Foundations of Ranking & Selection for
Simulation Optimization

Barry L. Nelson

Abstract In addition to his voluminous and profound research accomplish-
ments, Pierre L’Ecuyer is an extraordinary educator; this includes expository
talks and papers, especially in the area of pseudorandom-number generation.
This paper is written in that same spirit, covering the foundations of ranking
& selection for simulation optimization; simulation optimization is also an
area of exceptional accomplishment for Pierre.

1 Introduction

Suppose that we have the ability to simulate k = 4 different system designs
that use redundancy to be resistant to system failure. Let Y (z) be the time
to failure of design type x = 1,2,3,4. Your job, as the analyst, is to use the
simulation to find z* = argmax,E[Y (z)], the system design leading to the
largest mean time to failure. How would you do this?

The field of ranking & selection (R&S) provides procedures that “solve”
problems of this type. Features we might like in a R&S procedure include
controlling the number of simulation replications automatically; providing
statistical guarantees of correctness; being appropriate for large as well as
small numbers of systems, k; the facility to exploit modern parallel comput-
ing; and to do all of this computationally and statistically efficiently.

The field of simulation optimization (SO)—of which R&S is a part—
attacks stochastic optimization problems in which the objective function is
some property of the output of a stochastic, often dynamic and nonstationary,
simulation. Critically, the property of interest can only be estimated by sim-
ulating instances (feasible solutions, system designs), and those simulations
may be computationally expensive. All SO algorithms are subject to three

Barry L. Nelson
Northwestern University, Evanston, IL USA, e-mail: nelsonb@northwestern.edu

nelsonb@northwestern.edu

2 Barry L. Nelson

sources of error: They may fail to simulate the optimal solution; they may fail
to recognize the best solution that was simulated; and they may report an
optimistic (biased) estimate of the performance of the solution that they do
select. R&S is the only class of SO algorithms that controls all three sources
of error, but at the cost of simulating all system designs: R&S procedures are
exhaustive SO algorithms designed specifically to control statistical error.

R&S originated with Robert Bechhofer (Cornell) and Shanti Gupta (Pur-
due) in the 1950s to address biostatistics problems such as finding the most
efficacious of three drug treatments and a placebo. See|Bechhofer et al.| (1995])
and |Gupta and Panchapakesan| (2002)). The problem characteristics assumed
by early R&S procedures include a small number of treatments, k; normally
distributed responses; relatively equal (maybe even known) variances; and a
requirement to be easy to implement, for instance by applying treatments to
batches of subjects rather than sequentially (e.g., one subject at a time and
waiting for the results before deciding the next treatment to apply).

At the 1983 Winter Simulation Conference David Goldsman (Georgia
Tech) presented a tutorial on R&S (Goldsmanl, [1983)), and organized a session
with Bechhofer and Gupta, arguing that R&S was useful for optimizing sim-
ulated systems. The simulation community quickly embraced this paradigm,
but had more expansive objectives than the founders, including much larger
numbers of “treatments” (simulated system designs) k; non-normal (nominal)
output data; significantly unequal variances across systems; and intentionally
induced dependence across systems due to the use of common random num-
bers. In addition, since data are generated by computer simulations that are
easily controlled, simulation researchers and practitioners were not concerned
with how complex or sequential the R&S procedure is as long as it is effective
(selects the best system design) and computationally efficient (generates as
few simulation replications as possible, since the simulation was assumed to
be more computationally expensive than the overhead of the R&S procedure).

R&S has been a theoretical and practical success for simulation: There
is supporting theory, including asymptotic regimes for non-normal data and
effective use of “statistical learning.” Further, R&S has been routinely applied
to real problems, partly because R&S procedures are included in commercial
simulation software. Of course there is a R&S problem-size limit, since all
system designs must be simulated. Therefore, much of the research effort in
R&S for simulation has been dedicated to extending this limit via enhanced
statistical efficiency to reduce simulation effort and parallel computing to
speed up execution. See [Kim and Nelson| (2006b) and |Chen et al.| (2015) for
earlier surveys.

This paper is a significant extension of Nelson| (2018)), and a com-
panion to the online masterclass “Ranking & Selection for Simula-
tion Optimization” at http://users.iems.northwestern.edu/~nelsonb/
RSMasterclass.html. The web site contains R code for all of the R&S pro-
cedures described here along with slides, videos and self-paced exercises sup-
porting this tutorial. The purpose of the masterclass and this paper is to

http://users.iems.northwestern.edu/~nelsonb/RSMasterclass.html
http://users.iems.northwestern.edu/~nelsonb/RSMasterclass.html

Foundations of Ranking & Selection for Simulation Optimization 3

present foundations and broad themes in R&S for SO, rather than details or
new results. In Section [2] we set up the R&S problem. Section [3] describes
the “normal means” case, the most widely studied and solved R&S problem.
Exploiting parallel computing in R&S is discussed in Section 4} Some formu-
lations beyond normal means are presented in Section 5} Finally, in Section [f]
we briefly contrast R&S with the related field of multi-armed bandits.

2 Set Up

For much of the paper the following set up applies. The true system perfor-
mance parameters (which are unknown) are p(1) < u(2) <--- <pu(k—-1) <
wu(k), and we refer to system k, or any system tied with system k, as “the
best.” For system x we can estimate u(x) with a consistent estimator; for
instance, when u(z) is the expected value we may employ the sample mean
of n(x) replications:

- 1 n(z)

7@) = 1 L %6

—~

~
Il

where Y;(x) is the jth independent and identically distributed (i.i.d.) repli-
cation from system design x. We will focus on selecting the best mean, but
consider other performance measures in Sections The R&S procedure ul-
timately returns something like z* = argmaxze{mw)k}}_/(x) as the selected
system. We consider two categories of objectives for the R&S procedure:

Fixed Precision:

Simulate until a prespecified level of inference is achieved, ideally a probability
of correct selection (PCS), defined as Pr{Z* = k} > 1 — «. Since this can
be computationally impossible, for instance if there are ties for the best, a
compromise such as one of the following is accepted, where § > 0 is a user-
specified parameter:

e Indifference zone: PCS = Pr{z* =k | u(k) —u(k —1) > 6} > 1 — a,
where “| p(k) — p(k — 1) > ¢” indicates that the guarantee is only for
problems in which the means satisfy this inequality. That is, the best
system is highly likely to be selected when there is at least a minimum
separation between the best and second-best system.

e Good selection: PGS = Pr{u(k) — u(z*) <6} > 1—a. That is, a system
with no more than a specified optimality gap is highly likely to be selected.

e Top m: Pr{z* € [k,k—1,...,k—m+1]} > 1—a. That is, one of the m
best systems is highly likely to be selected.

4 Barry L. Nelson

e Subset: Find 8§ C {1,2,...,k} such that Pr{k € S} > 1 — a. That is, a
subset (ideally small) is returned that is highly likely to contain the best
system.

These are typically frequentist guarantees to be achieved as efficiently as
possible.

Fixed Budget:

Obtain as strong an inference as possible within a given computation budget,
often formulated as minimizing some expected loss for the chosen system
design, E[L(Z*, k)]:

e 0-1 Loss: Minimize the posterior probability of incorrect selection, Pr{z* #
e Opportunity cost: Minimize the posterior expected optimality gap,
E[pu(k) — p(z*)[H].

The inference is typically Bayesian in nature, and H includes the entire his-
tory of simulation runs performed and outputs obtained until the budget is
exhausted. We will consider both fixed-precision and fixed-budget perspec-
tives in this chapter.

