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We extend the basic theory of kriging, as applied to the design and analysis of deterministic computer experiments, to the
stochastic simulation setting. Our goal is to provide flexible, interpolation-based metamodels of simulation output perfor-
mance measures as functions of the controllable design or decision variables, or uncontrollable environmental variables.
To accomplish this, we characterize both the intrinsic uncertainty inherent in a stochastic simulation and the extrinsic
uncertainty about the unknown response surface. We use tractable examples to demonstrate why it is critical to characterize
both types of uncertainty, derive general results for experiment design and analysis, and present a numerical example that
illustrates the stochastic kriging method.
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1. Introduction
Discrete-event simulation is a general-purpose tool for ana-
lyzing dynamic, stochastic systems. Virtually any level of
detail can be modeled and any performance measure esti-
mated, which explains simulation’s popularity. However,
simulation models are often tedious to build, need substan-
tial data for input modeling, and require significant time to
run, particularly when there are many alternatives to eval-
uate. The decision to build and use a simulation model of
a large-scale, complex system often represents a nontrivial
investment of time and money.
The objective of the methodology described in this paper

is to get more benefit from a simulation investment. The
specific context we have in mind is when time to exercise
the simulation model in advance of the decision making it
will support is relatively plentiful, but decision-making or
decision-maker time is relatively scarce or expensive. There-
fore, rather than executing a simulation run whenever a
“what if” question is posed, or trying to anticipate every sce-
nario of interest in advance, we use the simulation to “map”
the performance response surfaces of interest as functions of
the controllable design or decision variables, or uncontrol-
lable environmental variables. Ideally, these response sur-
face maps provide the fidelity of the full simulation model
with the ease of use of, say, a spreadsheet model.
The motivation for this work is our experience with

two industries that build large-scale simulation models:
automobile and semiconductor manufacturing. In the auto-
mobile application the response was throughput and the
controllable design variables included machine capacity,
process cycle times, mean time to failure, and mean time
to repair, which were controllable through choice of tech-
nology. In the semiconductor application the response was

start-to-finish product cycle time, and the design variables
were product start rates. A key similarity in both settings
is that the full simulation model was too slow and clumsy
to support the way that decisions were actually made by
decision makers trading off performance against less quan-
tifiable objectives.
Using simulation to construct metamodels (models

of the simulation model) is not new (see Barton and
Meckesheimer 2006 for a review). Starting with classi-
cal response-surface modeling in statistics (e.g., Myers and
Montgomery 2002), simulation researchers have adapted
experiment designs for linear regression models to account
for dependence within a replication for steady-state simula-
tions (e.g., Law and Kelton 2000); to permit the use of com-
mon random numbers (CRN) and antithetic variates across
design points (e.g., Schruben and Margolin 1978; Nozari
et al. 1987; Tew and Wilson 1992, 1994); and to compen-
sate for the strong relationship between response variance
and customer load in queueing simulations (e.g., Cheng and
Kleijnen 1998, Yang et al. 2007). However, linear regres-
sion models (that are usually polynomials in the design
variables and linear in their unknown coefficients) tend to
fit well locally, but do not provide the sort of robust global
maps we desire. Nonlinear models based on queueing the-
ory work very well for queueing simulations, but require
domain knowledge of the problem context and specialized
fitting algorithms.
We are interested in more general-purpose approaches

that assume less structure than linear or queueing-specific
nonlinear models; that tend to be more resistant to overfit-
ting than general interpolators (e.g., neural networks, see
for instance, Sabuncuoglu and Touhami 2002); that facil-
itate sequential, adaptive experiment designs rather than
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fixed, a priori designs; and that can provide statistical infer-
ence about when a good fit is obtained. We also want to
account for the reality that the simulation output is stochas-
tic, with variance that usually changes significantly across
the design space.
To satisfy these requirements, we extend the kriging

methodology that is popular, and has been highly success-
ful, in the design and analysis of (deterministic) computer
experiments (DACE). DACE methodology is particularly
well suited for systematically reducing uncertainty about
the unknown response surface as experiments (computer
runs at different design settings) are performed, and leads to
interpolation-based models. Our central contribution is to
fully account for the sampling variability that is inherent
to a stochastic simulation. We show that correctly account-
ing for both sampling and response-surface uncertainty has
an impact on experiment design, response-surface estima-
tion, and inference.
In the next section we describe our extended metamodel

under the special case that all model parameters are known;
this setting allows us to demonstrate why the extension
is critical without cluttering the discussion with estimation
issues, which are resolved in §3. A numerical illustration
and conclusions close the paper in §§4 and 5, respectively.

2. The Metamodel
We describe our approach by refining a sequence of
models. We are interested in modeling an unknown
performance-measure surface (or surfaces) y�x�, where x=
�x1� x2� � � � � xd�

� is a vector of design variables and y�x� is
a deterministic function of x. For instance, in a semicon-
ductor fabrication simulation x might represent the release
rates of d products, and y could be the steady-state mean
cycle time of product 1 (however, y need not be a mean).
The classical linear regression approach is to assume that

the observed response obtained from the jth simulation
replication at x is described by the model

Yj�x�= f�x���+ 
j�x�� (1)

where f�x� is a vector of known functions of x, � is a
vector of unknown parameters of compatible dimension,
and 
j�x� has mean 0 and represents the sampling vari-
ability inherent in a stochastic simulation. The distribution
of 
j�x�, and in particular its variance, may depend on x,
although this dependence is often ignored. We refer to 

as intrinsic uncertainty, because it comes from the nature
of the stochastic simulation itself. An experiment design
specifies settings of x at which to observe Y �x�, and the
number of replications to obtain at each x. In this paper
we primarily address the replication setting (as opposed to
the single-run experiment design sometimes used in steady-
state simulation).
Now consider the following thought experiment: Sup-

pose that the response y�x� could be observed without

noise, but we are still interested in developing a metamodel
after observing y�x� at a few design points x. This problem
is treated in the DACE literature (Kennedy and O’Hagan
2000, Sacks et al. 1989, Stein 1999, Santner et al. 2003).
A remarkably successful approach is to cast this determin-
istic problem into a statistical framework by representing
the unknown response surface as

