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Time—series input processes occur naturally in the stochastic simulation of many service, communications,
and manufacturing systems, and there are a variety of time-series input models available to match a given
collection of properties, typically a marginal distribution and an autocorrelation structure specified via the use
of one or more time lags. The focus of this paper is the situation in which the collection of properties are not
“given,” but data are available from which a time-series input model is to be estimated. The input model we
consider is the very flexible autoregressive-to-anything (ARTA) model of Cario and Nelson [Cario, M. C., B. L.
Nelson. 1996. Autoregressive to anything: Time-series input processes for simulation. Oper. Res. Lett. 19 51-58].
Recently, we developed a statistically valid algorithm (ARTAFIT) for fitting this model to stationary univariate
time-series data using marginal distributions from the Johnson translation system. In this paper, we perform a
comprehensive numerical study to assess the performance of our algorithm relative to the two most commonly
used approaches: (a) fitting the marginal distribution but ignoring the autocorrelation structure, and (b) fitting
separately the marginal distribution as in (a) and the autocorrelation structure using the sample autocorrelation
function. We find that ARTAFIT, which fits the marginal distribution and the autocorrelation structure jointly,
outperforms both (a) and (b), and we demonstrate the importance of taking dependencies into account while
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developing input models for stochastic simulation.
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1. Introduction

Modeling the uncertainty in the input of the system
being studied is one of the challenging problems in
the design of stochastic simulation experiments. Input
modeling is often characterized as selecting appro-
priate univariate probability distributions to repre-
sent the primitive inputs of interest, and it would
indeed be this simple if the relevant input processes
could all be represented as sequences of independent
random variables having identical marginal distribu-
tions. When such univariate models do apply, there
exist a number of fitting methods with good statistical
properties, e.g., maximum likelihood, least squares,
and moment matching, for estimating the marginal
distributions of the underlying input processes. We
refer the interested reader to Vincent (1998) and Law
and Kelton (2000) for comprehensive reviews of the
input modeling tools available for independent and
identically distributed input processes.

However, dependent time-series input processes
occur naturally in the stochastic simulation of many
service, communications, and manufacturing systems
(see, e.g., Melamed et al. 1992, Ware et al. 1998). Ignor-
ing dependence in these settings can lead to very poor

estimates of performance measures, as illustrated by
Livny et al. (1993), who examine the impact of auto-
correlated interarrival times on the mean waiting time
of a single-server queue.

Motivated by the severe consequences of ignoring
dependence in real-life systems, input modeling for
dependent processes has attracted the attention of a
number of researchers. The focus has largely been
on two types of input processes: random vectors and
time series, with the latter being the subject of this
paper. Specifically, we consider a sequence of random
variables {X,; t =1,2,...,n} of length n with dis-
crete time index t whose full characterization is the
n-dimensional distribution of all individual random
variables X;, t =1,2,...,n, where n may be arbi-
trarily large. Of course, the amount of expert knowl-
edge or data needed for the full characterization of
this time series is typically prohibitive. The classical
approach for getting around this problem is to match
only certain key properties, such as the marginal dis-
tribution of the individual random elements and the
autocorrelation structure of the sequence. This may
not—and typically will not—uniquely or even cor-
rectly specify the joint distribution of interest, but the



—_~
&,
p—

o
s
S

5 E
© o
Ke)
o c
9
©
2
>
el
S
> 2
O =
o <
",
@ @©
nQ
o
b
2%
O ®©
_Q.‘L’
£y
32
S
.-QQ-
T c
@ 9
S 3
52
2 E
c O
02
o2
T ©
T
1]
0 £
c .2
=

()}
2c
- O
£ >

O O
T S
E -
c
[e]
8 e
S =
o O
<E
w_
©
= C
e o
=
Q35
Z-c
=<

Biller and Nelson: Evaluation of the ARTAFIT Method for Fitting Time-Series Input Processes for Simulation

486

INFORMS Journal on Computing 20(3), pp. 485498, ©2008 INFORMS

hope is that these key characteristics are sufficient to
produce accurate simulation results. Thus, there has
been significant interest in the simulation community
on fitting time-series input processes to a given col-
lection of properties, such as the marginal distribu-
tion moments and the autocorrelations up to a finite
lag. We refer the reader to Song et al. (1996), Cario
and Nelson (1998), Chen (2001), and Biller and Nelson
(2003) for example studies.

However, it is often the case that the desired prop-
erties are not “given,” but time-series data from the
process of interest are available. The common prac-
tice is to ignore dependence, assuming an indepen-
dent and identically distributed (ii.d.) input process
and fitting the parameters of the marginal distribu-
tion of this process using maximum likelihood or least
squares methods. It is important to note that when the
data are actually dependent, but this dependence is
ignored in the likelihood function, the resulting esti-
mators are not guaranteed to possess the statistical
properties of the standard maximum likelihood esti-
mators. An improvement over ignoring dependence
is to match the autocorrelation structure to the sample
autocorrelation function but fit the marginal distribu-
tion assuming an i.i.d. input process. In this paper, we
demonstrate that a good alternative to both of these
approaches is to use the ARTAFIT algorithm of Biller
and Nelson (2005) for fitting an autoregressive-to-
anything (ARTA) process of Cario and Nelson (1996),
which is regarded as one of the most general mod-
els for univariate time series in the simulation input
modeling literature. The ARTAFIT algorithm chooses
parameters for the marginal distribution from the
Johnson translation system (Johnson 1949a) and the
autocorrelation structure jointly to obtain a better
overall fit. We will investigate the performance of
ARTAFIT in recovering the true model parameters for
different sample sizes and a wide variety of distri-
butional shapes and dependence characteristics when
data actually come from an ARTA process. We will
also provide empirical evidence that the ARTA pro-
cess combined with the ARTAFIT algorithm can rep-
resent a wide variety of time-series input processes
that are not ARTA. This large-scale empirical study
is an important companion to the theoretical proper-
ties established in Biller and Nelson (2005) because it
demonstrates that the model and the fitting method
can be expected to perform well in practice.