3 The Normal Means Case

The most widely studied case assumes that from system x we can obtain
Yi(x),Ya(x),... that are i.i.d. normally distributed with mean p(z) and vari-
ance o2(x), denoted N(u(x),o%(z)). Further it may be possible to induce
Cov(Y(x),Y(z')) # 0 if we use common random numbers. Since so much
research effort has been expended on this problem, it is reasonable to ask, is
normally distributed output actually relevant for simulation problems? For-
tunately, the answer is frequently “yes.” Each output Y is often the average
of many more basic outputs, e.g., daily average customer waiting time is the
average of many individual customers’ waiting times. Also, the sample sizes
prescribed by R&S procedures are often large, so we can group or “batch” out-
puts to obtain approximate normality. And many normal-means procedures
are asymptotically valid for non-normal data, as discussed in Section [3.8

Initially we will assume that we can only simulate one system at a time,
and then later we parallelize simulations. One-system-at-a-time procedures
are often observation-efficient, but may not be computationally efficient in
parallel.

Foundations of Ranking & Selection for Simulation Optimization 5

3.1 The Indifference-zone (IZ) Formulation

One of the most well-known IZ procedures is due to |[Rinott| (1978):
Rinott’s Procedure

1. Choose confidence level 1 — «, initial sample size ny > 2 and indifference
zone parameter 6 > 0. Set h = h(k,1 — a,ng), a constant that depends
on the number of systems, desired confidence level and the initial sample
size.

2. For each system x =1,2,...,k do the following:

a. Simulate ng replications and compute the sample variance S?(x).
h?S?

b. Compute N(z) = %

c. Simulate max{0, N(x) —no} additional replications from system z.

d. Compute the sample mean of all N(z) replications, Y (x).

3. Choose z* = argmax,Y ().

Rinott’s procedure assumes that the outputs are i.i.d. normally dis-
tributed, have unknown and possibly unequal variances, and are independent
across systems. The last assumption implies using distinct random number
seeds for each system’s simulation. Rinott guarantees

PCS=Pr{z* =k | plk) —puk—-1)>6}>1—-q.

Below we will outline how Rinott-like procedures provide this guarantee.
The parameter § is often interpreted as the “smallest practically significant
difference.”

Rinott is easy to implement, and because it requires no coordination among
systems it is easy to parallelize. However, it is pessimistic: it assumes the
means are in the “slippage configuration” u(1) = p(2) = - = p(k —1) =
(k) —§. This pessimisim leads to more simulation than necessary to achieve
the desired PCS for many problems in which the means are more favorably
spaced. What happens if there are other good (closer than d) systems? It
turns out that Rinott also has a 1 —a good selection guarantee, which means
selecting a system within § of the best; this happy fact was not known until
more recently (Nelson and Matejcik, (1995)).

Notice that the sample size N(z) grows as h?/§2. How does h(k,1—a,ng)
grow with the number of systems k7 Answer: too fast to be practical for
really large k, so other strategies (described later in this section) are needed
for that case.

Rinott-like procedures achieve their guarantee based on some version of
the following argument. Since we assume (k) — p(z) > §, x # k, we have

6 Barry L. Nelson

The statistic Y (k) — Y (z) — [u(k) — u(z)] has mean 0, so we can find the
number of replications needed to provide the desired probability guarantee
considering only § and the variances.

This formulation—where we want PCS > 1 — a when u(k) — u(x) > § and
we assume the slippage configuration—has been dominant in frequentist R&S
because it frees the probability statement from dependence on the true means.
There are two challenges: When p(k) — p(x) > ¢ the slippage assumption
does not exploit it to gain efficiency, which is particularly critical when k is
large. And when u(k) — p(x) < 6 for some inferior system x, we would like
a “good selection” guarantee, which Rinott provides, but this is not the case
for all IZ procedures; see Section [3.6]

3.2 R&S Based on “Statistical Learning”

The following ideas for R&S are based (formally or informally) on Bayesian
reasoning. See |Frazier| (2012)) for a more complete tutorial.

Frequentist reasoning goes like this: p(1), u(2),..., (k) are fized perfor-
mance measures and probability statements (e.g., PCS, PGS) are with respect
to repeated independent experiments on the same problem. Bayesian reason-
ing starts from the premise that we have uncertainty about the problem itself
(e.g., which system is the best) that we characterize via a prior probability
distribution, and we then reduce our uncertainty by running simulation exper-
iments and updating our prior distribution to a (more informative) posterior
(after experiment) distribution using Bayes’ rule. Typically the experiment-
then-posterior-updating cycle is done repeatedly for many iterations.

In R&S our prior on the true means, and perhaps additional aspects, of
the problem is

p(l),... p(k) o~ M(1),..., M(k).
—_——— —_—————
your problem r.v.’s with a“prior” distribution

After observing (z,Y;(x)), we update our knowledge based on the condi-
tional (“posterior”) distribution of [M(1),..., M (k)] given the entire history,
denoted by H. A generic, fixed-budget, Bayesian R&S procedure is given

Foundations of Ranking & Selection for Simulation Optimization 7

below. In this procedure z(/) denotes the system we choose to simulate on
iteration j of the procedure.

Generic Bayesian R&S

1. For z € {1,2,...,k}, set n(z) =0, Y(x) = null, Ho =0, j = 0.
2. 1) = 7(H;) and simulate Y;,(z")) [policy 7(-) based on the posterior
distribution).

: . _) 1)
3. Update n(z?)) = n(z@) + 1 and Y (z\9)) = @) Z Vi1 (z®)

i@ =g ()
Hjpr = H; U{ (29, Vi (a)))}. _

4. If the budget is exhausted then return z* = argmax,Y (z), otherwise j =
j + 1 and go to 2.

Clearly the key aspect is the policy 7(+). Often the policy is expressed as
some sort of “acquisition function” a, for instance

m(H) = argmax, ;. a(z,7") = argmax, ;. E[max{0, M(z) — M(z*)}| H]
1
which is the system design with the largest posterior expected value of im-
provement over the current sample best. Ideally a is chosen to learn “op-
timally,” meaning as efficiently as possible, but the policy also has to be
computable, which often means it cannot look too many steps ahead.
Gaussian processes provide a very useful framework for this sort of ap-
proach, often based on two fundamental results:

1. If Z ~ N(0,1) then E [max{0, u + 0 2}] = (ﬁ) +od (ﬁ) where & and
o o
¢ are the cdf and density of Z, respectively.
2. If (Z1, Z3) ~ BVN(u1, p2, 03,03, p) then Z; ~ N(u1,0%), and

g
Z\|Zy=2~N <m +p;;(z — pa), o5 (1 - p2)> :

“learning”

The acquisition function in is known as the complete expected improve-
ment (CEI) policy (Salemi et al., [2019). When the posterior is the normal
distribution, then using the first fundamental fact we have

CEl(z,z*) = (m(z) — m(z*))® (m(m)—m(ﬁ*))

Var(z,z*)

+\/Var(z,7%)¢ <m(x)—m(§*)>

Var(z, z*)

where m(z) = E(M(z)|H), Var(x,z*) = Var(M (z) — M (z*)|H). The second
fact can be exploited to compute the means and variances, conditional on H.

8 Barry L. Nelson

The CEI policy has been shown empirically to make rapid progress toward
the best system.

3.3 A Convergence-rate Perspective

Suppose that the best system is unique: p(k) > p(k —1). Then as long as all
the n(z) — oo, even if not all equal, we will eventually correctly select % = k
due to the strong law of large numbers. But what is the best way to get to
o0o? For the purposes of this section it will be useful to employ the notation
Y, (n(x)) for the sample mean of n(x) replications from system z, p, = u(z)
and o, = o(x), and further to let n(xz) = 5, N where 8, >0, > B, =1 and
N is the total replication budget. The question then becomes, what choice of
B1, B2, ..., Br makes limy_,oo Pr{Z* # k} go to 0 the fastest?