Y�x�= f�x���+M�x�� (2)

where M is a realization of a mean 0 random field; that is,
we think of M as being randomly sampled from a space of
functions mapping �d →�. The functions in this space are
assumed to exhibit spatial correlation, which means that
values M�x� and M�x′� will tend to be similar if x and x′

are close to each other in space. We refer to the stochastic
nature of M as extrinsic uncertainty, because it is imposed
on the problem (not intrinsic to it) to aid in developing a
metamodel. This paradigm embeds a deterministic problem
into a probabilistic framework so that statistical concepts
such as mean squared error (MSE) of estimation can be
brought to bear. Statistical inference about Y�x� at values
of x not simulated can aid experiment design and provide
estimates of the metamodel’s precision, a feature we want
to exploit.
We argue that the following model is more useful

than (1) or (2) for representing a stochastic simulation’s
output on replication j at design point x:

�j �x�= f�x���+M�x�+ 
j�x�� (3)

The intrinsic noise 
1�x�� 
2�x�� � � � at a design point x
is naturally independent and identically distributed across
replications, but we allow the possibility that V�x� ≡
Var�
�x�� is not constant and that Corr�
j�x�� 
j�x

′�� > 0 to
model the effect of CRN. (The intent of CRN is to reduce
the variance of estimated differences through inducing pos-
itive correlation across design points by driving their simu-
lations with the same sequence of pseudorandom numbers;
see, for instance, Law and Kelton 2000.) Later we propose
simultaneously modeling M and V, which is a central con-
tribution of this paper.
In our setting, an experiment design consists of pairs

�xi� ni�� i = 1�2� � � � � k, where ni is the number of simula-
tion replications taken at design setting xi. Let the sample
mean at xi be

	��xi�=
1
ni

ni∑
j=1

�j �xi� (4)

and let 	� = � 	��x1�� 	��x2�� � � � � 	��xk��
�.

We want a metamodel that predicts the response Y�x0�≡
f�x0�

��+M�x0� at any x0, simulated or not. Until further
notice, we only consider the case f�x0�

�� = �0 (that is,
just a constant term representing the overall surface mean),
because this model has tended to be the most useful in
practice for DACE.
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As is typical in spatial correlation models, we consider
linear predictors of the form

�0�x0�+��x0�
� 	�� (5)

where �0�x0� and ��x0� are weights that depend on x0 and
are chosen to give the predictor good properties, such as
minimum MSE for predicting Y�x0� = �0 +M�x0�. Later,
when we make Gaussian assumptions on the intrinsic and
extrinsic uncertainty, this form drops out as the best pre-
dictor, linear or otherwise.
Let �M�x�x′� = Cov�M�x��M�x′�� be the covari-

ance implied by the extrinsic spatial correlation model,
let �M be the k × k covariance matrix across all
design points x1�x2� � � � �xk, and let �M�x0� ·� be the
k× 1 vector �Cov�M�x0��M�x1���Cov�M�x0��M�x2��� � � � �
Cov�M�x0��M�xk���

�. Also, let �
 be the k × k covari-
ance matrix implied by the intrinsic noise with �h� i� ele-
ment Cov�

∑nh

j=1 
j�xh�/nh�
∑ni

j=1 
j�xi�/ni� across all design
points xh and xi.
To illustrate the key issues, suppose that �M��
,

and �0 are known (clearly, in a real application they
need to be estimated, which is a contribution of our
research). In the e-companion to this paper, which is avail-
able as part of the online version that can be found
at http://or.journal.informs.org/, we show that the MSE-
optimal predictor of the form (5) is

Ŷ�x0�= �0 +�M�x0� ·�� ��M +�
�
−1

� 	�−�01k�� (6)

where 1k is the k× 1 vector of ones. We refer to this pre-
dictor as stochastic kriging. Notice that the only computa-
tionally intensive operation in evaluating (6) is the matrix
inversion, which is done once because it is independent
of x0. If there were no intrinsic uncertainty due to simu-
lation, �
 would vanish and (6) would reduce to the stan-
dard kriging estimator that matches the data 	� at design
points, and predicts Y�x0� by a weighted average of 	�
elsewhere (e.g., Cressie 1993). Equation (6) clearly shows
that the presence of intrinsic uncertainty impacts the pre-
diction everywhere on the surface. In the e-companion to
this paper, we also show that the optimal MSE is

MSE� =�M�x0�x0�−�M�x0� ·��
[
�M +�


]−1
�M�x0� ·�

= [�M�x0�x0�−�M�x0� ·���−1
M �M�x0� ·�

]
+�M�x0� ·����M�x0� ·�� (7)

where � is a positive definite matrix that depends on
�
 and �M. The term in brackets in (7) is the usual kriging
MSE; the additional term is positive, showing that intrinsic
uncertainty inflates MSE.
To actually estimate a stochastic kriging metamodel from

data, we need �M�·� ·� to have more structure. In particular,
we will assume that M is second-order stationary, meaning
that

