini�n0i� and h is
Rinott’s constant.
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2. Given Xim, i= 1�2� � � � � k, m= 1�2� � � � � n0i, compute
�Xi�1� and S2

i �1� and set Ñi = n0i for all i.
3. Sort by sample mean, reindexing systems such that

�X1�1� � �X2�1� � · · ·� �Xk�1�.
4. Let H0 =� and J0 =�, where Hi is the set of systems

that have passed screening as of step i, and Ji is the set of
systems that have failed screening as of step i.

5. Do the following for i = 1�2� � � � � k:

Compute W̃ij , ∀ j ∈ Ji−1∪Hi−1.
If �Xi�1� � �Xj�1�− W̃ij , ∀ j ∈ Ji−1 and

�Xi�1� � �Xj�2�− W̃ij , ∀ j ∈ Hi−1,
then

let Hi = Hi−1∪ �i�, and Ji = Ji−1.
Compute the second-stage sample size

for system i

Ni =max
{
n0i�

⌈(
hSi�1�

�

)2⌉}
.

Sample Ni −n0i additional replications,
and compute the overall
sample mean �Xi�2�. Set Ñi = Ni, and
advance i.

Else
let Ji = Ji−1∪ �i�, Hi = Hi−1, and advance i.

6. Select as best the system i ∈Hk with the largest over-
all sample mean �Xi�2�.

Nelson et al. (2001) prove that whenever 
�k
−
�k−1
 �

�, their procedure has Pr�select �k
�� 1−2�0−�1, where
1−�0 represents the confidence level used in the screening
phase, 1−�1 represents the confidence level used in the
selection phase, and �0+�1 = �. Furthermore, the authors
provide substantial evidence that Pr�select �k
� � 1−�0−
�1 whenever 
�k
−
�k−1
 � �. Additionally, they guarantee
with the same probability that the procedure will select a
system within � of the best if 
�k
 −
�k−1
 < �.

The procedure described above differs from that pre-
sented by Nelson et al. (2001) in that:
• The first-stage sample sizes may be unequal,
• the first-stage sample means are sorted before any

screening takes place, and
• each system faces screening by all previously screened

systems, not just those that survived screening.
In §6 of the journal’s online companion, we prove

that the procedure presented above has the same guaran-
tees and properties as the procedure presented in Nelson
et al. (2001). Furthermore, in §4 we show that sorting can
greatly reduce the simulation effort required to return these
guarantees.

4. EMPIRICAL EVALUATION

We conducted an extensive empirical evaluation to compare
the procedures introduced in this paper to existing proce-
dures and to each other. The systems are represented as
various configurations of k normal distributions. We evalu-
ated the procedures on different variations of the systems,
examining factors including the number of systems, k, the

configuration of the means, 
i, and the variances, "2
i , for

i = 1�2� � � � � k.
In the first set of experiments, the following three pro-

cedures are compared: the Screen-and-Continue Procedure,
as described in Nelson et al. (2001); the Screen-Restart-
and-Select Procedure (described in §3.1), with the ini-
tial sample size under restart, nr , not adjusted; and the
Screen-Restart-and-Select Procedure with the initial sample
size under restart, nr , adjusted using the Golden Section
method. In the second set of experiments, the Sort-and-
Iterative-Screen Procedure (described in §3.2) is compared
to an Iterative-Screen Procedure without sorting. The only
difference between the two procedures is that the second
does not sort the systems by sample mean. The third set of
experiments compares the Screen-Restart-and-Select Pro-
cedure with nr Adjustment to the Sort-and-Iterative-Screen
Procedure.

4.1. Experiment Design

In all cases, the best system was system k and its true mean
was set to 1. The indifference level � also was set to 1. To
examine a difficult scenario for the screening procedures,
the slippage configuration (SC) of the means was used. In
the SC, the mean of the best system was set exactly one
indifference level, �, above the other systems, and all of
the inferior systems had the same mean. To investigate the
effectiveness of the screening procedure in removing non-
competitive systems, monotone-decreasing means (MDM)
were also used. In the MDM configuration, the spaces
between the means of any two adjacent systems were set
at �/# where # was a constant within each experiment.

To gauge the effects of sorting by first-stage sample
mean, we performed experiments under two different order-
ings of the means. In one set of experiments we ordered the
systems from best to worst, to see how the nonsorting pro-
cedure (iterative-screening without sorting) would perform
under the most fortunate circumstances. In another set of
experiments we ordered the systems from worst to best, to
gauge the performance of the nonsorting procedure under
the most unfortunate circumstances.