The remainder of this paper is organized as fol-
lows. In §2, we review the time-series input models
used in our empirical study and describe the estima-
tion methods we use to fit these input models to data
samples. We discuss the selection of the experimen-
tal factors and the performance metrics in §3, present
our findings in §4, and conclude with future research
directions in §5. For the interested reader, we provide

background information on the Johnson translation
system, on the gamma process of Lewis et al. (1989),
and on the implementation of the ARTAFIT algorithm
in the Online Supplement to this paper (available at
http://joc.pubs.informs.org/ecompanion.html).

2. Fitting Time-Series Input Processes

for Simulation

In §2.1, we describe two different time-series models
for stochastic simulation: the ARTA process of Cario
and Nelson (1996) and the gamma process of Lewis
et al. (1989). The evaluation of the ARTAFIT proce-
dure of Biller and Nelson (2005) is the major focus
of this paper. While the ARTA process is the target
process for this procedure, the gamma process is the
one we choose to stress test the ARTA model and
the ARTAFIT algorithm. Later in §2.2, we discuss the
problem of fitting the ARTA input process to data
generated by ARTA and gamma processes.

2.1. Time-Series Input Processes

2.1.1. ARTA Processes. An ARTA process {X;; t =
1,2,...} is a univariate time series with an arbi-
trary marginal distribution F and autocorrelations
px(h), h=1,2,...,p specified through finite lag p.
In this paper, we call the parameter p the order
of dependence and construct the ARTA process
{X;; t=1,2,...} via the transformation U, = ®(Z,),
t=1,2,..., where {U,; t=1,2,...} corresponds to a
time series with uniform marginals on (0, 1] and the
base process {Z,; t=1,2, ...} is a stationary, standard
Gaussian autoregressive process of order p with the
representation

p
Zi=Y o Z,_,+Y, t=p+1,p+2,....
h=1

The «;, h=1,2,...,p are fixed autoregressive coef-
ficients that uniquely determine the autocorrelation
structure of the base process, p,(h), h=1,2,...,p,
and Y, t=p+1,p+2,... are i.i.d. Gaussian random
variables with mean zero and variance 2. Choos-
ing 02 =1-Y"_ a,p,(h) ensures that each Z, is
marginally standard normal. The time series {X;; t =
1,2,...} is obtained via the transformation

X, = F_l(ut) = F—l[q)(zt)],

which ensures that X, has distribution F by the well-
known properties of the inverse cumulative distribu-
tion function. We note that the inverse cumulative
distribution function method is an essential ingredi-
ent in the construction of the ARTA input process
and it works for any marginal distribution, although
F~' might have to be evaluated by an approximate
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numerical method when it has no convenient closed-
form expression.

The challenge in the construction of the ARTA pro-
cess comes from the fact that the autocorrelations of
the input process X, are not the same as the autocor-
relations of the base process Z, unless X, is marginally
standard normal. Thus, the central problem is to find
the base autocorrelation p,(h) satisfying the following
equality for the input autocorrelation py (h):

px(h) = Core[X,, X,] = Cor[F[@(Z))], ™ [(Z,)]]
o [ [ el o)

: ﬁpz(h)(ZOI zy) dz dz), — ,U«z} ’ 1)

where u and o are the mean and the variance
of the stationary time-series input process X, and
9, 1s the bivariate standard normal probabil-
ity density function with correlation p,(h). When
the marginal distribution is uniform on (0, 1], this
correlation-matching problem reduces to pyx(h) =
6/msin"'[p,(h)/2] (Kruskal 1958). For other marginal
distributions, solving this problem is not an easy
task. Fortunately, the correlation-matching problem
has functional properties that allow the development
of efficient numerical search procedures to find p,(h)
within a predetermined precision. We refer the reader
to Cario and Nelson (1996) for a thorough discussion
of those properties and to Song et al. (1996), Cario
and Nelson (1998), Chen (2001), and Biller and Nelson
(2003) for the procedures that have been developed to
date.

2.1.2. Gamma Processes. Over the past two dec-
ades there has been considerable research on mod-
eling univariate time series with gamma marginal
distributions in fields such as operations analysis,
hydrology, and meteorology. As a result, there exist
a variety of gamma processes with the ability to
generate stationary first-order time series. For exam-
ple studies, we refer the reader to Jacobs and Lewis
(1977), Gaver and Lewis (1980), and Lawrence and
Lewis (1980, 1981, 1985). In this paper, we choose
to work with the process developed by Lewis et al.
(1989) to represent a time series with gamma marginal
distribution and positive autocorrelation specified at
lag one. The objective is twofold: (i) to investigate
how well the characteristics of the gamma marginal
distribution are captured by the ARTAFIT algorithm,
and (ii) to challenge the autoregressive dependence
structure that is central to the construction of the
ARTA process. Because the focus of this paper is
the evaluation of the ARTAFIT algorithm, we provide
the technical details on how to construct the gamma
processes, which will serve the purpose of this paper,
in the Online Supplement.

2.2. Fitting Time-Series Input Processes for
Simulation

In this section, we take the data {x,; t=1,2,...,n}
generated by ARTA and gamma processes as input
but assume that the underlying input process is
unknown and try to fit one. We do this using three
different algorithms, each of which assumes a dif-
ferent input model. The first one, which we call the
MARGINAL algorithm, ignores dependence, assumes
an ii.d. process, and uses the least squares estima-
tion method to determine the parameters of a Johnson
distribution (Swain et al. 1988). In Biller and Nelson
(2005), we show that the resulting parameter esti-
mates have asymptotical properties such as strong
consistency and normality as long as data are gen-
erated by an ii.d. Johnson input process. Although
independence is, in fact, the assumption most com-
mercial input-modeling software packages make, we
provide experimental results later in §4 demonstrat-
ing the failure of this assumption in providing a good
input-process representation when dependence actu-
ally exists.