�M�x�x′�= �2RM�x− x′���� (8)

where �2 can be interpreted as the variance of M�x� for
all x, and RM is the correlation that depends only on x−x′

and may be a function of some unknown parameters �. Fur-
ther, we will require that RM�x−x′���→ 0 as the distance
between x and x′ goes to infinity, and RM�0���= 1.
Results similar to (6) and (7) have appeared in other

contexts, with other interpretations. In the application of
kriging to spatial statistics, measurement error can lead
to the so-called “nugget effect,” which inserts a term that
might be represented as �
 = �2I; see, for instance, Cressie
(1993, Chapter 3). Similarly, O’Hagan and Forster (2004,
Chapter 13) describe a Bayesian nonparametric regression
setting in which the regression function has a Gaussian pro-
cess prior and the observations have measurement error,
leading to expressions analogous to (6) and (7). Also, in
the study of variance components, where the goal might
be to predict a random effect such as the IQ of a person
drawn from a population, similar expressions arise when
the experiment consists of multiple subjects, and multi-
ple tests per subject. See, for instance, Searle et al. (1992,
Chapter 7).
Use of kriging for metamodeling in stochastic simula-

tion was first mentioned by Mitchell and Morris (1992),
but has only been explored in depth by Kleijnen and his
collaborators; the papers most closely related to our work
are van Beers and Kleijnen (2003) and Kleijnen and van
Beers (2005) (see also Biles et al. 2007 and van Beers
and Kleijnen 2008). The central idea in these papers is to
first model out any trend using least-squares or generalized
least-squares techniques, and then to apply kriging to some
form of standardized residuals. They do not incorporate a
model of the intrinsic uncertainty, which means that they
cannot be used for the sort of adaptive design we desire,
which jointly considers the placement of design points and
simulation effort. To illustrate the insights gained from our
approach, we examine two tractable examples in detail.

2.1. A Two-Point Problem

Consider the case of k = 2 design points x1 and x2 with
equal numbers of replications n1 = n2 = n. Suppose that

�M = �2

(
1 r12
r12 1

)
and �M�x0� ·�= �2

(
r0
r0

)
�

The term �2 > 0 represents the extrinsic variance of M,
r12 is the extrinsic correlation between M�x1� and M�x2�,
and r0 is the extrinsic correlation between the point to be
predicted Y�x0� and each of the design points (these usually
would not be equal). Typically, we expect r12 and r0 to be
positive.
For the intrinsic uncertainty due to sampling at a design

point, suppose

�
 =
V
n

(
1 �
� 1

)
�

where in this example the variance at the design points
is a common V > 0, and −1 � � � 1 represents intrinsic
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dependence between the design points; for instance, we
would expect � > 0 if we used CRN. Substituting these
into (6)–(7), the MSE-optimal predictor of Y�x0� is

Ŷ�x0�= �0 +
2�2r0

�1+ r12��
2 + �1+��V/n

·
( 	��x1�+ 	��x2�

2
−�0

)
� (9)

with MSE

MSE� = �2

(
1− 2�2r20

�1+ r12��
2 + �1+��V/n

)
� (10)

Equation (9) shows that stochastic kriging is a bit like a
control-variate estimator (e.g., Nelson 1990), where a cor-
rection term is applied to the mean based on the deviation
of the observed responses from their expectations and the
strength of the correlation (r0) between the design points
and the response to be predicted.
The MSE (10) is even more revealing: MSE is decreas-

ing in r20 , meaning the stronger the correlation between the
design points and the response at x0, the smaller the MSE
because the design points provide more information. How-
ever, MSE is increasing in r12, because the more correlated
the design points themselves are, the less additional infor-
mation they provide. Intrinsic uncertainty, V, also increases
MSE, but can be reduced by increasing the sample size n.
Most interesting is that the assumed impact of CRN, which
is to make � > 0, increases MSE relative to independent
sampling. This may seem surprising, because in standard
linear regression models such as (1) the impact of CRN is
to reduce the variance of the slope coefficients. However,
the stochastic kriging predictor is a weighted average of the
outcomes from the design points, and CRN inflates the vari-
ance of averages. In fact, (10) shows that antithetic variates
(e.g., Law and Kelton 2000), which try to induce � < 0,
would reduce MSE. In the e-companion to this paper, we
show that the detrimental effect of CRN persists when there
are k > 2 design points.
There are two messages in this example: (i) In stochastic

kriging there is an important interplay between the place-
ment of design points (through their extrinsic correlation
with each other) and the simulation effort at the design
points (through their intrinsic variance); and (ii) CRN will
not be helpful for predicting Y�x� in general. In the next
example we examine message (i) more deeply.

2.2. Noiseless M/M/1 Queue

In this example we move a step closer to realistic system
simulation problems to illustrate the importance for experi-
ment design of having a model for the intrinsic uncertainty
(specifically, V�x� the variance of 
�x�).
Let y�x� be the steady-state expected number of cus-

tomers in an M/M/1 queue with service rate 1 and arrival

rate 0� x < 1. Then it is well known that y�x�= x/�1−x�.
This is the surface we are trying to model.
Let Nt�x� be the observed number of customers in this

M/M/1 system at time t. If we were trying to estimate y�x�
via simulation, then the natural estimator is

	��x�= t−1
∫ t

0
Ns�x�ds�

the average number in the system during t units of
simulated time. In this example only, we measure sim-
ulation effort by the run length t rather than by the
number of replications.1 For large t, Var� 	��x��≈V�x�/t ≡
2x�1 + x�/�t�1 − x�4� (Whitt 1989). We use this knowl-
edge to examine the impact of design point place-
ment "x1� x2� � � � � xk# and corresponding effort allocation
"t1� t2� � � � � tk# on the stochastic kriging estimator without
actually simulating the system. To focus the analysis, we
suppose that 	��x� is unbiased for y�x�, which would occur
if we initialized the simulation in steady state.
To represent the surface y�x� in the form �0+M�x�, let

�0 = �xU − xL�−1
∫ xU

xL

x

1− x
dx

be the mean value of the response function over the interval
of interest �xL� xU �. If we pretend that y�x� is a realization
of a stationary random field, then a reasonable stand-in for
the extrinsic covariance function is

�M�x� x′�= c�h�= �xU − xL�−1
∫ xU−h

xL

(
x

1− x
−�0

)
·
(

x+h

1− x−h
−�0

)
dx�

where h = �x − x′�. Conceptually, c�·� is the limit of the
empirically estimated covariance function we would obtain
by observing y�x� at an increasingly fine grid of evenly
spaced design points x, which should allow us to pro-
duce the best-possible representation of y�x� via stochastic
kriging.
Given a design "�xi� ti�� i = 1�2� � � � � k#, we have

