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Scope and Purpose—Computer simulation is a general-purpose method for analyzing systems that are
subject to uncertainty. The price of generality is that simulation-based estimators are just that: estimators
of system performance that are subject to sampling variability. Variance reduction techniques (VRTSs)
have long been advocated for mitigating the effects of sampling variability, but the difficulty inherent in
selecting and applying an appropriate VRT has limited their use to statistically knowledgeable practitioners.
This paper describes an automated variance reduction and output analysis procedure that interfaces with
a well-known simulation language; thus, the procedure opens the way for widespread application of VRTs,
The procedure is specifically designed for estimating long-run performance measures, an area that has
received little attention in the simulation literature.

Abstract—We present an automated procedure that interfaces with SIMSCRIPT IL.5 simulation
experiments to derive point and interval estimators for infinite-horizon parameters of stochastic simulations.
The procedure combines the nonoverlapping batch means method of output analysis and the control
variates variance reduction technique. Batch size and control variates are selected automatically. The
paper emphasizes methodology issues and experimental evaluation rather than the specific software
developed.

INTRODUCTION

Variance reduction techniques (VRTs) are used to reduce the population variance of estimators
from stochastic simulation experiments; see Nelson and Schmeiser [11] for a review of well-known
VRTs. VRTs improve the efficiency of a simulation experiment by reducing the cost of achieving
an estimator with a specified level of precision, or by increasing the precision of an estimator for
a fixed cost. This paper addresses two practical obstacles to the routine application of variance
reduction in general simulation experiments: the difficulty of selecting and implementing a VRT,
and the lack of VRTs for infinite-horizon simulation experiments.

Nelson [1] gives an algorithm for selecting VRTs for general simulation experiments. However,
implementing the chosen technique in a particular experiment may still be a formidable task.
Detailed knowledge of variance reduction is frequently required to ensure that the VRT is applied
appropriately. Unfortunately, a VRT applied inappropriately may even increase variance.
Automation of variance reduction in simulation languages is probably the only hope for widespread
application of VRTs. Ideally an automated procedure would select and implement the most effective
VRT for the particular experiment at hand; our approach here is more modest: we automate the
use of a versatile VRT called control variates that is applicable in all stochastic simulation
experiments (see [2] for a general characterization of control variate estimators). While this approach
may not yield the greatest possible variance reduction, the computational savings over multiple
simulation projects should be significant. This is different from the approach typically taken in
variance reduction research in which dramatic variance reductions are achieved by restricting
attention to a narrow class of simulation problems.

Most VRTs, including control variates, are designed for finite-horizon (sometimes called
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“transient” or “‘terminating”’) simulation experiments. In such experiments the natural experimental
design is to generate independent and identically distributed (i.i.d.) realizations of the process of
interest. However, for infinite-horizon (sometimes called “‘steady-state™) simulations it may be more
practical to use a single long realization because of the need to delete an initial-transient period
on each realization. The initial-transient problem has lead to the development of point and interval
estimation methods for the steady-state mean of a process from a single realization. The primary
advantage of these methods is that more of the simulation budget can be allocated to generating
usable outputs, since only one initial transient period must be deleted. Nonoverlapping batch means
(see, for instance, Schmeiser [3]) is one of these methods.

In this paper we present an automated procedure called BMCYV that combines the batch means
method of output analysis and the control variates VRT for infinite-horizon simulation experiments.
The procedure’s design is based on results in Nelson [4]; some preliminary work on the procedure
is reported in Afionuevo and Nelson [5]. We emphasize the issues involved in designing and
implementing such a procedure and the procedure’s performance in experiments, rather than the
particular software developed.

The paper is organized as follows: the next section states the infinite-horizon simulation problem
and reviews the batch means method and the control variates VRT. The two sections that follow
present the issues addressed in the design of BMCYV and an outline of procedure BMCV, respectively.
We end the paper by reporting the experimental evaluation of BMCV and by discussing possible
extensions of the procedure.