In some cases the variances of all systems were equal
("2

i = 1), while in others they differed. For each config-
uration, we examined the effects of equal and unequal
variances on the procedures. In the unequal-variance case,
the variance of the best system was set both higher and
lower than the other systems. In the SC, "2

1 = $"2, with
$ = 0�5�2 where "2 is the common variance of the infe-
rior systems. In the MDM configurations, experiments were
run with the variance directly proportional to the mean
of each system, and inversely proportional to the mean of
each system. Specifically, "2

i = �
i −��+1 to examine the
effects of increasing variance as the mean decreases, and
"2

i = 1/��
i −��+ 1� to examine the effect of decreasing
variances as the mean decreases (since 
�k
 = 1, the small-
est means may be negative, but have large absolute values).
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In the Restart experiments, 1,000 macroreplications
(complete repetitions of the entire experiment) were per-
formed for each configuration. In the sorting experiments,
500 macroreplications were performed.

In all experiments, the nominal probability of correct
selection (PCS) was 1−� = 0�95. If the procedure’s true
PCS is close to the nominal level, then the standard
error of the estimated PCS, based on 1,000 macroreplica-
tions, is near

√
0�95�0�05�/1000, which is approximately

0.0069. The standard error of the estimated PCS based on
500 macroreplications is near

√
0�95�0�05�/500, which is

approximately 0.0097. Since the nominal PCS= 1−�, we
want to examine how close to 1−� we get. If the actual
PCS� 1−� for all configurations of the means, then the
procedure is overly conservative.

The number of systems in each experiment varied over
k = 2�5�10�25�100�500. The first-stage sample size was
set at n0 = 10. Although we prove that unequal initial sam-
ple sizes (n0i) can be used with ranking-and-selection pro-
cedures, to do so, one must calculate the constant h based
on the minimum of the unequal sample sizes. In other
words, one can use unequal initial sample sizes, if pre-
sented with them, but it does not help one reduce the addi-
tional effort required. Furthermore, use of unequal initial
sample sizes may make the already-conservative procedures
we are comparing even more conservative. This could only
serve to blur, rather than to sharpen, the differences among
our procedures. For these reasons, we used equal initial
sample sizes in our experiments.

4.2. Summary of Results

We will not present comprehensive results from such a
large simulation study. Instead, we present details of some
typical examples after summarizing the overall results. The
performance measures that we estimated in each experi-
ment include the probability of correct selection (PCS),
the average number of samples per system (ANS) over
all k systems, and the percentage of systems that received
second-stage sampling (PSS). Notice that ANS is a mea-
sure of a procedure’s overall efficiency, while PSS measures
the effectiveness of the screening component in eliminating
inferior systems.

In the Restart experiments, we compared three proce-
dures: Screen-and-Continue with no restart (shortened to
“No Restart”), Screen-Restart-and-Select with nr adjust-
ments using the Golden Section method (shortened to
“Restart with nr Adjustment”), and Screen-Restart-and-
Select without nr adjustments (shortened to “Restart with-
out nr Adjustment”). In all but two instances, Restart with
nr Adjustment was more efficient than Restart without nr

Adjustment, often substantially so. When Restart without
nr Adjustment was better, it was only slightly better than
Restart with nr Adjustment. This suggests that our proce-
dure for finding a good nr under restart is useful, but could
be improved somewhat.

The No Restart procedure was often more efficient than
the Restart without nr Adjustment procedure when the

number of systems, k, was 2, 5, or 10. The Restart with-
out nr Adjustment procedure was clearly better than the No
Restart procedure when k� 25. The Restart with nr Adjust-
ment procedure was almost always more efficient than No
Restart for k� 5; even when k= 2, Restart with nr Adjust-
ment was more efficient than No Restart in about half of
the trials.

Despite the improvements gained by adjusting nr under
restart, this procedure is still conservative; while the nom-
inal PCS was 0.95, the actual PCS was rarely less than
0.99 unless the systems were in the slippage configuration.
Under the SC, the actual PCS was usually between 0.97 and
0.99. The only exception was the Restart with nr Adjust-
ment procedure for k = 500 in the common variance case
(PCS = 0�963) and the case where the inferior systems had
smaller variance than the best (PCS = 0�951).

In the Sorting experiments, we compared three proce-
dures: the Sort-and-Iterative-Screen Procedure (shortened
to “Sort and Screen”); the Iterative-Screen Procedure with
no sorting (shortened to “Screen No Sort”); and Rinott’s
Procedure with no screening. The differences were dra-
matic; Sort and Screen was vastly superior to Screen No
Sort when the means were encountered in an unfavorable
sequence. When the means were encountered in a favorable
sequence (true best system first), the efficiencies of Sort and
Screen and Screen No Sort were about the same, although
sometimes (for k = 500) Screen No Sort was somewhat
more efficient than Sort and Screen. We conjecture that
the reason is that Sort and Screen sorts by first-stage sam-
ple mean, and this may sometimes place poorer screeners
first, while Screen No Sort always used the true best as
the first screener in this scenario. Rinott’s procedure was
more efficient than Sort and Screen only when the number
of systems was small, k = 2�5; that is, when the number
of systems eliminated by screening could not make up for
splitting � into �0 for screening and �1 for selection.