�M=


c�0� c��x1−x2�� ··· c��x1−xk��

c��x2−x1�� c�0� ··· c��x2−xk��
���

���
� � �

���

c��xk−x1�� c��xk−x2�� ··· c�0�

 (11)

and

�M�x0�·��
=�c��x0−x1���c��x0−x2�������c��x0−xk���� (12)

whereas

�
 =


V�x1�/t1 0 · · · 0

0 V�x2�/t2 · · · 0

���
���

� � �
���

0 0 · · · V�xk�/tk

 � (13)
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All of these matrices can be computed numerically, so we
can evaluate the MSE (7) of the stochastic kriging estimator
as a function of xi and ti. Because we are interested in
global fitting, one reasonable objective suggested by Sacks
et al. (1989) is to place design points (and in our case also
simulation effort) to minimize the integrated MSE

IMSE=
∫ xU

xL

MSE��x�dx� (14)

where MSE��x� is the MSE of the optimal predictor at x,
as in (7).
Consider the specific case xL = 0�5 and xU = 0�95,

where we take xL and xU as two of k = 3 design points
on which we can spend t = 10�000 units of simulation
effort. If we allocate the simulation effort in units of
1�000, and can place the third design point at one of
x = 0�55�0�6�0�65� � � � �0�85, then the design that mini-
mizes IMSE for stochastic kriging is �x� t�= �0�5�1�000��
�0�65�1�000�� and �0�95�8�000� with IMSE= 4�70.
Standard kriging—by which we mean ignoring intrin-

sic uncertainty—finds the optimal design points to be x =
0�5�0�8, and 0�95 and (incorrectly) estimates the IMSE to
be 4�27. The actual IMSE, accounting for sampling vari-
ability, is 4�93 if we allocate the effort equally among these
three design points, and it only drops to 4�91 if we allo-
cate optimally given these design points. This illustrates the
need to account for intrinsic uncertainty in design, and that
“design” must include both the placement of design points
and the allocation of simulation effort. In §3.3 we provide
one method to obtain approximately IMSE-optimal designs
for stochastic kriging.

3. Parameter Estimation
To actually apply stochastic kriging for simulation meta-
modeling, a method for estimating the unknown parameters
is required. The DACE literature contains several methods
and refinements when there is only extrinsic uncertainty;
see, for instance, Santner et al. (2003) and Fang et al. (2006).
Here we focus on extending the most well-known method—
maximum likelihood—to allow for intrinsic uncertainty.
Recall that our model for the simulation output is

�j �x�= �0 +M�x�+ 
j�x��

We now adopt the following.

Assumption 1. The random field M is a stationary
Gaussian random field, and 
1�xi�� 
2�xi�� � � � are i.i.d.
N�0�V�xi��, independent of 
j�xh� for all j and h �= i (i.e.,
no CRN), and independent of M.

That M is a stationary Gaussian random field is a
standard assumption in DACE. We refer the reader to,
for instance, Santner et al. (2003, §2.3.2) for technical
details, but in brief this assumption implies that for any
finite collection of design points x1�x2� � � � �xk the random

vector �M�x1��M�x2�� � � � �M�xk��
� has a multivariate nor-

mal distribution with constant marginal mean 0, variance
�2 > 0, and positive definite correlation matrix RM such
that Corr�M�xi��M�xh�� depends only on xi −xh. The nor-
mality of 
j�x� could be anticipated if, for instance, the
output of each replication was itself the average of a large
number of more-basic random variables (e.g., the average
of hundreds of individual product cycle times in the semi-
conductor fabrication example).
Under Assumption 1, �Y�x0�� 	��x1�� � � � � 	��xk�� is mul-

tivariate normal (see the e-companion to this paper), and
the stochastic kriging predictor (6) is the conditional expec-
tation of Y�x0� given 	�, making it the minimum MSE
predictor (Santner et al. 2003, Theorem 3.2.1).
We begin by assessing the impact of estimating the

intrinsic variance �
, then derive the maximum-likelihood
estimators given �
, and conclude by addressing experi-
ment design.

3.1. Estimating the Intrinsic Variance

In this section we confront the fact that V is typically
unknown. In summary, our approach is as follows:
• Because we are interested in sequential experiment

design, we need a model for V. To obtain it, we will assume
that V is also represented by a spatial correlation model

V�x�= �2 +Z�x�� (15)

where Z is a mean zero stationary random field that is
independent of M. Denote the estimated model by V̂�x�.
• Because V�xi� is not observable, even at the design

points, we let

� 2�xi�=
1

ni − 1

ni∑
j=1

��j �xi�− 	��xi��
2 (16)

stand in for it. Under Assumption 1, � 2�xi� is strongly con-
sistent for V�xi� and has a scaled chi-squared distribution.
• Because we observe � 2, not V, there is extrinsic and

intrinsic uncertainty, just as in estimating �0 +M from 	�.
However, because we are not interested in V except as it
impacts our design and analysis, we will ignore the intrin-
sic uncertainty and fit model (15) using standard kriging
as if � 2 had no noise. Therefore, V̂�xi�=� 2�xi� at design
points xi because standard kriging interpolates the response
at the design points exactly. We will show that the conse-
quences of estimating V in this way are slight as long as
the ni are not too small.

• We do not describe estimation of model (15) from
� 2�x1���

2�x2�� � � � �� 2�xk� here, because no new ideas
are introduced. In the numerical illustration in §4 we cite
a specific approach.
Our first key result is that estimating �
 in this way

introduces no prediction bias. The proof can be found in
the e-companion to this paper.
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Theorem 1. Let �̂
 = Diag
{
V̂�x1�/n1� V̂�x2�/n2� � � � �

V̂�xk�/nk

}
and define

̂̂Y�x0�= �0 +�M�x0� ·��
[
�M + �̂


]−1
� 	�−�01k�� (17)

If Assumption 1 holds, then E�
̂̂Y�x0�−Y�x0��= 0.