BACKGROUND

One statement of the infinite-horizon simulation problem is as follows: obtain a point and interval
estimate of a scalar parameter 6=Ilim;,  E[Y;] from a finite-length output sequence
{Y,, Y,,...,Y,}, where {Y;} is a sequence of random variables that may be neither independent
nor identically distributed. An example of an infinite-horizon parameter is the limiting expected
customer delay in a queueing system. The usual reason that the outputs {Y;} are not identically
distributed is that the simulation is initialized in a fixed state rather than in a state sampled from
the (unknown) limiting state distribution. A common approach is to delete or discard a portion
of the beginning of the output series, say {Y;, ..., Y,}, where d <n. We do not address specific
solutions to the initial-transient problem in this paper.

The remainder of this section, which is based on [4], reviews the theoretical basis for the batch
means method and the control variates VRT assuming that the effects of the initial transient
have somehow been removed. Let the relevant output of the simulation experiment after the
initial transient be represented by a sequence of identicaily distributed random (column)
vectors Zi=[Y, Xy;, Xp;,..., X,], i=1,2,...,n, where ' denotes transpose. Let

E[Z]=1[0, uy, us, . .., 1] and Cov[Z;] = X where

Z — 0'3 O;X
ayx 2x

so that X; is the scalar Var[Y;], Z, is the g x g matrix of Cov[Xj;, X,,; ], j,m=1,2,...,q, and

oy, is the g x 1 vector of Cov[Y;, X;;],j=1,2,...,q. Thus, the square of the multiple correlation
coefficient of Y; on [Xy;, Xy, ..., X,;] is
’ -1
R — Oy Oy
yx 0.2
y
For our purposes, 0 is the unknown parameter of interest and X,;, X5;, .. ., X,; are the g control

variates To be useful as a control variate, X;; must be correlated with Y; and p; = E[X;] must be
known. For later convenience, we define the column vector

(Xi—= ) =[Xy;— pys Xoi— oy - - -, Xogi — Hql,

which has expectation [0,0,...,0] and covariance matrix .. Note that our convention for
random variables is to use single subscripts to denote column vectors and double subscripts to
denote scalar elements, with the exception of Y; which is a scalar random variable.
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The idea behind batch means is to transform the n dependent vectors Z,, Z,, . . ., Z, into fewer

(almost) independent and (almost) normally distributed batch vectors
Jjb
Z;=b""! > Z;
i=(—-1)b+1

forj=1,2,...,k; b=n/kis called the batch size, and k the number of batches. Here vector addition
is component-by-component. We use the convention that any random variable with a bar and
argument k is a batch mean of b = n/k observations; e.g. Y;(k) is the jth batch mean of the Y; with
batch size b = n/k. We assume for now that the total sampling budget n is fixed.

Given k batch means, the control variate estimator of 6 is

Ok, q)=Y — Pk, q)(X — ) (1)
where
k
Y=kt Z Yj(k)=n'1 Z Y,

i=1

X—pw=k 12 (Kf-w=n"* T (X

Bk, q) =Z.(k,q)"*6,.(k, q). )

The quantities on the right hand side of (2) are the sample versions of Z_(k, q) = Cov[X(k)] and
o,k q) = Cov[Y (k), X;(k)]. The estimator B(k, q) is equal to the estimator of the slope coefficient
of a least-squares regression of Y;(k) on X,(k)— u. Confidence intervals for 6 are given in [4].

Lavenberg and Welch [6] considered the case when k=n (b =1, meaning no batching), and
the ZL- are iid. ¢+ l-variate normal vectors. They showed that Var[0(n,q)]=
(1 — R2,)(a2/n)(n — 2)/(n — q — 2). This compares to Var[ Y] = 2 /n, showing that the control variate
estimator has smaller variance than the sample mean if R2, > ¢/(n — 2). Schmeiser [3] considered the
case when g =0 (no control variates) and there ex1sts a number of batches 2 < k* < n such that
for k < k* the dependency and nonnormality of the k batch means Y,(k),j=1,2, ..., k, is negligible.
He showed that there is little additional benefit in terms of point and interval estimator performance
from k > 30 batches, provided k* > 30.

