Chapter 4

Simulation Programming
with Python

This chapter shows how simulations of some of the examples in Chap. 3 can be
programmed using Python and the SimPy simulation library[1]. The goals of
the chapter are to introduce SimPy, and to hint at the experiment design and
analysis issues that will be covered in later chapters. While this chapter will
generally follow the flow of Chap. 3, it will use the conventions and patterns
enabled by the SimPy library.

4.1 SimPy Overview

SimPy is an object-oriented, process-based discrete-event simulation library for
Python. It is open source and released under the M license. SimPy provides
the modeler with components of a simulation model including processes, for
active components like customers, messages, and vehicles, and resources, for
passive components that form limited capacity congestion points like servers,
checkout counters, and tunnels. It also provides monitor variables to aid in
gathering statistics. Random variates are provided by the standard Python
random module. Since SimPy itself is written in pure Python, it can also run
on the Java Virtual Machine (Jython) and the NET environment (IronPython).
As of SimPy version 2.3, it works on all implementations of Python version 2.6
and up. Other documentation can be found at the SimPy website! and other
SimPy tutorials[2].

SimPy and the Python language are each currently in flux, with users of
Python in the midst of a long transition from the Python 2.x series to Python
3.x while SimPy is expected to transition to version 3 which will involve changes
in the library interface. Scientific and technical computing users such as most
simulation modelers and analysts are generally staying with the Python 2.x se-

Lhttps://simpy.readthedocs.org/en/2.3.1/
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ries as necessary software libraries are being ported and tested. SimPy itself
supports the Python 3.x series as of version 2.3. In addition, SimPy is undergo-
ing a major overhaul from SimPy 2.3 to version 3.0. This chapter and the code
on the website will assume use of Python 2.7.x and SimPy 2.3. In the future,
the book website will also include versions of the code based on SimPy 3.0? and
Python 3.2 as they and their supporting libraries are developed.

SimPy comes with data collection capabilities. But for other data analysis
tasks such as statistics and plotting it is intended to be used along with other
libraries that make up the Python scientific computing ecosystem centered on
Numpy and Scipy[3]. As such, it can easily be used with other Python packages
for plotting (Matplotlib), GUI (WxPython, TKInter, PyQT, etc.), statistics
(scipy.stats, statsmodels), and databases. This chapter will assume that you
have Numpy, Scipy?®, Matplotlib*, and Statsmodels® installed. In addition the
network/graph library Networkx will be used in a network model, but it can
be skipped with no loss of continuity. The easiest way to install Python along
with its scientific libraries (including SimPy) is to install a scientifically oriented
distribution, such as Enthought Canopy® for Windows, Mac OS X, or Linux;
or Python (x,y)” for Windows or Linux. If you are installing using a standard
Python distribution, you can install SimPy by using easy_install or pip. Note
the capitalization of ‘SimPy’ throughout.

easy_install install SimPy
or
pip install SimPy

The other required libraries can be installed in a similar manner. See the
specific library webpages for more information.

This chapter will assume that you have the Numpy, Scipy, Matplotlib, and
Statsmodels libraries installed.

4.1.1 Random numbers

There are two groups of random-variate generations functions generally used,
random from the Python Standard Library and the random variate generators
in the scipy.stats model. A third source of random variate generators are
those included in PyGSL, the Python interface to the GNU Scientific Library
(http://pygsl.sourceforge.net)

The random module of the Python Standard Library is based on the Mersenne
Twister as the core generator. This generator is extensively tested and produces

2https://simpy.readthedocs.org/en/latest/index.html
Shttp://www.scipy.org

4http://matplotlib.org/
Shttp://statsmodels.sourceforge.net/
Shttp://www.enthought.com /products/canopy/
"http://code.google.com/p/pythonxy/
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53-bit precision floats and a period of 219937 — 1. Some distributions included in
the the random module include uniform, triangular, Beta, Exponential, Gamma,
Gaussian, Normal, Lognormal, and Weibull distributions.

The basic use of random variate generators in the random module is as
follows:

1.

2.

3.