As a consequence of Theorem 1, our key concern is
how much variance inflation occurs when V is estimated.
Clearly, if the ni are large enough, then there is little infla-
tion. But how large do they have to be? To answer this
question, we consider another tractable example:
Suppose that

�M = �2


1 r · · · r

r 1 · · · r

���
���

� � �
���

r r · · · 1

 �

�M�x0� ·� = �2�r0� r0� � � � � r0�
� with r0� r � 0, and �
 =

�V/n�I. This represents a situation in which the extrinsic
correlations among the design points are all equal and the
design points are equally correlated with the point we wish
to predict, which might be (approximately) plausible if the
design points are widely separated, say at the extremes of
the region of interest, whereas x0 is central. Note that for
the covariance matrix of �Y�x0�� 	��x1�� � � � � 	��xk��

� to be
positive definite, we must have r20 < 1/k+ r�k−1�/k. The
structure of �
 arises because we assume the intrinsic vari-
ance is the same across all design points and n replica-
tions have been allocated to each of them. Suppose also
that we have an estimator V̂∼V'2

n−1/�n−1�, meaning that
�n− 1�V̂/V has a chi-squared distribution. We use a com-
mon estimator of the intrinsic variance rather than estimat-
ing it at each design point individually to make the example
tractable. Finally, let ( = V/�2 be the ratio of the intrin-
sic variance to the extrinsic variance, which is (roughly
speaking) a measure of the sampling noise relative to the
response-surface variation.
In the e-companion to this paper, we show that the MSE

of Ŷ�x0�, the stochastic kriging predictor with V known, is

MSE� = �2

(
1− kr20

1+ �k− 1�r +(/n

)
� (18)

On the other hand, the MSE of
̂̂Y�x0� obtained by substi-

tuting V̂ for V is

MSE= �2E
[(

1+ �1+ �k− 1�r +(/n�kr20

�1+ �k− 1�r + �(/n��V̂/V��2

− 2kr20

�1+ �k− 1�r + �(/n��V̂/V��

)]
� (19)

Figure 1. MSE inflation as a function of ( = V/�2

when n= 10 and correlation r0 is 95% of its
maximum possible value.

500400300200100

1.00

1.01

1.02

1.03

M
S

E
 in

fla
tio

n

1.04

1.05

Intrinsic/extrinsic variance ratio

Correlation r = 0
Correlation r = 0.1
Correlation r = 0.2

We assess the inflation by evaluating the ratio of (19) to (18)
numerically. The ratio is largest when n is small and r0 and r
are large, so Figure 1 shows the inflation as a function of
( = V/�2 for n = 10, r = 0, 0.1, 0.2, and r0 at 95% of the
maximum value it can take. Even with this small value of n,
the inflation is slight over an extreme range of ( values.
As n increases, the inflation vanishes. This suggests that the
penalty for estimating V will typically be small, which is
further supported by the experiment in §4.

3.2. Maximum-Likelihood Estimation

In this section we derive the maximum-likelihood estima-
tors of ��0� �2���, assuming �
 is known. To reduce nota-
tion, let Vi ≡ V�xi�/ni; thus, �
 = Diag"V1�V2� � � � �Vk#.
Also define RM��� to be correlation matrix of M across the
design points.
In the e-companion to this paper we show that for a fixed

experiment design "�xi� ni�� i = 1�2� � � � � k#, and under
Assumption 1, the log-likelihood function of ��0� �2��� is

l��0� �2���

=− ln
[
�2)�k/2

]− 1
2 ln���2RM���+�
��

− 1
2 �

	�−�01k�
���2RM���+�
�

−1� 	�−�01k�� (20)

If the �
 terms are removed, then this is the log-likelihood
function for kriging when M is a Gaussian random field.
We have been intentionally vague about the covariance
function RM��� because we want the results to be general,
but when we apply stochastic kriging later, we will use a
standard model from the DACE literature.
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Finding the maximum-likelihood estimators requires
simultaneously solving

*l��0� �2���

*�0

= 0
*l��0� �2���

*�2
= 0

*l��0� �2���

*�
= 0 (21)

for � ��0� ��2� ���. The primary purpose of this section is to
show that when �
 is given, the search to find the MLEs
is no more computationally difficult than when �
 is not
present, and in fact is more likely to be numerically stable.
Complete expressions for (21) are given in the e-companion
to this paper.
Let � = �2RM���+�
, and let + be generic for any of

the unknown parameters �0� �2 or any element of �. Then,
trivially,

*�

*+
= *�2RM���

*+
�

The elements of this partial derivative matrix are explicit
for the typical choices of RM���. Applying standard results
for matrix calculus, we can show that

*���
*+

=���trace
[
�−1 *�

*+

]
=���trace

[
�−1 *�2RM���

*+

]
(22)

and

*�−1

*+
=−�−1 *�

*+
�−1 =−�−1 *�2RM���

*+
�−1� (23)

Thus, the partial derivatives required to solve for the
MLEs in (21) are partial derivatives of �2RM��� required
in the deterministic DACE case. Of course, the determi-
nant and matrix inverse that must be evaluated are dif-
ferent, namely, ��� and �−1 instead of ��2RM���� and
��2RM����−1. However, in practice, the correlation matrix
RM��� can become nearly singular when searching over
��0� �2���, causing numerical stability problems in DACE
applications of maximum likelihood (Fang et al. 2006). In
our case �= �2RM���+�
 is resistant to becoming singu-
lar because �
 is not a function of the parameters.
A number of numerical methods can be used to search

for the MLEs � ��0� ��2� ���; see, for instance, Fang et al.
(2006). We have had success with using nonlinear opti-
mization routines to maximize the likelihood (20), explic-
itly including the constraint ��2 � 0. Any such method will
need starting solutions. We have found it helpful to start
with moderate values of ��0, ��2, and ��, such as initializing
��0 and ��2 to the sample average and sample variance of
	��x1�� 	��x2�� � � � � 	��xk�.
To summarize, given the data �j �xi�� j = 1�2� � � � � ni,

i = 1�2� � � � � k, a stochastic kriging metamodel is obtained
as follows:
1. Estimate V̂ as in §3.1 and let �̂
 = Diag"V̂�x1�/n1�

V̂�x2�/n2� � � � � V̂�xk�/nk# where V̂�xi�=� 2�xi�.