The second algorithm, which Cario and Nelson
(1996) call ARTAFACTS, is composed of two steps.
In the first step, it determines the parameters of a
Johnson marginal distribution using the least squares
estimation method under the assumption of indepen-
dence, i.e., simply the MARGINAL algorithm. In the
second step, the autocorrelations are estimated using
the sample autocorrelation function defined as

Y (o — ) (X, — )
i (x; = R)? ’

where i = Y, x;/n is the sample mean of the
time series (Wei 1990). It then solves the correlation-
matching problem (1) to find the base autocorrelations
pz(h), h=1,2,...,p corresponding to the underlying
input autocorrelations pyx(h), h=1,2,...,p. We pick
a value for the order of dependence p by minimiz-
ing the criterion In |Gy (p)| + [In(n)/n]p, where &y (p)
denotes the (pseudo) maximum likelihood estimator
of oy for an autoregressive model of order p. This
simple procedure, developed by Schwarz (1978), is
known to find the true order with probability one as
the sample size goes to infinity. After the identifica-
tion of the order of dependence and the base autocor-
relations, we solve for the autoregressive coefficients
of the underlying ARTA process using Yule-Walker
equations (Wei 1990).

The last algorithm, which we call ARTAFIT, was
developed by Biller and Nelson (2005) for fitting
ARTA processes with marginal distributions from the
Johnson translation system to stationary univariate
time-series data, i.e., estimating the vector of ARTA
parameters denoted by ¥ = (0, @y, v, ..., ap)/, where

px(h) =
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0 is the vector of marginal distribution parameters
(e.g., 0=(y,8,A,¢) for the Johnson marginal distri-
bution of type f and 0 = (k, 8) for a gamma marginal
distribution) and p is the order of dependence to be
estimated from stationary univariate time-series data.
The key to the construction of the ARTAFIT algo-
rithm is to focus on the distributional properties of
the white-noise process {Y;; t=p+1,p+2,...} of the
base process {Z;; t=1,2,...}. In other words, the key
is to find the ARTA parameters ensuring that random
variables Y;, t=p+1,p+2, ... are ii.d. and Gaussian.
In Biller and Nelson (2005), we do this by using the
standardized white-noise process

V(‘b) — ﬁ — Zf - ZZ:l athfh
t oy ) ’
\/1 — 21 anpz(h)
t=p+1,p+2,...,n,

the probability integral transformation Z, =
®~'[F(X,)], and searching for the parameters that
make ®[V, ()], t=p+1,p+2,...,n appear to be a
sample of ii.d. uniform random variables on (0, 1]
by minimizing the objective function

1 " (n—p+1)?*(n—p+2)
Z t—p)(n+1-1)

(Tl - p)Z t=p+1

(ot E0)

S5(b) =

subject to the constraint Ys € W, where W is the feasi-
ble region for the parameters of the marginal distribu-
tion function and the autoregressive coefficients of the
base process. We refer the reader to Biller and Nelson
(2005) for the derivation of this objective function uti-
lizing the theory behind the translated uniform order
statistics.

In Biller and Nelson (2005), we show that the objec-
tive function S(is) is a three-times continuously dif-
ferentiable function for every i € ¥ and that the
objective function S({s) is convex around any uncon-
strained local minimum. We also show that using
a general-purpose optimization algorithm with local
convergence properties ensures that we reach a local
minimum solution when we start in its convex sur-
rounding region. Although these results have been
obtained under the assumption of Johnson marginal
distributions, the distribution-free formulation of the
ARTAFIT algorithm ensures its convergence also for
gamma marginals. When the marginal distribution of
interest comes from the Johnson translation system,
we additionally prove the strong consistency of loca-
tion and scale parameters of the Johnson marginal
distribution and the strong consistency of the esti-
mators of the parameters of the marginal distribu-
tion conditional on knowing the true autoregressive

base process. Similar statistical properties extend to
the case in which the ARTAFIT algorithm is imple-
mented assuming a gamma marginal distribution. We
further empirically observe that solving S(is) for any
fixed, feasible vy, 6, A, and ¢ provides robust esti-
mates of o, a,, e, Therefore, an effective way
to minimize S(¥) subject to ¥ € ¥ is to decom-
pose the optimization problem into the estimation of
the marginal distribution parameters and the estima-
tion of the base process parameters and work itera-
tively between improving the estimates for (v, J, A, §)
and (a;, a,, ..., a,). We provide the details on the
ARTAFIT algorithm based on such an iterative proce-
dure in the Online Supplement.

3. Experimental Design

Our objective is to compare the performance of
the ARTAFIT algorithm to the MARGINAL and
ARTAFACTS algorithms in capturing the key charac-
teristics of two different sets of data: (i) data that come
from ARTA processes with Johnson marginals, and
(ii) data generated by gamma processes. The purpose
of experimenting with the first data set is to analyze
the sensitivity of recovering the true ARTA processes
with respect to the experimental factors of §3.1, while
the objective of using the second data set is to see how
well the ARTA model captures the characteristics of a
process that we know is not ARTA. Next, we discuss
the experimental factors and the performance metrics
for the evaluation of the resulting fits.

3.1. Factor Selection

In this section, we provide a brief discussion on the
selection of the sample size and the characteristics
of the marginal distribution and the autocorrelation
structure as the experimental factors.

3.1.1. Sample Size. Although we proved the sta-
tistical properties of the ARTAFIT estimators as the
sample size n approaches infinity in Biller and Nelson
(2005), we do not know much about the small-sample
properties of these estimators. Therefore, we let the
sample size n take the values of 30, 50, 100, 500, 1,000,
5,000, and 10,000 and investigate how the goodness
of the resulting fits change as a function of the size of
the data samples.