4.

Load the random module: import random
Instantiate a generator: g = random.Random()
Set the seed: g.seed(1234)

Draw a random variate:

e A random value from 0 to 1: g.random()
e A random value (float) from a to b: g.uniform(a,b)
e A random integer from a to b (inclusive): g.randint(a, b)

e A random sample of k items from list population: g.sample(population,
k)

The Scipy module includes a larger list of random variate generators includ-
ing over 80 continuous and 10 discrete random variable distributions. For each
distribution, a number of functions are available:

rvs: Random Variates generator,

pdf: Probability Density Function,

cdf: Cumulative Distribution Function,

sf: Survival Function (1-CDF),

ppf: Percent Point Function (Inverse of CDF),

isf: Inverse Survival Function (Inverse of SF),

stats: Return mean, variance, (Fisher’s) skew, or (Fisher’s) kurtosis,

moment: non-central moments of the distribution.

As over 80 distributions are included, the parameters of the distributions are
in a standardized form, with the parameters being the location, scale and shape
of the distribution. The module documentation and a probability reference may
be consulted to relate the parameters to those that you may be more familiar

with.

The basic use of Scipy random number generators is as follows.

1.

Load the Numpy and Scipy modules
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import numpy as np
import scipy as sp

2. Set the random number seed. Scipy uses the Numpy random number gen-
erators so the Numpy seed function should be used: np.random.seed(1234)

3. Instantiate the generator®. Some examples:
e Normal with mean 10 and standard deviation 4:

norml = sp.stats.norm(loc = 10, scale = 4)

e Uniform from 0 to 10:
unifl = sp.stats.uniform(loc = 0, scale = 10)

e Exponential with mean 1:
expol = sp.stats.expon(scale

1.0)

4. Generate a random value: norml.rvs().

As you already know, the pseudorandom numbers we use to generate random
variates in simulations are essentially a long list. Random-number streams are
just different starting places in this list, spaced far apart. The need for streams
is discussed in Chap. 7,but it is important to know that any stream is as good
as any other stream in a well-tested generator. In Python, the random number
stream used is set using the seed functions (random.seed() or numpy.seed as
applicable).

4.1.2 SymPy components

SimPy is built upon a special type of Python function called generators [?].
When a generator is called, the body of the function does not execute, rather,
it returns an iterator object that wraps the body, local variables, and current
point of execution (initially the start of the function). This iterator then runs
the function body up to the yield statement, then returns the result of the
following expression.

Within SimPy, the yield statements are used to define the event scheduling.
This is used for a process to either do something to itself (e.g. the next car
arrives); to request a resource, such as requesting a server; to release a resource,
such as a server that is no longer needed; or to wait for another event. [2].

e yield hold: used to indicate the passage of a certain amount of time
within a process;

e yield request: used to cause a process to join a queue for a given re-
source (and start using it immediately if no other jobs are waiting for the
resource);

8this method is known in the documentation as freezing a distribution.
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e yield release: used to indicate that the process is done using the given
resource, thus enabling the next thread in the queue, if any, to use the
resource;

e yield passivate: used to have a process wait until “awakened” by some
other process.

A Process is based on a sequence of these yield generators along with
simulation logic.

In a SimPy simulation, the simulation is initialized, then resources are de-
fined. Next, processes are defined to generate entities, which in turn can gen-
erate their own processes over the course of the simulation. The processes are
then activated so that they generate other events and processes. Monitors collect
statistics on entities, resources, or any other event which occurs in the model.

In SimPy, resources such as parking spaces are represented by Resource .
There are three types of resources.

e A Resource is something whose units are required by a Process. When
a Process is done with a unit of the Resource it releases the unit for
another Process to use. A Process that requires a unit of Resource when
all units are busy with other Processes can join a queue and wait for the
next unit to be available.

e A Level is homogeneous undifferentiated material that can be produced
or consumed by a Process. An example of a level is gasoline in a tank at
a gas station.

e A Store models the production or consumption of specific items of any
type. An example would be a storeroom that holds a variety of surgical
supplies,

The simulation must also collect data for use in later calculating statistics
on the performance of the system. In SimPy, this is done through creating a
Monitor.