2. Using �̂
 instead of �
, maximize the log-
likelihood (20) over � ��0� ��2� ���.
3. Predict Y�x0� by the metamodel̂̂Y�x0�= �̂0+��2RM�x0�·� �������2RM��̂�+�̂
�

−1� 	�− ��01k�

(24)

with MSE estimator

M̂SE�x0�= ��2−��4RM�x0�·��������2RM��̂�+�̂
�
−1RM�x0�·����

+����1�k ���2RM��̂�+ �̂
�
−11k�

−1 (25)

where � = 1 − 1�k ���2RM��̂� + �̂
�
−1RM�x0� ·� ��� ��2. The

MSE expression is derived in the e-companion to this
paper; the last term on the right-hand side of (25) accounts
for the variability due to estimating �0. Both (24) and (25)
are plug-in estimators, and therefore (24) is no longer linear
in the data.

3.3. Experiment Design

In this section we describe an approach to obtain exper-
iment designs with low IMSE. Our results assume that
the extrinsic covariance function �M�·� ·� and the intrinsic
variance function V�·� are known; later in the section we
describe how we might use the results when these functions
are estimated.
Let � be the d-dimensional experiment design space of

interest, and suppose that we have k fixed design points
x1�x2� � � � �xk to which we want to allocate N replications.
Let n� = �n1� n2� � � � � nk�. Then our goal is to

minimize IMSE�n�=
∫
x0∈�

MSE�x0�n�dx0 (26)

subject to: n�1k �N (27)

ni nonnegative integers (28)

where

MSE�x0�n�=�M�x0�x0�

−�M�x0� ·�� ��M +�
�n��
−1

�M�x0� ·�
and �
�n� = Diag"V�x1�/n1�V�x2�/n2� � � � �V�xk�/nk#. In
words, we minimize the IMSE for the MSE-optimal
stochastic kriging estimator as a function of the number
of replications allocated to each design point. To obtain an
approximate solution to this problem, we relax the integral-
ity constraint (28) and assume only that ni � 0. Because
we will have repeated need of it, let ��n�=�M +�
�n�.
Assuming M is second-order stationary, as in (8), we

can let �M�xi�x0� = �2ri�x0�. In the e-companion to this
paper we show that the optimal solution n� to (26), with
integrality relaxed, satisfies n�

i ∝
√

V�xi�Ci�n�� where

Ci�n�= [��n�−1W��n�−1
]
ii
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and W is the k× k matrix with elements

Wij =
∫
x0∈�

ri�x0�rj�x0�dx0�

To gain some insight into this result, suppose that N is
large enough that ��n�≈�M, so that

Ci�n�≈Ci =
[
�−1

M W�−1
M

]
ii
�

Then,

n�
i ≈N

√
V�xi�Ci∑k

j=1
√

V�xj �Cj

� (29)

Notice that Ci is a function only of the extrinsic correlation
structure, and V is the intrinsic variance. Expression (29)
shows how the response surface, as represented by its corre-
lation structure, distorts the allocation of replications from
one that is proportional to only the intrinsic standard devia-
tion at the design point; it tends to favor design points that
are centrally located because they do more to reduce MSE
throughout the design space (notice that Wii will be larger
if xi is close to more of the design space). This further
emphasizes what was illustrated in §2.2: Both intrinsic and
extrinsic uncertainty matter in the experiment design.
In practice, neither �M�·� ·� nor V�·� are known in

advance, and the design points are not given. One way to
use these results is via a two-stage design strategy:
1. In Stage 1, select a space-filling design of m predeter-

mined design points x1� � � � �xm and allocate n0 replications
to each.
2. Fit V̂ and ��2RM�·� ·� ��� as described above.
3. In Stage 2, jointly select k − m additional design

points xm+1� � � � �xk from a larger set and optimally allocate
the N − mn0 additional replications among x1� � � � �xk to
minimize IMSE using V̂ and RM�·� ·� ��� in place of the true
functions. The optimization is facilitated by the fact that

*

*ni

IMSE�n�=−�4V�xi�

n2
i

Ci�n��

as we show in the e-companion to this paper, or we can
use the approximate formula (29).
To construct a practical, concrete procedure requires

making several choices. We discuss some of them in the
remainder of this section.
What should the total number of design points, k,

be? As in classical two-stage procedures for fixed-width
confidence-interval estimation, we could use what we learn
in the first stage to choose k large enough to attain an
IMSE target. To determine whether a second-stage design
x1�x2� � � � �xk attains an IMSE target, we could use an upper
bound on the design’s IMSE based on an upper bound on
MSE at any point x ∈� , such as

MSE�x�� ��2

(
1− max

i=1�2�����k
��2RM�x− xi� ���

��2 +V�xi�/ni

)
�

This bound follows from Equation (7), and says that (within
the framework of plug-in estimation) the MSE of predicting
Y�x� using the design points x1�x2� � � � �xk is no more than
the MSE of predicting Y�x� using only the single design
point that is most informative about Y�x�. This leads to
upper bounds for IMSE:

IMSE� ��2

(
1−min

x∈�
max

i=1�2�����k
��2RM�x−xi����

��2+V�xi�/ni

)
�� �

� ��2

(
1− ��2minx∈��i=1�2�����kRM�x−xi����

��2+maxi=1�2�����kV�xi�/ni

)
�� �� (30)

where �� � is the volume of the design space. Expres-
sion (30) relates IMSE to the maximum intrinsic uncer-
tainty about the response surface at any design point and
the minimum extrinsic correlation between the responses at
any point x ∈� and the nearest design point.
The criterion (30) also helps answer another question: If

we start with m initial design points, how should the k−m
additional design points xm+1� � � � �xk be selected? Accord-
ing to (30), the complete design x1�x2� � � � �xk should also
be space filling. For example, in a two-dimensional prob-
lem, we might take m = 4 and use a two-level factorial
design in the first stage. Then taking k = 9, we could add
five design points in a space-filling way, such as completing
a three-level factorial design or alternatively using a Latin
hypercube design that maximizes the minimum distance
between the design points. Stochastic kriging allows us to
estimate the resulting IMSE of both designs and choose the
best follow-up design.
A second key question is: How should the simulation

effort be allocated between the two stages? That is, given
the number of design points k and simulation replica-
tions N , how should we choose the number of design
points m and simulation replications mn0 to use in the
first stage? Choosing n0 is analogous to the well-known
problem of choosing n0 in classical two-stage procedures
for fixed-width confidence-interval estimation or in related
ranking-and-selection procedures (e.g., Boesel et al. 2003).
If there are too few simulation replications in the first stage,
then estimates of V�·�, �2, and � will be poor, leading
to bad decisions about allocating the second-stage budget;
if the first-stage computational budget is too large, then
the advantage of a two-stage procedure is reduced because
there will be less flexibility to allocate the budget adap-
tively in the second stage.
Unfortunately, just as in ranking and selection, it is dif-

ficult to give general guidance about choosing the first-
stage budget, other than to say that n0 should exceed 10
to get useful estimates of intrinsic variance. We can only
elaborate on the new issues that are involved in the con-
text of stochastic kriging. These have to do with choosing
the number of design points m and k across which mn0

and N simulation replications are spread. Again, it is dif-
ficult to give general guidance because a good allocation

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Ankenman, Nelson, and Staum: Stochastic Kriging for Simulation Metamodeling
Operations Research 58(2), pp. 371–382, © 2010 INFORMS 379

depends on the structure of the simulation problem. If the
intrinsic variance is low, then it is advantageous to have a
large number of design points to fill space thoroughly and
reduce extrinsic uncertainty. If the intrinsic variance is high,
then the number of design points should not be too large,
because when the intrinsic uncertainty about the response
surface at design points is too great it will be difficult to
estimate �2 and �. The larger V�·� is compared to �2, the
fewer design points there should be.

4. Illustration
To illustrate the methodology developed in this paper, we
return to the steady-state mean number in an M/M/1 queue,
as in §2.2. However, this time we simulate it.
Our purpose in this section is three-fold: To provide

some intuition about what the stochastic kriging technique
does on a familiar problem; to assess the penalty for esti-
mating the intrinsic covariance matrix �
; and to eval-
uate our ability to estimate the error in our metamodel.
We do not make direct comparisons to other response-
surface modeling techniques, but we note the following:
For this particular metamodeling problem, the procedure
of Yang et al. (YAN 2007) would undoubtedly be supe-
rior to stochastic kriging. YAN is an adaptive procedure
designed for queueing performance measures; it fits a non-
linear metamodel that was motivated by known results for
the M/M/1 queue. On the other hand, a standard quadratic
response-surface model is known to perform poorly for the
M/M/1 queue because the polynomial fails to fit x/�1− x�
well over a large domain for x (we use 0�3 � x � 0�9
here), and the response variance increases explosively as x
increases. We intend stochastic kriging to be used primarily
in situations where little is known about the response sur-
face, the same situations in which we would use polynomial
regression. Large-scale comparisons with other methods is
a subject of future work.
The statistic we record from each replication is the

average number of customers in the system from time
0 to T . For the M/M/1 queue we can initialize each
replication in steady state by independently sampling the
number in the system at time 0 from the steady-state
distribution. We keep the run length per replication T
the same for all arrival rates x, so that we entirely con-
trol intrinsic variance through the number of replications.
To assess the penalty for estimating the intrinsic vari-
ance, we also apply stochastic kriging using the known
variance function V�x�/T = 2x�1+ x�/�T �1− x�4�. We
do not employ CRN. For fitting the mean and vari-
ance models we assume a Gaussian correlation struc-
ture of the form RM�xi� xj� 0M� = exp�−0M�xi − xj�

2� and
RV�xi� xj� 0V�= exp�−0V�xi − xj�

2�, respectively, with the
0s unknown. All of the simulation and fitting of the meta-
models was done using our own code written in S-PLUS;
fitting was via maximum likelihood.
To illustrate stochastic kriging, we consider an experi-

ment that starts with four design points, x = 0�3, 0.5, 0.7,

Figure 2. Fitted via stochastic kriging (solid line) and
true (dashed line) expected number in an
M/M/1 queue from the first-stage experiment.
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0.9, making 20 replications of length T = 1�000 time units
at each of them (80 replications total). Based on the results,
we allocate a total of N = 500 replications among these
four design points, plus three additional points x = 0�4,
0.6, 0.8, using the approximately optimal allocation for-
mula (29), and view the final fit.
Figure 2 shows the results for the mean number in queue

metamodel
̂̂Y�x0� from the first-stage experiment. In the

plot, a circle represents an estimated response from the sim-
ulation (the data points); the solid-line curve is the stochas-
tic kriging metamodel, which is surrounded by ±

√
M̂SE

intervals at a fine grid of points; and the dashed-line curve
is the true surface. Because this is stochastic kriging, as
opposed to ordinary kriging, the fitted surface need not pass
through the data points (see especially at x = 0�9), and the
±
√
M̂SE intervals account both for intrinsic and extrinsic

uncertainty about the surface. Notice that the true surface
is within the ±

√
M̂SE bounds on the fitted surface.