Nelson [4] examined the joint effect on variance reduction and confidence interval performance
of simultaneously applying batching and control variates, so that the results of Lavenberg and
Welch and Schmeiser are special cases. He found that as the number of control variates increases
from g = 1 to 5, 30 < k < 60 batches assure good point and interval estimator performance, provided
k* > 60. Also, as the number of batches approaches 60, the penalty, relative to the sample mean,
of using even an ineffective control variate is slight, while the improvement from using an effective
control variateislarge. Thisis an important result for the design of BMCV, since BMCV automatically
selects control variates using statistical procedures rather from a priori knowledge about which
potential control variates are strongly correlated with the output variable Y;. If Z;, i=1,2,...,n
cannot be partitioned into at least 30 acceptable batches, then Nelson recommends increasing n.

We have been implicitly assuming that the simulation output process can be represented by Z;,
i=1,2,...,n, asdefined above. However, a simulation output process may have a continuous-time
index. In that case batching by time, rather than by count, is necessary to obtain an output process
of the form considered here. For example, if we have a continuous-time process Z(t), 0 <t < 7, then

Zky=b"1 jjb Z(t)dt 3)
(

Jj=1b

where b = t/k and 1 is fixed, rather than n. Since both discrete and continuous-time output processes
are possible in general simulation experiments, procedure BMCV batches all output variables by
time. While this makes the number of outputs per batch a random variable for discrete-time outputs,
the expected number of outputs per batch is the same for all batches and the expected values of
the batch means are identical provided no batch is empty.
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BMCV METHODOLOGY

There were several reasons for choosing to combine the batch means method of output analysis
and the control variates VRT for automated variance reduction in infinite-horizon simulations.
We begin this section with an overview of these reasons, and then discuss in the subsections the
specific methods developed to implement the approach. It is important to notice that there are not
obvious solutions to many of these implementation issues; thus, we carefully justify the approach
we chose.

The batch means method is designed for a single realization, so it has the advantage of having
to eliminate initial-transient effects only once. Also, the batch means method has been successfully
automated; see for example Fishman [7], Law and Carson [8], Mechanic and McKay [9], and
Schriber and Andrews [10]. When applied effectively the batch means method yields (almost) i.i.d.
observations, which is a requirement for many VRTs including control variates.

The most difficult problem with using the batch means method is determining the batch size
that yields nearly i.i.d. batch means. The additional complication of multivariate batching arises
when batching to facilitate control variates. The solution of these two problems is discussed in a
subsection below.

One key advantage of the control variates VRT is that it does not alter the simulation output
process. Some VRTs, such as antithetic variates and stratified sampling (see for instance [11]), do
alter the output of the simulation experiment to achieve a variance reduction. This may facilitate
the estimation of some parameters of interest at the expense of making it more difficult to estimate
others. The control variates VRT can be applied automatically to multiple parameters without
conflict, since it only changes the estimator.

The particular type of control variates BMCV employs are called internal or concomitant control
variates. Internal control variates are input random variables. Inputs are random variables with
experimenter specified probability distributions that describe the randomness in a stochastic model;
e.g. the interarrival times and service times in a queueing simulation. Thus, internal control variates
are available in any computer simulation of a stochastic system. BMCYV further restricts attention
to mutually independent sequences that are each composed of i.i.d. input random variables for
reasons discussed later.

Unfortunately, it is sometimes difficult to predict which input random variables, if any, will be
strongly correlated with the output random variables of interest. Thus, control variate selection is
an important problem for an automated procedure. The selection procedure BMCV uses is discussed
in a subsection below.

Batching

The control variates VRT requires equal numbers of batches for the output variable of interest
Y and the potential control variates X. To ensure the same number of batches, BMCV batches by
time rather than count. Thus, the batches represent intervals of time over which variables are
observed. Batching for all variables takes place during the execution of the simulation run as
opposed to storing all of the simulation inputs and outputs and batching after termination of the
run. This approach keeps storage requirements to a minimum, which is important since we may
want to consider a large number of parameters of interest and potential control variates.