One way to answer this question is via a large-deviation principle (LDP).
Let Z1,Z5,...,Zy be iid. (u,0?). If Z has finite log moment generating
function, then for z > p

o1 >
lim Nln[Pr{Z(N) >z} = —-1(2)

N—o0

where I(-) is a rate function that depends on the distribution of Z. This LDP
can be interpreted as

Pr{Z(N) > z} ~ e ¥ for large N.

Translating to R&S, we want to choose 1, B2, ..., B to maximize the small-

est of the rates of decay of the pairwise probabilities of incorrect selection
(PICS)

PICSI = Pl“{i/;(ﬁxN) — Yk(ﬁkN) > 0} ~ eXp(—NI(O,ﬂg”ﬁk))

where I(0, 8;, Br) indicates that the rate function depends on the allocation
Bz, Br. |Glynn and Juneja (2004) showed that if the outputs are normally
distributed then the LDP rate-optimal allocation satisfies

() -2(2)

r#k
Ry Y
e 1) Z) gyt s ke
Bw ﬁk ﬂzl Bk

Unfortunately, this expression involves quantities that we do not know, and
just plugging in estimates does not give the best possible rate (things get
harder for unknown distributions because estimating LDP rates is difficult).

Foundations of Ranking & Selection for Simulation Optimization 9

0w - = samnwsee emensconn

< - NN NED ENCCE ¢ WNO OO ¢ WO O 00 0NN0 O L X 1Y)

o~ = eoummee wmee -

- - -_DS 00 00 00 MO @ . -|u o 00 o
T T T T
0 50 100 150

iteration

Fig. 1 Illustration of allocations from mCEI in a R&S problem with k = 5 systems.
Each e represents a replication.

Fortunately, (Chen and Ryzhov| (2019) showed that a slight modification of
the CEI policy from the previous section, called mCEI, is asymptotically
equivalent to the rate-optimal allocation! This result is remarkable because
CEI comes from unrelated reasoning: the Bayes-optimal allocation of the next
simulation run if that run will be your last. Figure [I] illustates the mCEI
procedure’s allocation in a five-system problem over 150 iterations. Notice
that system x = 4, which is the true best, also receives the most replications.

Another popular policy that is in the same spirit as mCEI is optimal
computer budget allocation (OCBA), which is derived through a Bayesian-
inspired approximation to the posterior PCS. OCBA uses plug-in estimates
and nonlinear optimization to allocate batches of replications. Although it
does not achieve the rate-optimal allocation in the limit, it is quite effective
empirically. See |Chen and Leg| (2011]).

3.4 Doing Better than “Rate Optimal”

The asymptotically optimal allocation focuses on the endgame, as sample
sizes get large, and is not necessarily the best allocation for finite N. After
all, we do not need to drive PICS to 0 to be highly confident of selecting

10 Barry L. Nelson

the best. Further, in the rate-optimal allocation all £, > 0, which means
that all systems remain in play until we stop, which may imply a lot of
computational overhead on each step, especially if k is large. Also, the rate-
optimal allocation does not provide a way to do fixed-precision stopping. And
finally, one-system-at-a-time allocation is becoming less and less attractive
as it becomes easier and easier to simulate p > 1 systems or replications in
parallel.

Often (especially when k is large) there are many bad systems we can
completely eliminate from further consideration quickly. This is one way to
beat rate-optimal for finite N. There are two basic strategies:

e Screen & select: Get a small number of replications from all system
designs, create a subset S that still contains the best, then apply an effi-
cient R&S procedure to the remainder. This usually requires splitting the
« error between subset and selection so that Pr{k € S} > 1 — «a/2.

e Continuous screening: Iteratively replicate, eliminate, replicate, elimi-
nate and so on until one system remains. This usually requires tracking all
pairwise comparisons and controling the overall error via (for instance) the
Bonferroni inequality. But even for a single pairwise comparison we need
results that allow “multiple looks” at the data for continuous screening.

3.4.1 Screening

We begin with a basic subset selection (screening) procedure from [Nelson
et al.| (2001)) for systems simulated independently:

Basic subset selection

1. Simulate n(x) > 2 replications from system x, set t(x) =t 1
(1—a) k=1, n(z)—1
the (1 — oz)ﬁ quantile of the ¢ distribution with n(z) — 1 degrees of
freedom, for x =1,2,... k.
2. Calculate the sample means Y (z) and sample variances

n(x)
9 _ 1 N 2
S (.’t) - n(x) _ 1 = ()/](IC) Y(ZL’))
forx =1,2,...,k, and also for all x # x’ compute
52(1}) 52(3;‘/) 1/2
AN 2 \2
W(z,z') = (t(gc) (o) +t(z) @))

3. Form the subset

S= {:Y(2) > Y(a) = W(z,a') for all 2’ # z}.

Foundations of Ranking & Selection for Simulation Optimization 11
The following reasoning is behind many subset selection procedures:

Pr{k € 8}

=Pr{Y(k) > Y(z) - W(k,z), z # k}
= Pr{¥ (k) — ¥(2) > W (k) — [u(k) — (o)), @ # b}
>Pr{Y(k)-Y(z) - > -W(k,x), v #k}.

Notice that the statistic Y (z) — Y (z') — [u(z) — p(2’)] has mean 0 for all
x # o/, allowing the W (z,z’)’s to be derived to give the desired probability
based only on their variances. The survivors of subset selection can then be
passed on to something like an IZ R&S procedure; see for instance, Nelson
et al| (2001).

|
= T
—~
)
~— ~—
|
=
—~~
TGS

3.4.2 Fully Sequential Screening

The downside of using subset selection for screening, then applying IZ R&S
to the survivors to select the best, is that the effectiveness of subset selec-
tion depends on the choice of sample size n(z), and a good choice of n(x)
depends on the true means and variances of the outputs, which are unknown.
A natural generalization is to do many rounds of subset selection, perhaps
only stopping when there is one system remaining. Fully sequential, elimi-
nating procedures do just that. Many such procedures are built on model-
ing the simulation output process as Brownian motion, a continuous-time,
continuous-state stochastic process we review next.
Let {B(t); t > 0} be standard Brownian motion (BM). Then

B(0) = 0.

. {B(t); t > 0} is almost surely continuous.

. {B(t); t > 0} has independent increments: B(t) L B(t + s) — B(t).
B(t) — B(s) ~N(0,t —s), 0 <s <t.

An important generalization is BM with drift 6t defined as B(t;0) = B(t) +
dt. Therefore, oB(t;0/c) = oB(t) + §t has drift dt and variance o?t. The
relationship between BM with drift and R&S is as follows: Consider the sum
of pairwise differences between the best system k and some other system
z: Dy(r) = Y7, (Y (k) = Y;(a)), with o2, = Var(¥;(k) — ¥;()), 64 =
(k) — p(x), and all outputs normally distributed. Then

=W

(Do(r); r=1,2,...} 2 {04aB(r; 010 /0na); 7 =1,2,...}. (2)

That is, we can represent the cumulative pairwise-differences of two system’s
outputs (one being the best) as scaled Brownian motion with positive drift
but monitored only at integer times. The following fundamental result relates
the crossing times and probabilities of Brownian motion observed continu-
ously, and only at integer times:

12 Barry L. Nelson

Theorem 1 (Jennison et al.| (1982)) Suppose § > 0, and we have a con-
tinuous function g(t) > 0 for all t > 0. Let

Ty = min{r: |B(r;)| > g(r), r=1,2,...}
T. = min{t: |B(t;9)| > g(t), t > 0}.
Then T, < Ty a.s. and Pr{B(Ty;0) < —g(Tq)} < Pr{B(T.;0) < —g(T¢)}.

Thus, if crossing —g(t) is an undesirable event—such as causing us to elim-
inate the true best system—then such an event is even less likely if we only
observe the process at integer times. A lot is known about the probability
of BM crossing boundaries of the form 4g(¢). This, along with Theorem
facilitates desiging regions that control the probability of a selection error.