3.1.2. Marginal Distribution. When the data
come from an ARTA process with Johnson marginals,
we implement the ARTAFIT algorithm assuming
Johnson marginals, and when the data come from a
gamma process, we implement the algorithm using
both Johnson and gamma marginals. The reason
behind using the Johnson distribution is its ability to
represent any feasible, finite first four moments, pro-
viding a great deal of flexibility that is sufficient for
many practical problems. We refer the reader to the
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Online Supplement for the shapes of the Johnson den-
sity functions for which we summarize our findings
in §4.1. Although heavy-tailed distributions cannot be
adequately represented by the Johnson distributions
due to the finiteness of the moments, Johnson (1949a)
describes how one could modify the Johnson cumula-
tive distribution function to attain infinite moments.
However, this is beyond the scope of this paper.

Similarly, the reason behind using the gamma distri-
bution in our comparative study is its ability to model
a wide variety of distributional shapes for random
quantities with positive values. Although any gamma
distribution is specified by the shape parameter k >
0 and the scale parameter 8 > 0, the latter is known
to have no impact on the coefficient of skewness, the
coefficient of kurtosis, and the coefficient of variation.
Thus, we take 8 =1 in the remainder of the paper and
experiment with different values of the shape parame-
ter k. We refer the reader to the Online Supplement for
the shapes of the gamma density functions for which
we summarize our findings in §4.2.

3.1.3. Autocorrelation Structure. We characterize
the autocorrelation structure of an input process
through the order of dependence p that we control and
its autoregressive coefficients defined up to order p,
ie, a, for h=1,2,...,p. For any given value of p,
we choose ), h=1,2,...,p in such a way that the
underlying base process is stationary. In other words,
the reverse characteristic polynomial has no roots in
or on the complex unit circle; ie., 1 — 3" a,z" #0
for |z| <1 (Wei 1990). This is an important condition
to satisfy as it ensures the stationarity of the input
process (Cario and Nelson 1996). We note that p =0
corresponds to an independent process.

Next, we present three different experimental fac-
tors, each of which is associated with a different
aspect of the autocorrelation structure: strength of
dependence, pattern of dependence, and form of
dependence.

Strength of Dependence. We use this factor to sum-
marize in a single number the autocorrelation struc-
ture jointly specified by the order of dependence and
the autoregressive coefficients. We denote the strength
of dependence by 1 and define it as

) n—1 h
n=142im 3 (1-2) it @
h=1

Clearly, n measures the rate of decay in the abso-
lute magnitudes of the autocorrelations as seen on a
correlogram. In the case of positive dependence, i.e.,
px(h) =0 for h > 1, it can further be thought of as
the number of dependent observations equivalent to
one independent observation. It is worth noting that
an autoregressive base process with higher order of
dependence does not necessarily imply a time series

with stronger dependence. For example, 7 is equal to
2.636 for px(1) = 0.45 when p =1 and 2.211 for px(1) =
0.35 and px(2) =0.15 when p =2. On the other hand,
n is 3.831 for py(1) = 0.45 and py(2) = 0.35 when
p =2. In our experiments, we choose the value of p
together with «;, h=1,2,...,p, in such a way that
larger values of p result in larger values for 7.
Pattern of Dependence. Figure 1 provides the evo-
lution of the autocorrelations of two first-order (p =1)
autoregressive processes, one with py(1) =0.50 and
the other with py(1) = —0.50, as the lag index takes
values between 0 and 10. Because the absolute mag-
nitudes of the autocorrelations decay at the same
rate for both of these processes, the values for the
strength of dependence 7 are the same. Clearly, we
cannot identify whether the autocorrelations of the
process with py(1) = —0.50 decay with an alternat-
ing pattern by looking at the strength of depen-
dence. Thus, we consider the pattern of dependence
as another experimental factor and investigate how
well the 2V such sign patterns can be successfully

First-order autocorrelation = 0.5

0.5
0.3 4
=
.2
=
7&, 0.1 1
S I 1 ] - -
2
2 0.1
=
N
<
—
-0.3 4
-0.5 . . . T T T T T T
0 1 2 3 4 5 6 7 8 9 10
Lag index, h
First-order autocorrelation = —0.5
0.5
0.3
=1
S
% 0.1
£ .
Q
8
5 -0.1
<
=1)]
3
-0.3 4
-05 T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10
Lag index, h
Figure 1 Autocorrelations of First-Order Autoregressive Processes

with Different Patterns
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identified by ARTAFACTS and ARTAFIT algorithms
when data come from autoregressive processes with
orders p=1, 2, 3.

Form of Dependence. The objective of this paper
is not only to investigate the performance of the
ARTAFIT algorithm when data come from a true
ARTA process, but also to assess its performance
against data generated by a process we know that is
not ARTA. Thus, we choose the form of dependence
as another experimental factor and use the gamma
process, which allows a mix of autoregressive and
moving average forms of dependence, to investigate
the impact of this factor on the goodness of the result-
ing fits.

3.2. Performance Metric Selection

In this section, we present the performance met-
rics we use to evaluate the fits resulting from the
implementation of the MARGINAL, ARTAFACTS,
and ARTAFIT algorithms. Our focus is on the evalu-
ation of the fitted marginal distribution, autocorrela-
tions, and joint distribution.