Let k,, be the maximum number of batches permitted (the default value is k,,, = 60) and ¢,
the simulation clock time when data collection begins; ¢, may not equal 0 if an initial-transient
period has been deleted. The algorithm below details how multivariate batching is accomplished
for discrete-time index variables. The algorithm shows how batching is done for a single variable,
generically denoted W, but the same procedure is applied independently to each output variable
and control variate.

Algorithm: Batching for Discrete-time Variables

1. Begin with a batch size of b « 1 time unit.
2. Take note of the time, denoted ¢, when an observation W, is generated. Determine which

batch sum, denoted p, the observation belongs to as follows: p « [(t —t,)/b] + 1, where [ ]
is the largest integer function.
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3. If p>k,,,, then b« 2b and k « k/2, where k is the current number of batches. Recompute
the batch sums and number of observations per batch corresponding to the new batch size.
Recompute p. If p > k,,,,, then repeat this step; otherwise continue.

4. Add the observation to the pth batch sum, and add 1 to the number of observations in the
pth batch.

An important property of this batching procedure is that it is applicable even if the length of
the realization is not specified by total simulation time, but rather by a count or some other
condition leading to a random stopping time. If a fixed batch size b were specified when the stopping
time is random, then it would be possible to end up with only a small number of nonempty batches.
Using the default value of k., = 60, BMCV keeps the number of batches in the range of 30-60
as recommended in [4].

Another property of the procedure is that it matches batches of Y and X over the same time
interval in order to achieve a strong correlation between the output of interest and the control
variates. If each variable was batched separately by count then, for example, the ith batch means
Y(k) and X,(k) might not be strongly correlated if they were formed from batches of observations
in different time intervals.

The batching procedure for continuous-time index variables is similar to the above procedure
except that the observed value of the variable multiplied by the length of time it stayed at that
value is added to the appropriate batch sum each time the value of the variable changes. As shown
in (3), batching by time is the natural approach for continuous-time variables.

Whenever point and interval estimators are required, usually after the termination of the
realization, BMCYV performs the “clean-up” procedure below to ensure a common batch size and
number of batches for all output Y and control variates X. The batch sizes at any particular time
could be different; this is because the batch sizes of all variables are updated individually so that
some variables might have had their batch size recently doubled, while that event might not yet
have occurred for other variables. Also, step 3 below ensures that we do not use the last batch if
it is empty for any variable.

Algorithm: Common Batch Size

1. Let by be the maximum of the current batch sizes for all the outputs and the control variates.

2. For all variables with batch size b < b,, combine the batches until all variables have batch
size by. (Comment: The batching procedure ensures that b, is always a multiple of any other
current batch size b.)

3. Compare the new number of nonempty batches for all variables and let k, be the minimum.
This is the common number of batches.

The batching and common batch size procedure yield a common batch size b, and
corresponding number of batches k,. However, neither independence nor multivariate
normality of Z ko), j=1,2,..., ko is assured. BMCV determines a number of batches k < ko that
appears to give i.i.d. multivariate normal batch mean vectors as follows: A test of independence is
applied sequentially to a smaller and smaller number of batches (larger and larger batch size) until
the test is passed. For the number of batches that pass the test of independence, a test of multivariate
normality is applied to a smaller and smaller number of batches (larger and larger batch size) until
the test is passed. The number of batches k that results from this procedure is used to determine
point and interval estimates.