The relationship in applies to synchronized, pairwise differences. Hong
(2006)) noted that the BM model can also extend to unequal samples sizes on
a non-integer time scale via

20 20 - ve) 25 (["2(’“) L u(x)> .

Illustration: Paulson’s Procedure

Because fully sequential, eliminating procedures have been so important in
R&S we take a deep dive into Paulson’s Procedure (Paulson, [1964), a fully
sequential 1Z procedure for known, common variance.

Paulson’s Procedure

0. Set S ={1,2,...,k}, choose A € (0,9), set a = % In (%) and set r = 0.
1. Set r = r + 1. Simulate Y,.(z), Vz € S.
2. Mark systems ¢ € S for elimination if

T

min ;(Yj(e) —Yj(z)) § <min{0, —a + \r}.

&

Remove all marked systems from S.
4. Tf |S] = 1 then stop and select system S as best; else go to Step 1.

Paulson’s procedure tries to be observation efficient by attempting to elim-
inate systems after each additional replication. Notice that elimination deci-
sions are highly coordinated, and require looking at (l‘gl) pairwise differences.
Paulson guarantees Pr{select k | u(k) — u(k—1) > 6} > 1 — a, but the guar-

antee is not clear when there are systems closer than §. The extension to

Foundations of Ranking & Selection for Simulation Optimization 13

unknown and unequal variances is not hard; as an illustration the case of
unknown common variance o2 will be presented later. The procedure ends
by or before step N +1 = [a/A| + 1.

The large-deviation result supporting Paulson is as follows:

Theorem 2 Suppose Z1, Zs, ... are i.i.d. N(A, 0?) with A < 0. Then for any
constant a > 0

" 2A
Pr ZZj>af0rsome7“<oo Sexp(f).
o

j=1

Notice that since A < 0 we expect the sum to drift down; this large
deviation result bounds the probability it drifts up more than a. In the IZ
formulation, we believe that Yj(z) — Y;(k) has negative drift of at least —¢
for all = # k. Attacking the pairwise differences we would like to choose a to
obtain

k—1 k-1
Pr{k eliminated} < Z Pr{z eliminates k} = Z Pr{ICS,} < .
=1 r=1

Proof: We consider the probability that system x # k incorrectly eliminates
system k in isolation.

Pr{ICS;} < Pr Z(Yj(k) —Yj(x)) < —a+ Arsomer < N+1
j=1

3

=Pr (Yi(z) = Yj(k) +A) >asomer <N+1

<.
Il
-

3

<Pr (Yi(z) —Y;(k) + X) > a some r < 00
=1

- (2(;@) —2ng) + /\)a) “ o ((—5; /\)a,> _ @ :

<
Il

2 k—1
where the last step follows because we set a = 50 Y In () . A common
— Q@

choice for the slope is A = §/2.

There are a number of ways of improving on Paulson’s Procedure, includ-
ing (a) accomodating unknown and unequal variances (see Section ; (b)
exploiting tighter Brownian-motion large-deviation results (notice the result
we used protected system k for all r < oo; see [Kim and Nelson! (2001)); (c)
facilitating variance-dependent sampling so that systems with low variance
need to be simulated less (see [Hong| (2006)); (d) providing a PGS guarantee
for when p(k) — u(k —1) < 6 (see Section [3.6); (e) avoiding breaking up into

14 Barry L. Nelson

paired comparisons and using Bonferroni’s inequality (see [Dieker and Kim
(2012)); and (f) exploiting common random numbers (see Section [3.5)).

3.5 Common Random Numbers

R&S procedures that employ pairwise comparisons can often be “sharpened”
by using common random numbers (CRN) because

Var(Y (z) — Y (2')) = Var(Y (z)) + Var(Y (') — 2Cov(Y (), Y (2))

and CRN tends to make Cov(Y (x),Y (z')) > 0 (Nelson and Pei, 2021)). How-
ever, to fully realize the CRN effect requires n(x) = n(a’) so that replications
can be paired.

As an illustration, the impact of CRN on subset selection (Section

is that 12
2 5%(2)
n(a’)

252(51”)
n(z)

W(z,2') = (t(:z:)

+t(2")

becomes
52(1', :L'/) > 1/2

n

W(z,2') = (t2

where S2(z,2') = S%(2)+S%(2')—2Cov(z, 2’) and Cov(z, ') is the estimated
covariance. Thus, positive covariance should make it more difficult for inferior
systems to remain in the subset because the boundary is tighter. Similarly,
the impact on Paulson’s Procedure (Section with equal, known variance
o2 and CRN-induced correlation p > 0 is that the elimination boundary has
intercept

201 _ 2 _
a= o’(1)\p) In (kal) rather than a = 60_/\111 (l{:(){l)

Again, positive covariance should make it more difficult for inferior systems
to remain in the subset because the elimination boundary is narrower.

Simulation languages have random number “streams” that map to starting
seeds that are very far apart; therefore, we can assign a unique stream to each
random process and replication to enhance the impact of CRN (L’Ecuyer
et al., |2002; |Nelson and Pei, [2021)).

3.6 “Good Selection”

The IZ-PCS paradigm PCS = Pr{z* =k | uk) —puk—-1)>6} > 1 -«
has been the most widely adopted in practice. Typically, ¢ is chosen as the

Foundations of Ranking & Selection for Simulation Optimization 15

“smallest practically significant difference,” which may not be close to the
actual differences p(k) — p(x). In fact when k is large we expect several
“good” systems, and very many inferior ones. Thus, guaranteed probability
of good selection

PGS = Pr{u(k) — p(3*) <6} > 1 —a

is more meaningful than PCS because it can be interpreted as an acceptable
bound on the optimality gap.

Empirical experience suggests that procedures with an IZ-PCS guarantee
also provide a PGS guarantee; however, counterexamples can be created. 1Z
procedures without elimination (e.g., Rinott) can often be shown to guarantee
PGS, but elimination makes proving PGS difficult. An excellent comprehen-
sive reference is|Eckman and Henderson| (2018)). A condition that insures both
PCS and PGS is stated in the following theorem:

Theorem 3 (Nelson and Matejcik| (1995)) Suppose a RES procedure
creates estimators [(1),(2),...,u(k) that guarantee Pr{u(k) > u(i), Vi #
B u(k) — (k1) > 6} > 1 — a. Then if

j(k)
plk = 1) = p(k = 1) + (u(k) = 9)

A1) = (1) + (u(k) — o)

has the same distribution as estimators would have had in the corresponding
slippage configure problem, then the procedure also guarantees PGS > 1 — a.

Normally distributed output procedures like Rinott that do not adapt to the
sample means often satisfy the conditions of this theorem. Unfortunately,
lack of adaptation also tends to lead to inefficiency.

Zhong and Hong (2018) make an adjustment to Paulson’s procedure so
that it provides a good-selection guarantee. Recall that Paulson eliminates
system ¢ if for some other system z we have > 7_, (Y;(£) = Y;(z)) < —a+ Ar.
Instead, Zhong and Hong| (2018) use the condition Y 7_, (Y;(¢) — Yj(z) +
0) < —a + Ar. Notice that when u(k) — u(¢) < 6, the sum of differences
Z;Zl(Yj(Z) — Y (k) + 9) still has positive drift. Thus, good systems should
survive to the end, where |Zhong and Hong) (2018)) then select the sample-best
system.

A Bayesian “good selection” R&S procedure stops when it has collected
enough output so that there is a system z* for which

Pr{M(3*) > M(z) — 6, Vo £ 3" | H} > 1 —a.

This is computable under some assumptions, but if not then it can be ap-
proximated or bounded. The interpretation is that “With probability at least

16 Barry L. Nelson

1 — « the random problem from your space of priors is one for which the fized
system T* is good.” This contrasts with the frequentist perspective: The ran-
dom system T* chosen by the procedure has probability at least 1 —« of being
good for this fized problem (Eckman and Henderson| 2018)).