Comparing Restart with nr Adjustment to Sort and
Screen and Screen No Sort yields interesting results. In our
experiments, Restart with nr Adjustment was typically bet-
ter than both Sort and Screen and Screen No Sort. One
could imagine that if the initial sample size, n0, were much
larger than 10 that this would not be the case, because Sort
and Screen would need fewer additional replications, but
Restart with nr Adjustment would still be discarding infor-
mation. On the other hand, if n0 were smaller, then Restart
with nr Adjustment may look stronger yet.

4.3. Restart Experiments—Detailed Results

In these experiments we compared No Restart to Restart
with nr Adjustment and Restart without nr Adjustment. Our
findings can be divided into four categories:

1. SC, many systems: In this case, Restart without nr

Adjustment was about as efficient as No Restart, but Restart
with nr Adjustment was about twice as efficient.

2. SC, few systems: The effects of restart and nr adjust-
ment were mixed.
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Table 1. No Restart vs. Restart, with and without nr

adjustment.

Number of Systems, k = 2 Number of Systems, k = 500

No Restart Restart No Restart Restart
Restart w/ w/o Restart w/ w/o

ANS 98 91 106 649 273 642
PSS 96% 96% 97% 100% 100% 100%
PCS 0�98 0�97 0�97 0�99 0�96 0�99

Note. The systems are in the slippage configuration, and all systems
have equal variance.

3. MDM, many systems: Both Restart with nr Adjust-
ment and Restart without nr Adjustment dominated No
Restart, and Restart with nr Adjustment tended to be better
than Restart without nr Adjustment.

4. MDM, few systems: Restart with nr Adjustment was
somewhat better than No Restart, but No Restart was better
than Restart without nr Adjustment.

Tables 1 and 2 show some of these results. When con-
sidering these results, keep in mind that the procedure for
adjusting nr under restart takes time, as the constant h must
be obtained for a number of different values of nr to solve
the optimization problem. The comparisons in Tables 1
and 2 do not account for this effort.

4.4. Sorting Experiments—Detailed Results

Tables 3 and 4 show that Screen No Sort can be disas-
trous if variances are high and the procedure happens upon
a poorly sequenced group of systems. As Table 3 shows,
sorting caused most of the inferior systems to be screened
out even in the unfavorable sequence (PSS= 2%). This was
doubly helpful because under this configuration the systems
with inferior means also had high variance. In Table 4, the
inferior systems had much smaller variance, so their elim-
ination had less of an impact.

4.5. A Comparison of Sort-and-Iterative-Screen
to Restart

In the previous sections we observed that Sort and Screen
typically was better than Screen No Sort. We also observed
that Restart with nr Adjustment was better than No Restart

Table 2. No Restart vs. Restart, with and without nr

adjustment.

Number of Systems, k = 2 Number of Systems, k = 500

No Restart Restart No Restart Restart
Restart w/ w/o Restart w/ w/o

ANS 98 91 106 22 13 14
PSS 96% 96% 97% 2% 2% 2%
PCS 0�98 0�97 0�97 1�00 1�00 1�00

Note. The systems are in the MDM configuration, � = 1, and all
systems have equal variance.

Table 3. The effect of screening with sorting relative to
screening without sorting in the MDM config-
uration with k = 500 and # = 1.

Favorable Sequencing Unfavorable Sequencing

Screen Sort and Screen Sort and
No Sort Screen No Sort Screen

ANS 41 54 52,455 55
PSS 2% 2% 100% 2%
PCS 1�00 1�00 1.00 1�00

Note. In all cases, variance increases as sample mean decreases,
that is, � 2

i = ��i −��+1 for all i.

and Restart without nr Adjustment. To conclude, we com-
pare Sort and Screen to Restart with nr Adjustment. Some
results are given in Tables 5–6.

As one would expect, Sort and Screen, which uses
second-stage sample information in screening, has a lower
PSS than Restart with nr Adjustment (see Table 5). This
extra screening power, however, did not make up for the
savings the restart procedure gained by lowering h, so
Restart with nr Adjustment had the lower ANS.

Of course, for the MDM configuration used in Table 5,
screening out inferior systems is not such a tough job, so
the extra screening power of Sort and Screen is not as crit-
ical. If we look at a similar, but more tightly spaced (# = 3
rather than # = 1) and highly variable configuration, the
situation is less clear cut (see Table 6).