To calculate the goodness of the marginal distri-
bution fit F, we use the Kolmogorov-Smirnov and
Anderson-Darling test statistics that we denote by K-S
and A-D, respectively. Both of these tests compare
the fitted cumulative distribution function F to the
empirical cumulative distribution function F,. While
the K-S test statistic corresponds to the largest dis-
tance between F,(x) and F(x), i.e., sup {|F,(x) — E@)|},
the A-D test statistic is the weighted average of the
squared differences [F,(x) — F(x)]?, where the weights
are the largest for F(x) close to zero and one. Thus,
the A-D test is particularly good at detecting dis-
crepancies in the tails. Because the critical values and
the corresponding nominal levels of significance of
these tests for i.i.d. data can be grossly incorrect when
observations are dependent (Moore 1982, Gleser and
Moore 1983), we use the 5% critical values for the K-S
and A-D test statistics (i.e., 0.895 and 0.751) only as a
rough guide for judging the adequacy of the marginal
distribution fits.

We evaluate the goodness of the fit of the auto-
correlation structure by comparing the strength of
dependence of the true process (1) to the strength
of dependence implied by the fitted input model (7).
In particular, we track the percent absolute difference
between 1 and 7 (i.e., | — %|/7 * 100). Obviously, the
convergence of 7) to 17 does not guarantee the conver-
gence of the estimated (individual) autocorrelations to
the true autocorrelations, but comparing 7 to n sum-
marizes the comparison between the true and fitted
autocorrelation structures via the use of a single test
statistic.

Because a dependent input model is jointly charac-
terized by the marginal distribution function and the

autocorrelation structure, neither a pure marginal fit
nor a pure autocorrelation fit is sufficient for choos-
ing a good representation. To support our observa-
tions with a test that measures the goodness of the
joint distribution fit, we use the two-dimensional K-S
test that is a generalization of the one-dimensional
K-S test to bivariate distributions. Using this test, we
measure how well the fitted ARTA distribution of the
random variables X, and X,_,, which is jointly char-
acterized by marginal cumulative distribution func-
tion [ and lag-h autocorrelation py(h), represents
the joint empirical distribution function. Under the
assumption of a Johnson marginal distribution, the
corresponding joint distribution is simply the bivari-
ate Johnson distribution as in Johnson (1949b). To
compute the two-dimensional K-S test statistic, we
first calculate the fraction of data points falling in
each of the four natural quadrants around each point
(x;, x4_p), t=h+1,h+2,...,n, and then calculate the
probabilities of (X, > x,, X,_j, > x,_;,), (X, <x;, X, >
Xn), (X <xp, Xip < xy), and (X, > x,, Xy < x,p)
for the same set of points using the fitted parame-
ters £ and py(h) for h=1,2,...,p. By ranging both
over the data points and over the quadrants, we take
the maximum difference of the corresponding prob-
abilities as the two-dimensional K-S test statistic. We
refer the reader to Press et al. (1992) for further details
such as the computation of the significance levels for
this test as well as the computer codes that can be
readily integrated into any software for the calcula-
tion of the two-dimensional K-S test statistics.

4. Experimental Results

We present only the representative results here from
the comprehensive empirical comparison/analysis
performed. The plots of this section are drawn using
the test statistics introduced in the previous section
and averaged over a number of replications of the
entire experiment determined as follows: each exper-
iment starts with an initial run of 30 replications,
and the number of replications is increased when-
ever necessary to ensure an absolute error of no
more than 0.1 on both the one-dimensional K-S test
statistic and the two-dimensional K-S test statistic.
We note that the plots of this section are obtained
by implementing the MARGINAL, ARTAFACTS, and
ARTAFIT algorithms via the use of portable C++
codes and then connecting the test statistics computed
for the experimental settings of interest; i.e., these
plots are not obtained by fitting curves to the corre-
sponding test statistics.

4.1. Experimenting with Data from

True ARTA Processes
In this section, we experiment with data that come
from ARTA processes with Johnson marginals. We
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present our findings in the following three sub-
sections experimenting with data generated from a
Johnson bounded distribution whose shape, location,
and scale parameters are taken as y=0, 6 =2, { =0,
and A =1 and whose probability density function is
available in the Online Supplement. Our selection of
a Johnson bounded distribution for the presentation
of the representative results here is motivated by the
challenge of finding good fits for the bounded family.
The findings reported in this section are obtained
as a result of using MARGINAL, ARTAFACTS, and
ARTAFIT algorithms to fit input models to data we
generate from processes with strength of dependence
ranging between 7 =1 and 7 = 38.850 that correspond
to an independent process (i.e., p = 0) and a first-order
autocorrelated process with p, =0.95, respectively.
Note that although the experimental factors and the
performance metrics we choose to work with hold for
any order of dependence, we present representative
results for first-order autoregressive processes in this
section. We choose to do that to allow the compari-
son of the goodness of the fits reported in this section
to the fits obtained as a result of experimenting with

0.15
—..-m=1.000
—-M=1.630
---.M=3.000
..... 7 = 7.000
2 0.10 — 1 =38.850
z
s
w)
2
g
G
M 0.05 A
0.00 T T T T
30 2,030 4,030 6,030 8,030
Sample size
0.15
2 0.10
z
g
w1
7
8
G )
X 0.05 1Y)
0.00 T T T T
30 2,030 4,030 6,030 8,030
Sample size
Figure 2 K-S Test Statistics Obtained from MARGINAL/ARTAFACTS

(Top) and ARTAFIT (Bottom) Algorithms

first-order (non-ARTA) gamma processes. The exper-
imental results obtained for higher orders of depen-
dence are consistent with the ones reported in this
paper.

4.1.1. Goodness of the Marginal Fits. We present
the plots of the K-S test statistic versus the sample
size for different levels of the strength of dependence
(as denoted by m in the upper right corner) in Fig-
ure 2. The top plot is obtained from the implementa-
tion of the MARGINAL and ARTAFACTS algorithms,
while the bottom plot is given by the ARTAFIT algo-
rithm. We present the plots obtained similarly for the
A-D test statistic in Figure 3.