Collecting data within a simulation is done through a Monitor or a Tally.
As the Monitor is the more general version, this chapter will use that. You
can go to the SimPy website for more information. The Monitor makes ob-
servations and records the value and the time of the observation, allowing for
statistics to be saved for analysis after the end of the simulation. The Mon-
itor can also be included in the definition of any Resource (to be discussed
in the main simulation program) so statistics on queues and other resources
can be collected as well. In the Car object; the Monitor parking tracks the
value of the variable self.sim.parkedcars at every point where the value of
self.sim.parkedcars changes, as cars enter and leave the parking lot.

In the main part of the simulation program, the simulation object is defined,
then resources, processes, and monitors are defined and activated as needed to
start the simulation. In addition, the following function calls can be made:



6 CHAPTER 4. SIMULATION PROGRAMMING WITH PYTHON

import random, math

import numpy as np

import scipy as sp

import scipy.stats as stats
import matplotlib.pyplot as plt
import SimPy.Simulation as Sim

Figure 4.1: Library imports.

e initialize(): set the simulation time and the event list

e activate(): used to mark a thread (process) as runnable when it is first
created and add its first event into the event list.

e simulate(): starts the simulation

e reactivate(): reactive a previously passivated process

cancel(): cancels all events associated with a previously passivated process.

The functions activate(), reactivate(), and cancel () can also be called
within processes as needed.

4.2 Simulating the M (t)/M/occ Queue

Here we consider the parking lot example of Sect. 3.1a queueing system with
time-varying car arrival rate, exponentially distributed parking time and an
infinite number of parking spaces.

A SimPy simulation generally consists of import of modules, defining pro-
cesses and resources, defining parameters, a main program declaring, and finally
reporting.

At the top of the program are imports of modules used. (Fig. 4.1) By
convention, modules that are part of the Python Standard Library such as
math and random are listed first. Next are libraries considered as foundational
to numerical program such as numpy, scipy, and matplotlib. Note that we
use the import libraryname as 1ib convention. This short form allows us to
make our code more readable as we can use 1ib to refer to the module in the code
instead of having to spell out libraryname. Last, we import in other modules
and modules we may have written ourselves. While you could also import
directly into the global namespace using the construct from SimPy.Simulation
import *, instead of import SimPy.Simulation as Sim, this is discouraged
as there is a potential of naming conflicts if two modules happened to include
functions or classes with the same name.

Next are two components, the cars and the source of the cars. (Fig. 4.2)
Both of these are classes that subclass from Sim.Process. The class Arrival
generates the arriving cars using the generate method. The mean arrival rate
is a function based on the time during the day. Then the actual interarrival
time is drawn from an exponential distribution.
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class Arrival(Sim.Process):
""" Source generates cars at random

Arrivals are at a time-dependent rate

def generate(self):

i=0

while (self.sim.now() < G.maxTime):
tnow = self.sim.now()
arrivalrate = 100 + 10 * math.sin(math.pi * tnow/12.0)
t = random.expovariate(arrivalrate)
yield Sim.hold, self, t
c = Car(name="Car’%02d" % (i), sim=self.sim)
timeParking = random.expovariate(1.0/G.parkingtime)
self.sim.activate(c, c.visit(timeParking))
i+=1

class Car(Sim.Process):
""" Cars arrives, parks for a while, and leaves

Maintain a count of the number of parked cars as cars arrive and leave

def visit(self, timeParking=0):
self.sim.parkedcars += 1
self.sim.parking.observe(self.sim.parkedcars)
yield Sim.hold, self, timeParking
self.sim.parkedcars -= 1
self.sim.parking.observe(self.sim.parkedcars)

Figure 4.2: Model components.
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Within the Car object, the yield Sim.hold, self, timeParking line is
used to represent the car remaining in the parking lot. To look at this line more
closely

1. yield: a Python keyword that returns a generator. In this case, it calls
the function that follows in a computationally efficient manner.