Rather than performing a test of multivariate independence on the batch vectors {Z;(k,)}, BMCV
performs a test of univariate independence on {Y(k,)}. Since BMCV uses mutually independent
sequences of ii.d. input random variables as control variates, the batch means of the control
variates should be nearly independent (the only dependence results from the dependence between
the random number of observations in successive batches for discrete-time index variables). While
it is not necessarily the case that, say, Y;(k) and X;_, (k) are independent, it is assumed that the
stronger dependence is within the output sequence {Y;(k)}. Thus, determining a batch size that
approximates independence for this sequence will also approximate independence for the {Z;(k)}
sequence. This approach permits the use of the more powerful univariate test of independence in
Fishman [7], which is based on the lag-1 autocorrelation and is applicable for k > 8 batches.
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The test of multivariate normality is performed on the (largest) number of batches k' < k, that
passes the test of independence. The test implemented in BMCV, which is an extension of the
univariate Shapiro—Wilk test due to Malkovich and Afifi [12], assumes independent vectors Z (K,
Jj=1,2,..., k', which is why the test of independence is performed first. Unfortunately, at the time
the experiments reported below were performed, the applicability of the test was limited by the
availability of critical values. Critical values were only available for k' = 10, 25 or 50 batches and
g=1, 2 or 4 control variates at type I error levels of 0.05 and 0.10. Because of this limitation,
BMCYV permits the normality test to be disabled. In the experiments performed, employing or not
employing a normality test did not seem to have much impact on the performance of the BMCV,
meaning that independence of the batch means seems to be the more critical issue. A program to
determine critical values for any number of batches or control variates is now available and has
been used to complete the test in BMCV [13].

It is important to recall that passing tests of independence and normality does not guarantee
1.1.d. multivariate normal batch vectors. In addition, the overall significance level when sequentially
applying these tests to the same data is unknown. This emphasizes the importance of the results
in [4], because they show that little is gained in point and interval estimator performance from
achieving k > 60 batches for a fixed total sample size n provided 5 or fewer control variates are
used. Since independence and normality are more likely with fewer, larger batches, keeping the
number of batches between 30 and 60 makes the errors inherent in such tests less critical.

Selecting control variates

BMCYV uses stepwise regression (see for instance Neter and Wasserman [14]) to select a subset
of control variates from a set of potential control variates specified by the experimenter. The
stepwise method fits a sequence of regression models by adding or deleting a control variate at
each step based on a partial F-value for each control variate. Two significance levels, o, and o,
determine the difficulty for a control variate to enter and stay in the regression, respectively. The
choice of «, is quite important. As shown in the Background section, there is a loss in potential
variance reduction associated with larger values of ¢ because of the loss ratio (k — q)/(k — g — 2).
This suggests using a small significance level «, to make entry difficult. However, entry into the
regression must not be made too difficult because R2, increases as controls are added, leading to
greater variance reduction. We set o, = 0.10, which seemed to perform well in experiments. While
selection mistakes are possible, Nelson [4] showed that even selection of an ineffective control
variate will not seriously degrade estimator performance provided k > 30.

PROCEDURE BMCV

In this section we briefly outline how procedure BMCV works; complete details are given in
Afionuevo [15]. BMCYV interfaces with SIMSCRIPT I1.5 (C.A.C.I. Inc.), which is a general purpose
programming language containing features that support discrete-event and process-interaction
simulation models. See, for instance, Russell [16]. Procedure BMCV is written in SIMSCRIPT
I1.5, and calls routines from the IMSL Library (IMSL, Inc.). It is not the purpose of this paper
to present a software product, but the authors will provide a listing of the source code and a user’s
guide on request.

The following declarations are required by BMCV: the output variable(s) of interest (Y;) and
the potential control variates (X;, X;, . . ., X;), the expected values of the potential control variates
(W15 M2, . - ., 1), and the maximum number of batches (k,,,).

A statement of the BMCYV algorithm follows. The algorithm is presented as if 6 is a scalar, but
multiple parameters of interest are permitted. BMCV contains a routine for clearing statistics after
an initial-transient period which is not shown below.