We observe that the goodness of the marginal dis-
tribution fits deteriorates with increasing values of the
strength of dependence. If we compare the test statis-
tics observed on the y-axes to the 5% critical values
for the K-S and A-D test statistics (only as a rough
guide), we observe that the K-S test statistics obtained
from MARGINAL, ARTAFACTS, and ARTAFIT algo-
rithms are quite comparable as long as 7 < 7.000,
but capturing the tail behavior as represented by the

0.15
—..-1=1.000
—--n=1.630
——.1 =3.000
----- N =7.000
2 0101 — 1 =38.850
8
g
w)
g
2 %
< 0.05 -
0.00 T T T T
30 2,030 4,030 6,030 8,030
Sample size
0.15
2 010
Rz
g
w)
g
> .
< 0.054 Y
0.00 T T T T
30 2,030 4,030 6,030 8,030
Sample size
Figure 3 A-D Test Statistics Obtained from MARGINAL/ARTAFACTS

(Top) and ARTAFIT (Bottom) Algorithms
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A-D test statistics in Figure 3 poses a serious chal-
lenge, especially under the assumption of a strongly
autocorrelated true process. Note that the strength
of dependence shows its impact on the deteoriation
of the K-S test statistics at n = 38.850 in Figure 2,
while we identify a lower threshold (i.e., n = 3.000)
beyond which the negative impact of the strength of
dependence on the goodness of the MARGINAL and
ARTAFACTS fits is obvious. In all of the experiments
we have performed, we have observed the superior
performance of the ARTAFIT algorithm showing itself
much earlier in the A-D test statistics than in the K-S
test statistics, especially when strong dependencies
exist in the input process data. Thus, we conclude that
the ARTAFIT algorithm performs better than both the
MARGINAL and ARTAFACTS algorithms, particu-
larly in capturing the tail behavior of the underlying
input process.

4.1.2. Goodness of the Autocorrelation Fits.
When we use the MARGINAL algorithm to estimate
the parameters of the underlying input model, we
have 7 =1 following directly from the assumption of

0.5

—_m=1.000

Percentage of diff. btw. true and ARTAFACT fits

T T
0 2,000 4,000 6,000 8,000 10,000
Sample size

0.5

0.4 4

0.3 1

Percentage of diff. btw. true and ARTA fits

T T T
0 2,000 4,000 6,000 8,000
Sample size

Figure 4 Percent Difference Between 7 and 7 Estimated by

ARTAFACTS (Top) and ARTAFIT (Bottom) Algorithms

independence; i.e., px(h) =0 for h > 1. Clearly, ignor-
ing dependence leads to very poor estimates for 7
unless the process generating the data is indepen-
dent. Therefore, we will restrict our attention to the
autocorrelation fits obtained from the ARTAFACTS
and ARTAFIT algorithms in the remainder of the
section.

We present the percent absolute difference between
the true 1 and the 7 estimated by the ARTAFACTS
and ARTAFIT algorithms for different values of the

Sample size = 30

0.314

0.26 1

0.21 1

0.11;

Bivariate K-S test statistic

— Independent
0064 e ARTAFACTS

--— ARTAFIT
0.01 T T T T T T T

1 6 11 16 21 26 31 36
Strength of dependence
Sample size = 500

0.31 1

0.26 A

0.21

0.16 1

0.11

Bivariate K-S test statistic

0.06 1
001 T T T T T T T
1 6 11 16 21 26 31 36
Strength of dependence
Sample size = 5,000
0.31 1

0.26 1

0.21 1

0.16

0.11 1

Bivariate K-S test statistic

0.06 1

0.01 p T T T T T T T

1 6 11 16 21 26 31 36
Strength of dependence
Figure 5 Two-Dimensional K-S Test Statistics Obtained from the

Implementation of the MARGINAL, ARTAFACTS, and ARTAFIT
Algorithms
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sample size and the true strength of dependence in
Figure 4. We observe that both the ARTAFACTS algo-
rithm and the ARTAFIT algorithm perform quite well
in predicting the true value for n when the strength
of dependence takes low to medium values, but the
performance of the ARTAFIT algorithm is slightly
better. For increasing values of the strength of depen-
dence, we observe that the ARTAFIT algorithm out-
performs the ARTAFACTS algorithm in representing
the autocorrelation structure of the underlying input
processes.

4.1.3. Goodness of the Joint Distribution Fits.
We present the comparison of the two-dimensional
K-S test statistics (at lag one) obtained from the
MARGINAL, ARTAFACTS, and ARTAFIT algorithms
for different values of strength of dependence and
sample size in Figure 5. Each of the three plots
provided here assume a different sample size, 30,
500, and 5,000, that we consider as small, medium,
and large sample sizes. We observe that the two-
dimensional K-S test statistics of the three fits are
closest to each other when the true process is inde-
pendent, especially in the large-sample case. As the
strength of dependence increases, the failure of the

Johnson lognormal distributions

0.5

0.4

0.3

Two-dimensional K-S test statistic

5 10 15 20 25 30 35
Strength of dependence

Johnson bounded distributions

0.5 - - y=38=2
----y=28=2
—1y=008=2

0.4

Two-dimensional K-S test statistic

0.0

5 10 15 20 25 30 35
Strength of dependence

Figure 6

independence assumption in developing good input
models is obvious. While the ARTAFACTS algorithm
performs significantly better than the MARGINAL
algorithm in capturing the underlying joint distri-
bution, the ARTAFIT algorithm provides the best
fits by far. As the sample size and the strength of
dependence increase, we further observe that the
test statistics obtained from the ARTAFIT algorithm
increase at a rate that is significantly smaller than
the rate observed for the fits of the MARGINAL and
ARTAFACTS algorithms. Thus, the ARTAFIT algo-
rithm is much better suited for solving the data-fitting
problem when we have a large number of data points
in our samples.