3.7 Unknown Variances

As a general rule, neither known nor equal variances can be assumed in
simulation R&S problems. For procedures that break into pairwise differences
the variance of each pairwise difference can be estimated separately, which is
also helpful for using CRN.

A useful result that sits behind many R&S procedures is this: If
Z1, 29y, Zn, are iid. N(u,0?) then Z is independent of S2. Thus, us-
ing a “first-stage” S? to calibrate the additional simulation needed does not
introduce bias. If done cleverly, we can derive the PCS conditional on S? and
then uncondition. Not surprisingly, using estimated o2 increases E(sample
size) relative to known variance (Mukhopadhyay and Solankyj (1994]).

Illustration: Unknown Common Variance Paulson

. 202 k—1
Recall in Paulson that we set A = 6/2 and ¢ = Tln — |, assum-
o

ing 02 was known. Suppose we estimate o2 from an initial simulation of ng
replications from each system by

2 _ 1 . Vv 2
) —WZZ(YJ(@ Y(z))”

We will exploit two useful facts:

k(’ﬁ,o - 1)52

3 ~ x5 with d = k(ng — 1) and E [exp(tx3)] = (1 — 2t) =42

o
when X<2i is a chi-squared random variable with d degrees of freedom. The
approach we take is to set a = 752/ and see what 7 needs to be to get the
desired PCS.

In the proof of Paulson’s procedure we used a large-deviation result to
show that for fired a and A = 6/2

Pr{ICS,} <exp (—;a) .
o

With a = 1n5?/8, to obtain Pr{ICS,} < a/(k — 1) we need 7 to satisfy

Foundations of Ranking & Selection for Simulation Optimization 17

Pr{ICS,} = B[Pr{ICS, | S°}] <E [GXP (‘67752)]

202)
—d/2
n ds? —2n Q@
—E /RS | . >
{eXp< 2d o2)} (2d k-1
—
t2

Solving for n gives

—2/d
«
n= (k—l) -1

Notice that the independence of Y and S? is critical.

Paulson is great for illustrating concepts, but the limitation to equal vari-
ances and no common random numbers makes it rarely used in simulation.
There are many descendants, with one of the most statistically efficient and
robust being KN (Kim and Nelson, 2001)), which uses a tighter Brownian
motion result; allows unequal variances and CRN; has been shown to be
asymptotically valid for non-normal output data (discussed below); and has
been implemented in commercial simulation languages and in parallel.

3.8 A Note on Asymptotic Analysis

Asymptotic analysis of R&S procedures is useful in at least three contexts:

1. Establishing that a procedure will work when core assumptions such as
normality are violated (typically as § — 0 in a way that also makes the
problem harder).

2. Comparing the efficiency of procedures that are difficult to evaluate in
finite samples (typically as 1 —a — 1 so that behavior becomes determin-
istic).

3. Comparing the efficiency of procedures with estimated variances relative
to their known-variance counterparts (typically as § — 0 drives ng — 00).

Setting 1 helps explain why normal-theory IZ procedures seem to work well
more generally, while Setting 2 is often the only way (other than empirically)
to compare procedures that eliminate systems.

For Setting 1 a meaningful limit is essential: If u(k) — p(z) is fixed, then as
we let § — 0 for procedures with sample size proportional to 1/§2, we have
PCS — 1 for almost any kind of data by the strong law of large numbers.
Kim and Nelson| (2006al) let (k) = p and u(z) = p — d for x # k. Notice
that as § — 0 the sample size goes to co but the problem itself also gets
harder. Is this a relevant setting? If 6 > u(k) — u(x) then any system design
is acceptable. If § < p(k) — p(x) then a procedure will tend to simulate so
many replications that it will select the best. Thus p(z) = p(k) — ¢ is the
critical regime.

18 Barry L. Nelson

For R&S procedures based on Brownian motion, a key tool for asymptotic
analysis via Setting 1 is

Theorem 4 (Donsker’s Theorem) If Y1, Ys, ... are i.i.d. (1, 0?) with o2 <
oo then as N — oo

[Nt

Mgl@(t), 0<t<l.
oV N
The usual Central Limit Theorem drops out at ¢ = 1. Donsker’s Theorem
goes further, stating that very general i.i.d. output processes, standardized
the right way, look like Brownian motion as we get more and more data.
In many IZ R&S procedures we can take Y; = (Yj(z) — Y;(2')), and letting

§ — 0 drives the sample size to co when N o 1/52.

4 Parallel R&S

The future of simulation, and certainly simulation optimization, is parallel
computing. Simulation languages have already been redesigned to run in the
cloud, where computer time is “rented.” For instance, the commercial prod-
uct Simio automatically exploits multi-core/multi-thread personal comput-
ers, and its portal version can recruit up to 10,000 processors from Microsoft
Azure to run simulations in parallel.

The availability of cheap, easy-to-use parallel computing greatly extends
the R&S limit in terms of problem size, k. However, since one may have
to pay for the service, the focus of “efficiency” in R&S shifts from being
observation-efficient to being computationally efficient as measured by wall-
clock or rental time. Thus, it may be acceptable to waste simulation-generated
replications to avoid idling processors and get the R&S problem solved faster.
Factors such as heterogeneous processors, communication delays, processor
failures, etc. that may disrupt the usual synchronization in R&S procedures
now become relevant.

To describe parallel R&S we assume a master-worker paradigm: 1 Master
process performing calculations and generating new jobs, and p Worker pro-
cesses executing simulation and calculation jobs. While not the only possible
architecture, it is a common one. The following framework for parallel R&S
is based on [Hunter and Nelson| (2017)).

We represent a R&S procedure as a sequence of jobs generated by the
Master, J = {J;:1 < j < M}, where Job j is an ordered list

Ji ={(Q;,4;,U;), (P;,C;) }.
—_——— —
simulate calculate

The components of job j are

Foundations of Ranking & Selection for Simulation Optimization 19

Q,; C€{1,2,...,k} indices of systems to be simulated;

A; = {A;;} how many replications to take from each system = € Q;;

U; (optional) the assigned block of random numbers;

C; the list of non-simulation calculations or operations to perform; and
P; the list of jobs that must complete before executing the calculation C;.

Using this computational paradigm, most of the (non-parallel) R&S proce-
dures presented so far look something the Nominal R&S Procedure below.

Nominal R&S Procedure

1. Until fixed-precision or fixed-budget ending condition reached, do
2. For ¢/ =1,2,...

a. Execute simulation jobs for non-eliminated or active systems:
Jo = [{(system 7,1 rep), (0)},...,{(system 5,1 rep), (0)},...]
b. Execute a comparison job using the results from Step
J; = {(0), (all jobs in Jg,C¢)}

where Cy performs calculations on all non-eliminated or active systems.

The nominal procedure enforces many of the assumptions necessary for both
small-sample and asymptotic analysis by “synchronized coupling.” To di-
rectly parallelize it, the Master could spread job Jy, out among the p workers,
but then many workers may be idle while waiting for the coupled Step [2b| to
complete. Such issues do not arise in a single-processor setting.

Why not just use the outputs from the simulation jobs as soon as they
complete, rather than waiting? [Luo et al.| (2015) address this question, and
show that new statistical issues arise. Recall there are p + 1 processors, con-
sisting of 1 Master and p Workers, and suppose that all simulation jobs are
assigned by the Master to a Worker in round robin fashion as follows: system
1,2,...,k,1,2,.... An eliminated system is removed from the remaining list.
Let Z;(x) be the input sequence—the result of jth replication from alter-
native x requested by the Master—with execution and communication time
T;j(x). Similarly, let Yj(z) be the corresponding output sequence, meaning the
jth output from alternative x returned to the Master. If the R&S procedure
uses each output as soon as it is available to the Master, then the following
new statistical issues arise.