Algorithm: Procedure BMCV
1. Declarations: Y;; Xy;, ..., Xy iy, . ., fgs Kmay (default 60). Begin with a batch size of b « 1
time unit.
2. Collectand batch Y (k), X, ;(k), . . ., X,;(k) by timeasdiscussedin the Batchingsectionabove.
3. If the BMCV output routine is called, then perform the common batch size procedure to
ensure that Y and X have common batch size, b,, and corresponding number of batches, k.
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4. Perform the test of independence on Y;(k,), j=1,2,..., ko. If the test fails, then reduce the
number of batches, k', as follows: k' « n/mb,, m=2,3,..., where m—1 is the number of
times the test is performed. Recompute the batch means and repeat the test. Report if
10 < k" < 30 but continue. If k' < 10 then there are insufficient batches, so print Y; 90 and
95% confidence intervals for 6; estimated Var[Y]; and stop.

5. Perform the test of multivariate normality on Y;(k'), X;(k'), ..., X k), j=1,2,....,k,
where k' is initially the number of batches that passed the test of independence. Use the same
procedure as step 4 if the test fails. The resulting number of batches is k.

6. Perform stepwise regression of Y;(k) on X,;(k) — p,, ..., X,;(k) — U, to select ' < 5 control
variates from the g potential control variates.

7. Compute and report the results: point estimates A(k, q'), ¥; 90 and 95% confidence intervals
for 6; estimated Var[d(k, ¢')], Var[ Y]; and estimated percentage variance reduction.

If the test of independence or normality fails BMCV does not halve the batch size as is done in
some batching algorithms, since the goal is to accept the largest number of batches less than k.,
possible. Also, if the number of acceptable batches is less than 10, the current version of BMCV
stops after printing point and interval estimates without control variates and reporting that the
independence or normality test failed. No further reduction in the number of batches is made
because the independence test is only considered valid for k > 8. Control variates are not employed
because of the requirement that R}, > g/(k — 2) to achieve a variance reduction, which is difficult to
meet if k is too small. Another possibility (which was not implemented) would be to restart the

simulation and increase the total sample size.

EXPERIMENTAL EVALUATION

In this section we report the results of experiments applying BMCV to simulations of two systems:

the M/M/1 queue, and the closed machine-repair system that Wilson and Pritsker [17, 187 used
- to test their standardized control variates. These experiments were chosen for three reasons: first,
the parameters of interest for both systems can be determined analytically, so the performance
of the confidence interval procedure can be evaluated. Second, the M/M/1 queue is a standard
example used to test many proposed output analysis procedures, so it provides a point of common
comparison for future research. Finally, Wilson and Pritsker’s experimental design used multiple
independent realizations, deleting an initial-transient period on each one, which is an alternative
to the single realization approach of BMCV.

In all the experiments the performance of the control variate estimator is relative to the sample
mean based on the same number of batches, which we call the crude estimator. The performance
measures are: (1) the estimated percentage variance reduction, (2) the estimated percentage reduction
in the half width of the 90 and 95% confidence intervals, and (3) the estimated actual probabilities
of coverage of the nominal 90 and 95% confidence intervals.

Results for the M/M/1 queue

The M/M/1 queue is a single-channel, single-server queueing system. Arrivals to the system are
represented by a stationary Poisson process with rate A, customers per unit time. Service is rendered
to one customer at a time on a first-come—first-served basis. Service times are i.i.d. random variables
with an exponential distribution having mean 1/4,. The parameters of interest are the long-run
expected queue length and customer delay in queue.

The basic experiment was to simulate the M/M/1 queue for 8400 time units, deleting outputs
from the first 2000 time units. The entire experiment was replicated 50 times to estimate the average
performance of the estimators and the actual probability the confidence intervals cover the
parameters of interest. The potential control variates were the customer interarrival times, X,;,
and customer service times, X,;. The index i represents the ith customer, and for fixed j, (X,
i=1,2,...}isasequence of i.i.d. random variables. The expected values of these random variables
- are 1/4; and 1/4,, respectively. The value of 1, was fixed at 1, and experiments were performed
with 4, =0.2, 0.5, and 0.9 to achieve different traffic intensities. The traffic intensity is a measure
of the customer load on the queue.