It is interesting how the fits of the ARTAFACTS
algorithm compare to the fits of the MARGINAL and
ARTAFIT algorithms for different sample sizes. The
test statistics obtained from the ARTAFACTS algo-
rithm are pretty close to the test statistics of the
independent model in the small sample, while they
improve and get closer to the test statistics of the
ARTAFIT algorithm as the sample size gets larger.
This can be explained by the strong consistency of the
sample autocorrelation function (Wei 1990). However,

Johnson unbounded distributions

----y=38=2

0.3 ——y=28=2

0.4

0.3

0.2

Two-dimensional K-S test statistic

0.0

5 10 15 20 25 30 35
Strength of dependence

Johnson bounded distributions

.- y=0 8=038
—---y=0 =05
— y=058=05

0.5

0.4

Two-dimensional K-S test statistic

0.0
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Strength of dependence

Two-Dimensional K-S Test Statistics Obtained from the ARTAFIT Algorithm
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the impact of the strength of dependence dominates
the impact of the sample size and the discrepancy
between the two-dimensional K-S test statistics of the
ARTAFACTS and ARTAFIT results increases as the
autocorrelations of the experimental data samples get
stronger.

In the remainder of the section, we investigate the
impact of the marginal distribution characteristics on
the goodness of the ARTA fits. We present our find-
ings in Figure 6 with respect to different levels of
the strength of dependence in samples of 5,000 data
points for each one of the Johnson probability den-
sity functions presented in the Online Supplement.
The subtitles and the legends in Figure 6 provide
the descriptions of the Johnson marginal distributions
to which the results belong. It is important to note
that the results presented in the lower left corner
of Figure 6 are obtained as a result of experiment-
ing with unimodal Johnson bounded distributional
shapes, while bimodal Johnson bounded marginal
distributions are used to obtain the results reported
in the lower right corner. We find that the joint distri-
bution fits are quite sensitive to the skewness as well
as the bimodality in the marginal distribution shapes.
As the skewness decreases leading to a symmetric

probability density function, we observe significant
improvement in the goodness of the fits obtained
for every Johnson family from which we generated
experimental data.

Although we include the pattern of dependence as
a factor in our experimental design, we do not pro-
vide any plots summarizing its impact because we
have not found it to be significant on the goodness
of the resulting fits. We have not encountered a case
in which the ARTAFIT algorithm incorrectly identifies
the pattern of dependence. Thus, we conclude that it
is the strength, rather than the pattern, of dependence
that has critical impact on the resulting fits.

4.2. Experimenting with Data from
Gamma Processes

In this section, we experiment with data that come
from first-order gamma processes. Our objective is
to assess the performance of the ARTAFIT algorithm
in capturing the key characteristics of the underlying
model that we know is not ARTA.

We first assume that the type of the marginal dis-
tribution is known. Thus, we implement the ARTAFIT
algorithm assuming a gamma distribution with

3.0 3.0
R——
M =3.000

254 n = 7.000
——m =39.000

K-S test statistic

A-D test statistic

50

40

30 1

20 4

Percentage of diff. between true and ARTA fits

Figure 7

Bivariate K-S test statistic

The Goodness of the ARTA Models with Gamma Marginals Fitted to Data from a Gamma Process
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k=0.5

n
L

—— Approximated Johnson distribution
------- Gamma distribution

Probability density function (x)

Probability density function (x)

Figure 8

unknown shape and scale parameters. We present re-
presentative plots of our findings for different val-
ues of the shape parameter (k) and the strength of
dependence (n) in Figure 7. Taking the sample size
as 5,000 and assuming that the underlying marginal
distribution is gamma in all cases, we provide plots
corresponding to the K-S test statistic, the A-D
test statistic, the percent absolute difference between
(true) n and (fitted) 7, and finally the two-dimensional
K-S test statistic for the random variables that are lag-

BGAR with p =0.25

BGARMA with ¢ =0.08 and T =0.25

1.0

Probability density function (x)

0.25 1

0.20

0.15

0.10 4

Probability density function (x)

0.05

0.00

Comparison of the Gamma Density Functions with Approximating Johnson Distributions

one apart. These results suggest that the ARTA model
captures the underlying Markovian structure reason-
ably well. However, when the mode of the marginal
distribution is near zero, which exists when k <1, this
poses a serious challenge for the ARTAFIT algorithm.

Next, we assume that we do not know the type
of the marginal distribution. Therefore, we use the
Johnson translation system to represent the underly-
ing marginal distribution. In this case, we find that the
fitted marginal distribution, which is typically chosen

BGARMA with ¢ =0.49 and T=-0.92
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.2 S 2
= = =
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Figure 9 Autocorrelations of BGAR and BGARMA When p, (1) =0.25
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BGAR with p = 0.45 BGARMA with ¢ = 0.42 and T = 0.25 BGARMA with ¢ = 0.50 and T = -0.96
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Figure 10 Autocorrelations of BGAR and BGARMA When p, (1) = 0.45

from the bounded family, allows negative values. It is
important to note that we obtain test statistics as good
as the ones presented in Figure 7 only when we enforce
& =0, which ensures positive random variables, in the
definition of the underlying Johnson cumulative dis-
tribution function. To provide further insight on this
problem, we compare the gamma density function to
its approximation with the same first four moments
in the Johnson translation system for different values
of k in Figure 8. We note that this approximation is
obtained fitting a Johnson curve to the probability
density function of the corresponding gamma random
variable via the moment-matching algorithm of Hill
et al. (1976). The first row corresponds to the probabil-
ity density functions with k = 0.5 and k = 1.0, while
the second row has the probability density functions
for k=2.0 and k=3.0. The second-row approxima-
tions provide reasonably good representation for the
gamma distribution, while the first-row approxima-
tions fail to capture the mode near zero. However, the
lower bounds of all of the approximations go below
zero. When we enforce £ =0 in the definition of the
underlying Johnson cumulative distribution function
or the constraint £ >0 in the definition of the fea-
sible region for the parameters of the marginal dis-
tribution, which also ensures a positive-valued time