The fitted variance curve V̂�x0� is shown in Figure 3.
Because we use ordinary kriging for this model, the fit-
ted curve passes through the data points, and it is clear
that the simulation provided a particularly poor estimate
of V�0�9�.
Using the results from the first-stage experiment (in par-

ticular 0̂M and V̂�x�), we apply (29) to obtain the optimal
allocation of N = 500 replications to the full set of design
points x = 0�3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. The variance
model is required because the full design includes design
points that were not simulated in the first-stage experiment.
The estimated optimal allocation is n = 2, 80, 11, 81, 33,
165, 128, respectively. That design points 2 and 4 (0�4 and
0�6) receive relatively large allocations relative to design
points 1, 3, and 5 (0�3, 0�5� and 0�7) results mostly from
their variance being overestimated by V̂. More interesting
is that x = 0�8 receives a larger allocation than x = 0�9,
even though the standard deviation at 0�9 is predicted to be
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Figure 3. Fitted via ordinary kriging (solid line) and
true (dashed line) variance of average num-
ber in an M/M/1 queue from the first-stage
experiment.
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substantially greater than at 0�8 by V̂. This occurs because
our optimal allocation considers not only the relative stan-
dard deviations at the design points, but also their range of
influence in the metamodel; x = 0�8 is closer to more points
in the design than 0�9, and therefore is more valuable.
Because several of the design points have already

received more replications than the optimal allocation
above—always a danger when the initial sample size has
to be selected arbitrarily—we ran the second-stage experi-
ment allocating the 500 replications optimally (in practice
we would not discard the data we already have and would
instead allocate as close to the optimal design as possi-
ble). Figure 4 shows the result. The most important thing
to notice is not the close fit to the true curve as much
as the nearly constant ±

√
M̂SE intervals surrounding the

fitted curve.

Figure 4. Fitted via stochastic kriging (solid line) and
true (dashed line) expected number in an
M/M/1 queue from the second-stage experi-
ment.
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To assess the penalty for estimating the intrinsic vari-
ance, and also our ability to capture the error in our
response surface, we made M macroreplications of the
entire procedure, applying both the full stochastic kriging
estimator and the stochastic kriging estimator using the
known function V�x�, and computed

IMSE= 1
M

M∑
l=1

{∫ xU

xL

(̂̂Yl�x0�−
x

1− x

)2

dx0

}
and

̂IMSE= 1
M

M∑
l=1

{∫ xU

xL

M̂SEl�x0�dx0

}
�

where the subscript l denotes the fit from the lth
macroreplication. The quantity IMSE is an unbiased esti-
mator of the achieved integrated MSE; we compare
the IMSE with and without using the known variance
V to assess the impact of estimating it. The quantity∫ xU

xL
M̂SEl�x0�dx0 is an internal estimator of the integrated

MSE; we compare ̂IMSE with IMSE to evaluate how well
our internal estimator of MSE performs, and also look at
the individual values graphically.
We obtained these comparisons for a number of dif-

ferent experiment designs and observed the following:
Our internal estimator M̂SE tends to overestimate the true
MSE, but occasionally substantially underestimates it, usu-
ally when the number of design points or number of repli-
cations at the design points is quite small. There appeared
to be little or no penalty for estimating V, and in many
cases the achieved IMSE was actually smaller when we
estimated V rather than using the known function.
To take one representative example, consider the first-

stage design described earlier in this section: Design points
x = 0�3�0�5�0�7�0�9, with n = 20 replications at each
point of length T = 1�000 time units. We made M =
100 macroreplications of the experiment and estimated the
IMSE over the range xL = 0�3 to xU = 0�9. The achieved
IMSE was 0�508 versus 0�503 (with standard error 0�04)
using estimated versus known V, respectively. The cor-
responding ̂IMSE values were 0�893 and 0�943, show-
ing that we overestimated IMSE on average. Figure 5

is a scatterplot of
∫ xU

xL
�
̂̂Yl�x0� − x/�1− x��2 dx0 versus∫ xU

xL
M̂SEl�x0�dx0 for all 100 macroreplications and the

cases of unknown and known V. The general trend of over-
estimation is clear, with a few trials in which there was
substantial underestimation. Adding design points improves
performance, but clearly additional work on MSE estima-
tion is required.
Of course, the M/M/1 queue is just one illustration, so

general conclusions cannot be reached other than a strong
suggestion that stochastic kriging is behaving as theory
suggests.
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Figure 5. Scatterplot of achieved vs. estimated MSE when variance is estimated (left) or known (right).
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5. Conclusions
This paper provides a mathematical foundation for stochas-
tic kriging, a method that extends the power of kriging
metamodeling for deterministic computer experiments to
modeling responses from stochastic simulations. To realize
the full potential of this technique, we need to, and are,
addressing these follow-up issues:
1. Our initial results on experiment design should lead to

methods for sequential, adaptive design that places design
points and allocates simulation effort as we learn more
about the response surface being modeled. The ability to
capture intrinsic and extrinsic uncertainty in the design is
a strength of stochastic kriging.
2. In our limited experiments it appeared that the

Gaussian random field model with Gaussian correlation
structure did not work as well for representing estimator
variance as it did for the response mean. Other alternative
models should be explored, as well as whether there is any
benefit from fitting a joint model for �M�V�.
3. We largely ignored the possibility of including a trend

term, f�x���, in our metamodel. Clearly there are appli-
cations for which the form of such a term is known or
suspected, and including it may leads to better fits. The
presence of a trend term may make the use of CRN
worthwhile.
4. The examples in this paper employed only a one-

dimensional design variable x, but the theory is for general
d-dimensional x. In addition to the numerical issues that
can arise in fitting high-dimensional kriging models, there
is also a practical matter of visualizing and exploring the
fitted surface. Tools such as ATSV (Stump et al. 2007) may
be particularly helpful in this regard.

6. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.

Endnote
1. This example suggests how we might apply stochastic
kriging in a single-run, steady-state simulation, but we do

not go any deeper into that topic here. The computational
cost of simulating t units of time depends on the structure
of the simulation algorithm, making it difficult to provide
general results. For example, here we treat the computa-
tional cost of simulating t units of time as t, but it could
also depend on x.
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