There are several factors at play here, and we could
devise a configuration in which one or the other proce-
dure would be better. For instance, if first-stage screening
is easy, then the additional screening power of Sort and
Screen is not as useful. On the other hand, if regular first-
stage screening is much less effective than second-stage
screening, then restarting will be a waste. Boesel (2000)
shows that you can choose between Sort and Screen and
Restart with nr Adjustment after examining the first-stage
data, but that you must pay a penalty for this choice by
adjusting the confidence level downward. Also note that
Restart with nr Adjustment is a bit slower to execute than
Sort and Screen, so if the two procedures have equal ANS,
Sort and Screen will be faster. Of course, Restart with nr

Table 4. The effect of screening with sorting relative to
screening without sorting in the MDM config-
uration with k = 500 and # = 1.

Favorable Sequencing Unfavorable Sequencing

Screen Sort and Screen Sort and
No Sort Screen No Sort Screen

ANS 14 14 25 14
PSS 1% 1% 100% 1%
PCS 1�00 1�00 1�00 1�00

Note. In all cases, variance decreases as sample mean decreases,
that is, � 2

i = 1/���i −��+1� for all i.
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Table 5. Sort and Screen vs. Restart with nr Adjust-
ment.

k = 2 k = 25 k = 500

Sort and Restart Sort and Restart Sort and Restart
Screen w/ Screen w/ Screen w/

ANS 95 91 66 44 19 13
PSS 92% 96% 18% 24% 1% 2%
PCS 0�97 0�97 1�00 0�99 1�00 1�00

Note. The systems are in the MDM configuration, � = 1, and all
systems have equal variance, as in Table 2.

Adjustment could be improved with a better, and, way to
determine the initial sample size under restart.

In a simulation-optimization setting, a heuristic search
is likely to visit a large number of systems and will only
expend a few simulation replications on each one. These
circumstances should heavily favor the Restart with nr

Adjustment procedure, which performs better than Sort and
Screen when the number of initial replications per system
is low.

5. CONCLUSIONS

Our work is motivated by the fact that the demand
for, and subsequent creation of, commercial simulation-
optimization software is racing ahead of the supporting the-
ory. In an ideal world, this software would be based on
provably convergent algorithms that nevertheless provide
good performance and precise statistical guarantees in finite
time. However, since such algorithms do not yet exist for
general classes of problems—and practitioners rarely have
the time to figure out what “class” of problem they have—
the commercial software is typically based on heuristics
that have good empirical performance in difficult determin-
istic optimization problems. Such algorithms aggressively
search the solution space and may uncover a number of
good systems. Our goal is to provide some statistical sup-
port for the system that is ultimately selected, while reduc-
ing the additional simulation effort required beyond what
has already been expended by the search. Specifically, we
guarantee that the system selected is the best (or is within
some user-specified amount � from the best) of all those

Table 6. Sort and Screen vs. Restart with nr Adjust-
ment.

k = 2 k = 25 k = 500

Sort and Restart Sort and Restart Sort and Restart
Screen w/ Screen w/ Screen w/

ANS 104 120 407 254 102 128
PSS 97% 98% 66% 80% 5% 10%
PCS 1�00 1�00 1�00 1�00 1�00 1�00

Note. The systems are in the MDM configuration, � = 3, and vari-
ance increases as system mean decreases (� 2

i = ��i − �� + 1 for
all i).

visited by the search. This is less than the global guaran-
tee that we desire, but much more than provided by com-
mercial products. And our procedures are independent of
the search algorithm that was employed. See Boesel et al.
(2003) for an example of how a search and selection pro-
cedure can be combined.

The results of our empirical study show that the Restart
Procedure with nr Adjustment typically outperformed the
Restart procedure without nr Adjustment and the Iterative-
Screening Procedures (with and without sorting). In our
studies the first-stage sample size was n0 = 10, but in a
simulation-optimization setting, when a search procedure
visits a large number of different systems, n0 may be
much smaller. This could strengthen Restart’s advantage,
although if n0 is too small a poor variance estimate could
mislead the sample-size optimization. Restart still has the
unappealing feature of discarding the first-stage data, but
using the first-stage variance information (and the Golden-
Section method) to adaptively set the restarted first-stage
sample size, nr , ameliorates this drawback. Furthermore,
the slowness of Restart’s current method for finding a good
nr could be improved through use of approximations for h.

While Restart with nr Adjustment is typically better, if
one faces high-variance, closely spaced systems, and a large
number of initial replications, then the Sort-and-Iterative-
Screen procedure should prove superior.

ENDNOTE

1. Although we were unable to prove the convexity of
h�nr �

, we believe that it is true based on extensive numerical
analysis.
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