The experiment results are contained in Table 1. It should be noted that in these runs the test




454 RoweNA ANONUEVO and BARRY L. NELSON

Table 1. Performance of BMCV estimators for M/M/1 queue

% half width reduction Coverage probability
% variance reduction 90% c.i. 95% c.d. 90% c.i. 95% c.i.

Traffic intensity 0.2

queue length 25.62 13.65 13.62 0.88 0.98

waiting time 23.50 12.39 12.37 0.90 0.94
Traffic intensity 0.5

queue length 41.70 23.86 23.84 0.92 0.94

waiting time 34.78 19.35 19.33 0.86 092
Traffic intensity 0.9

queue length 24.02 13.51 13.36 0.68 0.78

waiting time 21.37 11.93 11.80 0.62 0.66

of multivariate normality was not applied because critical values were not available for the number
of batches that passed the test of independence. The tables show variance reductions of 20 to 40%,
and reductions in confidence interval half widths of 10 to 20%. The estimated confidence interval
coverages were close to the nominal coverage except for the high traffic intensity case. The M/M/1
queue with high traffic intensity is a notoriously difficult case for output analysis methods using a
single realization. The control variate confidence intervals and the crude confidence intervals (not
reported in Table 1) performed almost identically in terms of coverage for all traffic intensities.

Results for the closed machine-repair system

The machine-repair system operates as follows: there are initially 5 machines in operation and
2 idle spares. The time to failure for an operating machine is exponentially distributed with mean
iy = 10.0 time units. When a machine fails it needs a major overhaul with probability 0.25, in
which case it waits in a FCFS queue for a single repairman. The time required to do a major
overhaul is exponentially distributed with mean yu, = 1.5 time units. Those failed machines not
requiring a major overhaul receive minor repair on a FCFS basis from a different repairman whose
repair time is exponentially distributed with mean p; = 1.0 time unit. Finally, all repaired machines
are inspected by a single inspector. Those machines that pass inspection (probability 0.9) return
to the queue of spares if 5 machines are currently operating, or directly into service if less than 5
are operating. Machines that fail inspection are returned to the minor repair facility. The time
required for inspection is exponentially distributed with mean p, = 0.5 time units. We are interested
in estimating the long-run average number of operating machines, the average utilization of the
repairmen and the inspector, the expected waiting time for repair and inspection, the expected
queue length at each station, the expected time a machine spends in the pool of spares, the expected
number of idle spares, and the expected response time for a failed unit to again become operational.
The actual values of these parameters are given in Wilson and Pritsker [18].

The basic experiment was to simulate the machine-repair system for 7400 time units, deleting
outputs from the first 1000 time units. This leaves 6400 time units of usable output; 6400 isa
convenient total time for BMCYV because it gives exactly 50 batches of 128 time units. Wilson and
Pritsker generated 30 independent realizations of 250 time units each, deleting outputs from the
first 50 time units of each realization. Thus, they expended a total of 7500 time units, of which
6000 were usable. This illustrates the advantage of a single realization method: out of a smaller
total budget (7400 vs 7500 time units) BMCV was able to allocate more effort to removing the
initial transient period (1000 vs 50 time units per realization) while still obtaining more usable
output (6400 vs 6000 time units). Had we allocated only 50 time units to the initial transient period
then the increase in usable output would have been even greater.

As in [8], we replicated the entire experiment 50 times to estimate the average performance of
the estimators and the actual probability the confidence interval covers the parameter of interest.
The potential control variates were the time to machine failure, X ;, the time to do a major overhaul,
X,;, the time to do a minor repair, X5;, and the time to inspect a machine, X,;. The index i represents
the ith realization of each random variable, and for fixed j, {X;, i=1,2,...} is a sequence of i.i.d.
random variables. The expected values of these random variables were given above. Note that,
unlike Wilson and Pritsker who used all four control variates on all 50 replications, the particular
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Table 2. Performance of BMCV estimators for closed machine-repair system variables

% half width reduction Coverage probability
% variance reduction 90% c.i. 95% c.i. 90% c.i. 95% c.i.
Number of operating machines 43.03 24.62 24.59 0.90 0.98
Number of idle spares 73.70 48.80 48.78 0.94 1.00
Time in pool of spares 75.59 50.69 50.67 0.98 0.98
Response time 53.83 32.12 32.08 0.90 0.94

Table 3. Performance of BMCV estimators for closed machine-repair station variables

% half width reduction Coverage probability
% variance reduction 90% c.i. 95% c.i. 90% c.i. 95% c.i.