1. The procedure is working with random sample sizes at each comparison
step, rather than prescribed numbers of replications.

2. The Yj(z), 7 = 1,2,... are not iid. To see this, suppose k = 1,
Zj(x) = Tj(z) ~ Expon(u(z)). Then it can be shown that E(Y;(z)) =

J
wu(x) <1 — (1 - %)) because jobs with short execution times return to

the master sooner.

20 Barry L. Nelson

3. There is a subtle dependence among systems’ outputs caused by elim-
ination of some systems impacting the number of replications of other
systems.

Thus, parallelization takes some careful thought, not only from a computer
science point of view, but also with respect to the statistical validity of the
R&S procedure.

4.1 New Measures of Efficiency

How do we define “efficiency” in this new parallel paradigm?

e Let 0 <7} < oo be the wall-clock time Job Jj finishes, so that the ending
time of the procedure is Te(J) = max;j—12... m Tj.
e Let ¢(p, s) be the cost to purchase p processors for s time units.

With these definitions we can define revised “efficient” objectives.

Fixed Precision:

Achieve a statistical guarantee while being cost efficient:

minimize, ;7 E[B; To(J) +Be c(p, Te(T))]
—— —_——

time cost
st. Pr{G@E*k) }>1-a.
N——

good event

Fixed Budget:

Minimize a loss for the selected system within a budget:

minimize, y E[L(G°(Z*,k),T)]
—_——
loss from bad event

st. e(p,Te(T)) <0
—_———

cost

Notice that for both fixed-precision and fixed-budget formulations, the deci-
sion variables are the number of processors to rent p and the jobs to execute
J . For fixed precision it is possible that we would only have one of 3; or . to
be non-zero, depending on whether the time to reach a decision or the rental
cost to reach a decision is most important.

Foundations of Ranking & Selection for Simulation Optimization 21

Table 1 Selected parallel R&S literature.

Load Balancing Comparison Timing

R&S Procedure (Standard Assumptions)| (Relaxed Assumptions)

Simple Divide and Conquer

Vector-Filling Procedure |Asymptotic Parallel Selection

Good Selection Procedure bi-PASS

Strategic Updating
QZhong and Hong|, |2021D
Parallel OCBA

Fixed-Budget (Luo et al,, |2000) bi-PASS

Asynchronous OCBA/KG

(]Kamir’lski and Szufell, |2018D

Fixed-Precision

To the best of our knowledge no R&S procedure has yet been created that
directly attacks one of these formulations. Table [I] cites much of the existing
literature on parallel R&S, divided into fixed-budget vs. fixed-precision, and
load balancing to enforce standard non-parallel assumptions vs. a uniquely

parallel paradigm. Consider for instance (2015), and its “phantom

clock.” The underlying procedure is KN, a fully sequential procedure that
uses pairwise sums of differences. note that even when the
input and output sequences are not the same, if the procedure only makes
comparisons at times ¢ when Z§:1(Yy(k/’) -Y;(x)) = E;Zl(Zj(k) — Zj(x))
then the order of return from the workers does not matter. Strictly enforcing
this is load balancing. Instead, |[Luo et al| (2015) insert a “phantom job” at
the end of each round-robin job cycle (1,2,...,k,ph,1,2,... k,ph,...), and
then only compare systems when a phantom job returns to the Master. They
show that by doing this the sums of differences are only out of sync by an
asymptotically negligible amount.

4.2 New Objectives

Does insuring a prespecified PCS or PGS continue to make sense if k is very
large? For instance, if k£ > 1,000,000 systems, is it sensible or even computa-
tionally feasible to identify the single best or near-best with high probability?
In such a problem we expect many bad systems, but also a lot of good ones.
Trying to achieve PCS or PGS, which are family-wide statements, in such
a setting runs counter to approaches in large-scale statistical inference of
controlling “error rates.” . Specifically, to control PCS requires
more and more effort per system as k increases. As we argue below, rates
such as “false discovery” can be attained with little or no “k effect.”

22 Barry L. Nelson

But why apply R&S for such large-k problems anyway? Surely so many
systems arise from combinations of more basic decision variables, which sug-
gests using a search algorithm rather than exhaustive simulation. However,
from a practical perspective, the key is to actually solve the problem in some
effective way. As discussed earlier, R&S is the only SO technique that can
control all sources of error. Therefore, if parallel computing extends the R&S
limit enough to encompass a problem, it makes sense to use it.

This motivates consideration of new goals for parallel R&S:

e More scalable—but still useful and understandable—error control than
PCS or PGS. As an example we discuss Fxpected False Elimination Rate
(EFER), which is the fraction of good systems eliminated.

e Avoid procedures with coupled operations and synchronization, to facili-
tate parallelization. As an example we describe parallel adaptive survivor
selection (PASS), and a specific instance bisection-PASS (bi-PASS).

For some known constant p*, that we call the “standard,” let S,(n) =
Z;;l(YJ(x) —ur) = Z;‘L:1 Y;(z) — nu*. Suppose we have a non-decreasing
function g, () > 0 with the property that

< a, plx) = p*
Pr{S;(n) < —gyz.o(n), some n < oo}

=1, p(x) < p*.

Finally, let G = {z: u(xz) > p*}, which we refer to as the “good systems.”
Consider the following parallel procedure:

Parallel Survivor Selection (PSS)

1. Given a standard p*, an increment An and a budget.

2. Let W={1,2,...,p} be the set of available workers; @ = {1,2,...,k} the
set of surviving systems; and n(z) =0 for all z € Q.

3. Until the budget is consumed, do

a. While there is an available worker in W, do in parallel:

i. Remove a system =z € Q and assign to available worker w € W

ii. j=1

iii. while j < An
Simulate Y, (z)4; ().
If Sp(n(z) +j) < —gu,a(n(z) + j) then eliminate system z and
break loop.
Else j =75+ 1.

iv. If z not eliminated then return to @ = QU{x} and n(z) = n(z)+An.

v. Release worker w to available workers W.

4. Return Q.

Foundations of Ranking & Selection for Simulation Optimization 23

Pei et al.| (2018)) show that EFER = E[|G N Q°|]/|G| < «. That is, the
expected fraction of good systems eliminated by the procedure is no greater
than «. Critically, the function g depends only on x and «, but not k.

The generic boundary function g(-) needs to insure that driftless Brown-
ian motion (u(x) = p*) crosses with probability no more than the EFER «,
while Brownian motion with negative drift (u(z) < p*) crosses with prob-
ability 1. [Fan et al.| (2016) note that driftless Brownian motion grows to
oo at rate O(v/t loglog(t)), while BM with negative drift goes to —oo at
rate O(t). Thus g(-) needs to be between these two; they suggest g(t) =
Ve +1log(t 4+ 1)](t + 1), then tuning ¢ to get the desired error control a.. The
function g, . also includes time scaling by o2 or an estimate of it.

PSS requires no coupling and keeps the workers constantly busy; it could
perhaps be made more efficient by making An depend on the system. Of
course, the decoupling occurs because the standard p* is known. However, the
EFER is still controlled at < «, and elimination still occurs with probability 1,
if we replace p* by p*(n) < p* where pu*(n) 1 p*, because a system eliminated
by a smaller standard would also have been eliminated by a larger standard,
and a system protected from a larger standard would also be protected from
a smaller one. This suggests trying to learn a standard that achieves our
objectives empirically, which is called Parallel Adaptive Survivor Selection.

Generically, we define the standard to be pu* = s(u1, pia, - - -, pi,). Some
examples of possibly interesting standards are

e Protect the best or ties: u* = ug.
e Protect the top m: pu* = pg—m+1.
e Protect the best and everything as good as a known p: p* = min{u™, ux }.