BGAR with p =0.95
1.0

BGARMA with ¢ =0.75 and T =-0.29

series, the ARTAFIT algorithm provides significantly
better approximations as the probability associated
with Pr{X < 0} in the probability density function of
the approximated Johnson distribution in Figure 8 is
redistributed to ensure Pr{X > 0} = 1. Thus, it is crit-
ical to incorporate any knowledge about the distribu-
tional parameters into the constraint set, which in turn
is used for the construction of the feasible parame-
ter region, or into the functional form of the Johnson
cumulative distribution function when applicable.
Finally, we investigate how the form of depen-
dence affects the goodness of the fits obtained from
the ARTAFIT algorithm. To do that, we first gener-
ate data from three gamma processes with identical
lag-one autocorrelations but different autocorrelation
structures, each of which is a mix of moving-average
and autoregressive components. Then, we imple-
ment the ARTAFIT algorithm under the assump-
tion of a gamma marginal distribution and assess
how well an ARTA process represents such a depen-
dence structure. We refer the reader to Figures 9-11
for the illustration of these three gamma processes
(BGARMA) as well as their comparison to the
gamma processes with no moving-average compo-
nents (BGAR), but with the same lag-one autocorre-
lations we chose as 0.25, 0.45, and 0.95, respectively.

BGARMA with ¢ =0.99 and T =0.05
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Figure 11 Autocorrelations of BGAR and BGARMA When p, (1) =0.95
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The Goodness of the ARTA Model Fitted to the BGARMA
Data

Figure 12

Each plot in these figures corresponds to a correl-
ogram, ie., px(h) versus h for h>0. Clearly, the
autocorrelation structure represented in the middle
plots decays faster than the autoregressive auto-
correlation structure, while this rate is slower in
the plots placed in the right-hand side of Fig-
ures 9-11, even though they all share the same lag-one
autocorrelations.

We present the percent difference in the two-
dimensional K-S test statistics for random variables
that are lag-one apart in Figure 12. We observe that
the ARTAFIT algorithm performs very well in cap-
turing the lag-one autocorrelation of the gamma pro-
cess. The performance of the algorithm is slightly
better for k > 1, but the percent difference between
the true and fitted lag-one autocorrelations is less
than 1% in all cases, which we find quite satisfactory.
Next, we investigate how well the ARTAFIT algo-
rithm captures the high-order autocorrelations; i.e.,
px(h) for h > 2. We find that the performance of the
algorithm is very much dependent on the strength of
dependence. We refer the reader to Figure 13 for the
absolute differences between the autocorrelations of
the ARTA fit and the true BGARMA process whose
lag-one autocorrelations are taken as 0.25, 0.45, and
0.95, and higher-order autocorrelations have been dis-
played in Figures 9-11. The subtitle in each plot of
this figure presents the strength of dependence for
the ARTA fit in parentheses, while the legend in each
of these plots presents the strength of dependence of
the true BGARMA processes with decay rates smaller
and larger than the geometric rate of a pure autore-
gressive process. While our results suggest that the
ARTA model is still a plausible model to use for the
first two cases in which py (1) =0.25 and py (1) =0.45,
the ARTA model might fall short in representing
a nonautoregressive form of dependence, especially
when py (1) =0.95.
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Figure 13 Comparison of the Autocorrelation Structure of the True

BGARMA Process to the Autocorrelation Structure of the
Fitted ARTA Process

5. Conclusion

In this paper, we report the results of a compre-
hensive numerical study comparing the goodness of
fitting independent, ARTAFACTS, and ARTA input
models to stationary time-series data with respect to
sample sizes and characteristics of the marginal dis-
tributions and autocorrelation structures. Our experi-
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mental results demonstrate the importance of taking
dependencies into account while estimating input
processes for simulation applications as well as the
use of an algorithm that jointly solves for the marginal
distribution and autocorrelation parameters of the
underlying input model.

When we generate data from a true ARTA pro-
cess, we find quite satisfactory fits as a result of
using the ARTAFIT algorithm. While we obtain robust
fits for the autocorrelation structure, highly skewed
bimodal distributional shapes pose serious challenges
for the ARTAFIT algorithm. Fortunately, it is possible
to improve the performance of the algorithm signif-
icantly when one incorporates prior information on
the distributional parameters into the constraint set,
which in turn is used for the construction of the feasi-
ble parameter region of the data-fitting problem.

We observe that the ARTAFIT algorithm outper-
forms the MARGINAL and ARTAFACTS algorithms
in all cases. More specifically, both ARTAFIT and
ARTAFACTS give good fits in small-sample cases
even though we find that ARTAFIT still performs
better than ARTAFACTS. However, the ARTAFIT
algorithm begins to distinguish itself once more data
become available. One might argue that the imple-
mentation of the ARTAFACTS algorithm is much sim-
pler than the ARTAFIT algorithm, and thus, it should
be the preferred method of fitting. Considering the
importance of good input models on the accuracy of
decisions supported by stochastic simulations and the
availability of high computing power, we recommend
the use of the ARTAFIT algorithm despite the setup
required for its implementation. Additionally, what is
considered a small sample or a large sample is often
dependent on the problem of interest, and thus, we
can rely on the ARTAFIT algorithm to provide good
fits in all cases.

When we generate data from a gamma process,
which we know is not ARTA, the ARTAFIT algorithm
performs extremely well in capturing the lag-one joint
distributional properties, while it might fall short in
representing time series whose autocorrelations decay
at nongeometric rates. We believe that this problem
can be overcome by simply replacing the underly-
ing autoregressive base process with a mixed autore-
gressive, moving-average process. This is a subject of
future research.
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