Utilization at

major repair 48.46 28.05 27.98 0.68 0.94

minor repair 73.17 48.20 48.18 0.86 0.94

inspection 83.84 59.87 59.85 0.74 0.78
Queue length at

major repair 13.40 6.65 6.63 0.90 0.92

minor repair 42.61 24.23 24.20 0.88 0.94

inspection 39.94 22.58 22.54 0.88 0.92
Waiting time at

major repair 16.90 8.26 8.17 0.82 0.86

minor repair 40.53 22.82 22.79 0.84 0.96

inspection 35.21 19.48 19.45 0.76 0.90

control variates selected by the stepwise procedure in BMCV can and did differ from replication
to replication.

The experiment results are contained in Tables 2 and 3. The variance reductions range from
about 45 to 85%, and the percentage reductions in confidence interval half widths from 25 to 60%.
These reductions compare favorably to Wilson and Pritsker [18], obtaining almost identical
variance reductions, confidence interval half width reductions, and confidence interval coverage
probabilities.

Since Wilson and Pritsker used standardized control variates rather than the sample mean control
variates employed by BMCV, we performed additional experiments using standardized batch mean
control variates to complete the comparison. The results were essentially unchanged. Standardized
control variates make use of the known variance of the control variate and are asymptotically stable.

Computational burden of BMCV

To estimate the computational burden added by BMCV, two simulation experiments were
conducted: the first employed only batching together with the test of independence, while the second
used procedure BMCV. Both runs estimated the average response time for the closed machine-repair
system. Fifty replications of 7400 time units were performed as outlined above. Procedure BMCV
added an average of 1.65 cpu seconds per replication on an IBM 3081-D computer. This is a
significant part of the average of 4.24 cpu second total time per replication. Since BMCV was
developed for research purposes and is not a production code, improvements in efficiency are
certainly possible. More importantly, however, the primary factors that affect the computational
burden added by BMCV are the number of parameters of interest and potential control variates,
so the size of the simulation experiment in terms of number of lines of code or speed of execution
does not affect BMCV. Thus, a simulation with much longer total execution time but the same
number of parameters of interest and control variates should experience about the same absolute
increase in cpu time. An increase of 1.65 cpu seconds in an experiment requiring several hundred
cpu seconds will be worth the effort even if the variance reductions are modest. This is important
because it is in large, expensive simulation experiments that variance reduction is most important.
Since BMCYV is largely automated, the additional burden on the experimenter is negligible.

DISCUSSION

The experiment results in the previous section show that BMCV implements a competitive
method for estimating infinite-horizon parameters. However, to be more general BMCV could
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include several other features, for example, a run-length-control procedure to determine the
initial-deletion amount and the total run length based on the available budget. BMCYV only contains
a routine that can be called at any time to clear statistical variables. Since it is possible that no
batch size passes the test of multivariate normality, a procedure to form Jackknife point and interval
estimators (Bratley et al. [19]) could also be included. Nonnormality causes O(k, q) to be a biased
estimator, and Jackknifing is a procedure to reduce this bias. Currently, if 6 is multivariate, BMCV
constructs a separate confidence interval for each scalar component. Thus, the overall confidence
level is not the 90 or 95% reported for the individual intervals. Some recent results for control
variate estimation of multivariate parameters could be used to construct a joint confidence region;
see for instance Venkatraman and Wilson [20]. Finally, BMCV is designed only for single realization
experiments, but could be modified to use the method of independent replications.
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