The key is to learn the standard’s value in a way that still avoids coupling
and does not affect the EFER. bi-PASS uses the standard

the average of the sample means of the current survivors. Thus, the standard
acts like a bisection search. Under some conditions it can be shown that the
EFER is still < «a. Notice also that updating p is fast for the Master, and
can occur whenever replications are returned from the Workers.

4.3 Parting Thoughts

Computer science issues really matter in parallel R&S: There is not one,
unique parallel architecture, and customizations can be valuable. Message
passing via MPI is conceptually easy, but unexpected behavior can occur,
and passing messages does take time. Processors may be heterogeneous, and

24 Barry L. Nelson

results can be lost. Memory may be shared or not. The overhead to load a
simulation onto a processor can be substantial, so one also needs to consider
the fixed cost to set up a simulation, as well as marginal time per replication.
And management of pseudorandom numbers can be tricky, e.g., if we want
to use CRN.

However, when a simulation optimization problem can be treated as a R&S
problem then it can be “solved” and all three errors can be controlled. High-
performance, parallel computing extends the “R&S limit” but introduces
new statistical and computational problems. Standard assumptions may be
violated, and “cost” no longer equals the number of replications.

5 Other Formulations

Although our focus has been on the best-mean problem with normally dis-
tributed outputs, the R&S literature is much broader. Many R&S procedures
have been created for specific non-normal data; e.g., Poisson. R&S procedures
have also been created for other performance measures; e.g., probabilities and
quantiles. Selecting the system that is most likely to be the best is called
“multinomial selection,” which may make sense for one-shot decisions. Se-
lecting the best system better than a standard (either system or constant
value) has also received attention. See [Bechhofer et al.| (1995).

The Holy Grail is a R&S procedure that works for virtually any perfor-
mance measure (mean, probability, quantile) and output data distribution
(normal, non-normal). Let §(z) be the generic performance measure, and
é\(x) a point estimator. Two insights make an omnibus procedure possible:

~

1. If we can construct estimators 0(x) of parameters 6(z) such that
Pr {é(x) k) — (0(x) — (k) < 6, Va £ k} >1-a (4
then
PGS =Pr{0(k) —0(z*) <} >1—a.

2. Given a sample of output data, we can estimate the achieved probability
in using bootstrapping, and then increase the sample size until it is
>1—a.

Suppose we have NV replications from each of the k systems, and let 2* =
argmax,0(x), the sample best. Then the bootstrap estimate of PGS based
on B bootstrap samples is

PGS = %Z 1z {§ (z) — 6®(7*) — [a?(w) - A(@*)] < 5}

Foundations of Ranking & Selection for Simulation Optimization 25

where 0% (z) comes from independent bootstrap samples of size N and Z(-)
is the indicator function. The omnibus procedure is to increase N (generate
more simulation output) until this bootstrap estimate is > 1 — «. |Lee and
Nelson| (2016) showed this approach to be asymptotically valid under very
mild conditions on the data as 6 — 0.

As an illustration suppose 6(z) is the mean.

Simulation output: [Yy(z),...,Yn(z)] = V(z), z = 1,2,...,k, with 2* =
argmax, Y (z) the current sample best with N replications.
Bootstrap: Resample the simulation outputs B times with replacement to

get [Yl(b)(gc)7 .. ,Yjs,b)(x)] —-Y®(2), =1,2,...,k,b=1,2,...,B.
Estimate PGS:

PGS = ;ZB: 11 I{Y(b) () - YO (F) - [V(z) - Y (E")] < 5} .

b=1 z#£z*

Notice that we can incorporate CRN by bootstrapping vectors of replica-
tions, where each vector contains one replication from each of the k systems
generated using CRN.

6 Multi-armed Bandits

“Multi-armed bandit” is a slang name for slot machines. To play a slot ma-
chine one inserts a coin or token and pulls the machine’s mechanical “arm.”
Typically the coin is lost (negative reward), but occasionaly the machine
“pays out” a positive reward. A slot machine player would like to find the
machine among many with the highest payout while losing as little money as
possible. In the state of Illinois the percentage payback from slot machines
in 2017 ranged from 89%-92.5%, so in the long run you lose (thus the name
“bandit”). But the slot machine paradigm provides a structure for thinking
about optimal sequential decision making.

Multi-armed bandit (MAB) procedures address the problem of learning
via experimentation which of £ possible decisions leads to the greatest accu-
mulated reward. Clearly there is a connection between R&S and MAB, and
the procedures look similar, but they are not the same. The usual objective
of MAB is to minimize “regret” (defined below) when making repeated de-
cisions, while R&S attempts to identify the best system to implement. Most
MAB procedures are intended for online use, while R&S is offline simulation
optimization. MAB and R&S have different standards for “good procedure
performance” and different assumptions about the reward /output data. R&S
procedures tend to be more willing to waste observations on inferior systems
so as to reduce the overall number of observations needed to make a cor-
rect selection, while MAB, which accumulates rewards, attempts to avoid

26 Barry L. Nelson

Table 2 MAB definitions of “regret.”

Regret Ry, = max Z Yi(z) — Z Yi(Iy)
t=1

t=1

Expected regret|r, = E(R,)

n n
Pseudo-regret |7, = maxE Z Yi(z) — Z Yi(It)
t=1 t=1

the regret of choosing decisions with suboptimal rewards while searching for
the best decision. A good overview reference is|Jamieson and Nowak| (2014)).
There is no denying that “multi-armed bandit” is a cooler name than “rank-
ing & selection,” but both have their roles.

In a bit more detail, “online” means making decisions in real time, with a
stochastic reward after each decision, while “offline” means running a com-
puter experiment to select a system and then implementing the selection
in the real world. There is no reward associated with the R&S experiment,
although there is a computational cost for running simulation.

The term “regret” refers to the shortfall in rewards that are obtained
relative to what could have been attained by making the best decision, while
PCS refers to getting the best choice in the end, not how one gets there. MAB
tends to evaluate procedures via their probability complexity, while R&S
evaluates procedures via their finite-time effort. MAB tends to assume sub-
Gaussian (even bounded) reward distributions; R&S often assumes normally
distributed output. MAB typically assumes a finite budget, and R&S often
desires fixed precision.

In the classical stochastic MAB formulation, using our R&S notation, the
decisions or “arms” are x € {1,2,...,k}, with unknown reward distribution
F, having expected value pu(x) for making decision z. Let I be the decision
chosen on opportunity ¢, and Y;(I;) ~ Fj, the associated stochastic reward.
Using this notation, Table [2] defines regret, expected regret, and pseudo-
regret. Loosely, the goal is to pick a policy for selecting I; that minimizes
regret or expected regret; since neither of these is achievable, pseudo-regret
is a stand-in. One well-known MAB procedure is the upper confidence bound
(UCB) policy: At the end of decision opportunity ¢, construct an UCB for
each decision’s mean, u(x). On opportunity ¢+1, play the arm with the largest
UCB. This is sometimes referred to as “optimism in the face of uncertainty”
since one selects the decision with the largest apparent upside.

Clearly all forms of regret are non-decreasing in the number of decisions
n that one makes; a good MAB procedure tries to have regret increase at
the slowest possible rate. A building block result for pseudo-regret is the
following:

Foundations of Ranking & Selection for Simulation Optimization 27

=1
k
=nu(k) — > wp(z)E(# times played arm x thru turn n)
r=1
k
= Z(u(k:) — p(x))E(# times played arm z thru turn n).
r=1

One then derives an wupper bound on the rate at which the
E(# times played arm x thru turn n) increases as the number of decisions
n increases for x # k. This bounds the rate at which 7,, increases. Note that
this bound is neither an estimate of the pseudo-regret 7, nor a statistical
guarantee. But it does say that as you play you accumulate regret no faster
than the derived rate.

MAB procedures are frequently quite simple to implement, which makes
them attractive, and of course many problems require online solutions (e.g., if
you do not have the luxury of a simulation model of the world). However, for
simulation optimization used to design systems, the R&S formulation tends
to be more efficient and attacks the relevant objective.

Acknowledgements

Special thanks to David Eckman and Linda Pei for comments on the structure
and specifics of this tutorial, as well as to the two referees for their careful
reports. This research was supported by National Science Foundation Grant
Number DMS-1854562.

References

Bechhofer R, Santner T, Goldsman D (1995) Design and Analysis of Experi-
ments for Statistical Selection, Screening, and Multiple Comparisons. John
Wiley and Sons, New York

Chen CH, Lee LH (2011) Stochastic Simulation Optimization: An Optimal
Computing Budget Allocation. World Scientific, Singapore

Chen CH, Chick SE, Lee LH, Pujowidianto NA (2015) Ranking and selec-
tion: Efficient simulation budget allocation. In: Fu M (ed) Handbook of
Simulation Optimization, Springer, pp 45-80

Chen EJ (2005) Using parallel and distributed computing to increase the
capability of selection procedures. In: Proceedings of the 2005 Winter Sim-
ulation Conference, IEEE, pp 723-731

28 Barry L. Nelson

Chen Y, Ryzhov IO (2019) Complete expected improvement converges to an
optimal budget allocation. Advances in Applied Probability 51(1):209-235

Dieker A, Kim SH (2012) Selecting the best by comparing simulated systems
in a group of three when variances are known and unequal. In: Proceedings
of the 2012 Winter Simulation Conference, IEEE, pp 490-496

Eckman DJ, Henderson SG (2018) Guarantees on the probability of good
selection. In: Proceedings of the 2018 Winter Simulation Conference, IEEE,
pp 351-365

Efron B (2012) Large-scale Inference: Empirical Bayes Methods for Estima-
tion, Testing, and Prediction. Cambridge University Press

Fan W, Hong LJ, Nelson BL (2016) Indifference-zone-free selection of the
best. Operations Research 64(6):1499-1514

Frazier P (2012) Tutorial: Optimization via simulation with Bayesian statis-
tics and dynamic programming. In: Proceedings of the 2012 Winter Simu-
lation Conference, IEEE, pp 79-94

Glynn P, Juneja S (2004) A large deviations perspective on ordinal optimiza-
tion. In: Proceedings of the 2004 Winter Simulation Conference, IEEE, pp
577-585

Goldsman D (1983) Ranking and selection in simulation. In: Proceedings of
the 1983 Winter Simulation Conference, IEEE, pp 387-393

Gupta SS, Panchapakesan S (2002) Multiple Decision Procedures: Theory
and Methodology of Selecting and Ranking Populations. STAM, Philadel-
phia

Hong LJ (2006) Fully sequential indifference-zone selection procedures with
variance-dependent sampling. Naval Research Logistics 53(5):464-476

Hunter SR, Nelson BL (2017) Parallel ranking and selection. In: Advances in
Modeling and Simulation, Springer, New York, pp 249-275

Jamieson K, Nowak R (2014) Best-arm identification algorithms for multi-
armed bandits in the fixed confidence setting. In: 48th Annual Conference
on Information Sciences and Systems (CISS), IEEE, pp 1-6

Jennison C, Johnstone IM, Turnbull BW (1982) Asymptotically optimal pro-
cedures for sequential adaptive selection of the best of several normal
means. In: Statistical Decision Theory and Related Topics III, Elsevier,
pp 55-86

Kaminski B, Szufel P (2018) On parallel policies for ranking and selection
problems. Journal of Applied Statistics 45(9):1690-1713

Kim SH, Nelson BL (2001) A fully sequential procedure for indifference-zone
selection in simulation. ACM Transactions on Modeling and Computer
Simulation (TOMACS) 11(3):251-273

Kim SH, Nelson BL (2006a) On the asymptotic validity of fully sequen-
tial selection procedures for steady-state simulation. Operations Research
54(3):475-488

Kim SH, Nelson BL (2006b) Selecting the best system. In: Henderson SG,
Nelson BL (eds) Handbooks in Operations Research and Management Sci-
ence, vol 13, Elsevier, pp 501-534

Foundations of Ranking & Selection for Simulation Optimization 29

L’Ecuyer P, Simard R, Chen EJ, Kelton WD (2002) An object-oriented
random-number package with many long streams and substreams. Opera-
tions Research 50(6):1073—-1075

Lee S, Nelson BL (2016) General-purpose ranking and selection for computer
simulation. ITE Transactions 48(6):555-564

Luo J, Hong LJ, Nelson BL, Wu Y (2015) Fully sequential procedures for
large-scale ranking-and-selection problems in parallel computing environ-
ments. Operations Research 63(5):1177-1194

Luo YC, Chen CH, Yiicesan E, Lee I (2000) Distributed web-based simulation
optimization. In: Proceedings of the 2000 Winter Simulation Conference,
IEEE, pp 1785-1793

Mukhopadhyay N, Solanky TK (1994) Multistage Selection and Ranking Pro-
cedures: Second Order Asymptotics. CRC Press, Boca Raton, Florida

Nelson BL (2018) Selecting the best simulated system: Thinking differently
about an old problem. In: International Conference on Monte Carlo and
Quasi-Monte Carlo Methods in Scientific Computing, Springer, New York,
pp 69-79

Nelson BL, Matejcik FJ (1995) Using common random numbers for
indifference-zone selection and multiple comparisons in simulation. Man-
agement Science 41(12):1935-1945

Nelson BL, Pei L (2021) Foundations and Methods of Stochastic Simulation:
A First Course, 2nd edn. Springer, New York

Nelson BL, Swann J, Goldsman D, Song W (2001) Simple procedures for
selecting the best simulated system when the number of alternatives is
large. Operations Research 49(6):950-963

Ni EC, Ciocan DF, Henderson SG, Hunter SR (2017) Efficient ranking
and selection in parallel computing environments. Operations Research
65(3):821-836

Paulson E (1964) A sequential procedure for selecting the population with
the largest mean from & normal populations. The Annals of Mathematical
Statistics pp 174-180

Pei L, Hunter SR, Nelson BL (2018) A new framework for parallel ranking &
selection using an adaptive standard. In: Proceedings of the 2018 Winter
Simulation Conference, IEEE, pp 2201-2212

Pei L, Nelson BL, Hunter SR (2020) Evaluation of bi-PASS for parallel sim-
ulation optimization. In: Proceedings of the 2020 Winter Simulation Con-
ference, IEEE, pp 29602971

Rinott Y (1978) On two-stage selection procedures and related probability-
inequalities. Communications in Statistics - Theory and Methods 7(8):799—
811

Salemi P, Song E, Nelson BL, Staum J (2019) Gaussian Markov random
fields for discrete optimization via simulation: Framework and algorithms.
Operations Research 67(1):250-266

30 Barry L. Nelson

Zhong Y, Hong LJ (2018) Fully sequential ranking and selection procedures
with PAC guarantee. In: Proceedings of the 2018 Winter Simulation Con-
ference, IEEE, pp 1898-1908

Zhong Y, Hong LJ (2021) Knockout-tournament procedures for large-scale
ranking and selection in parallel computing environments. Operations Re-
search Forthcoming

	Foundations of Ranking & Selection for Simulation Optimization
	Barry L. Nelson
	Introduction
	Set Up
	The Normal Means Case
	The Indifference-zone (IZ) Formulation
	R&S Based on ``Statistical Learning''
	A Convergence-rate Perspective
	Doing Better than ``Rate Optimal''
	Common Random Numbers
	``Good Selection''
	Unknown Variances
	A Note on Asymptotic Analysis

	Parallel R&S
	New Measures of Efficiency
	New Objectives
	Parting Thoughts

	Other Formulations
	Multi-armed Bandits
	Acknowledgements
	References
	References