2. Sim.hold: The hold function within Simpy.Simulation. This causes a
process to wait.

3. self: A reference to the current object (Car). The first parameter passed
to the Sim.hold command. In this case it means the currently created Car
should wait for a period of time. If the yield hold line was preceded by
a yield request, the resource required by yield request would be in-
cluded in the yield hold, i.e. both the current process and any resources
the process is using would wait for the specified period of time.

4. timeParking: The time that the Car should wait. This is the second
parameter passed to the Sim.hold command.

Typically, yield, request, hold, release are used in sequence. For ex-
ample, if the number of parking spaces were limited, the act of a car taking a
parking space for a period of time would be represented as follows within the
Car.visit() function.

yield Sim.request, self, parkingspace
yield Sim.hold, self, timeParking
yield Sim.release, self, parkingspace

In this case, since the purpose of the simulation is to determine demand for
parking spaces, we assume there are unlimited spaces and we count the number
of cars in the parking lot at any point in time.

In SimPy, resources such as parking spaces are represented by Resources.
There are three types of resources.

e A Resource is something whose units are required by a Process. When
a Process is done with a unit of the Resource it releases the unit for
another Process to use. A Process that requires a unit of Resource when
all units are busy with other Processes can join a queue and wait for the
next unit to be available.

e A Level is homogeneous undifferentiated material that can be produced
or consumed by a Process. An example of a level is gasoline in a tank at
a gas station.

e A Store models the production or consumption of specific items of any
type. An example would be a storeroom that holds a variety of surgical
supplies,
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class G:
maxTime = 24.0 # hours
arrivalrate = 100 # per hour
parkingtime = 2.0 # hours
parkedcars = 0
seedVal = 9999

Figure 4.3: Global declarations.

Global declarations are in Fig. 4.3. While Python allows these to be in the
global namespace, it is preferred that these be put into a class created for the
purpose as shown here. In particular, this is generally used as a central location
for parameters of the model.

The main simulation class is shown in Fig. 4.4. The simulation class Parkingsim
is a subclass of Sim.Simulation. While it can have other functions, the central
function is the run(self) function. Note that the first argument of a member
function of a class is self, indicating that the function has access to the other
functions and variables of the class. The run function takes one argument, the
random number seed. Sim.initialize() sets all Monitors and the simulation
clock. Then processes and resources are created. In this simulation there is one
process, the generation of arriving cars in Arrival. Note that at this point,
there are no Car’s, as the Arrival process will create the cars. This simulation
does not have any resources; but if, for example, the parking lot had a limited
capacity of 20 spaces, it could have been created here by:

self .parkinglot = Sim.Resource(capacity = 20, name=’Parking lot’,
unitName=’Space’, monitored=True, sim=self)

This creates the parking lot with 20 spaces. By default, resources are a
FIFO, non-priority queue with no preemption. In addition to the capacity of
the Resource (number of servers), there are two queues (lists) associated with
the resource. First is the activeQ, which is the list of process objects currently
using the resource. Second is the waitQ, which is the number of processes that
have requested but have not yet received a unit of the resource. If when creating
the resource the option monitored=True is set, then a Monitor is created for
each queue, and statistics can be collected on resource use and the wait queue for
further analysis. The last option is sim=self, which declares that the Process
or Resource is part of the simulation defined in the current class derived from
Sim.Simulation. If the simulation was defined in the global namespace (not
inside of a class), then this option would not be needed.

After Processes and Resources are created, any additional Monitors are cre-
ated here. Note that Processes, Resources, and Monitors are created using
self. constructs. This classifies the object as part of the class, and not only
local to the run() function. Other classes and methods that are part of this
simulation (declared using sim = self) can refer to any object created here
using self.sim.objectname. This includes Monitors as well as variables that
need to be updated from anywhere in the simulation. For example, the vari-
able self.parkedcars can be updated from the Car class in Fig. 4.2 using
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class Parkingsim(Sim.Simulation):

def run(self, aseed):
random. seed (seed)
Sim.initialize()
s = Arrival(name=’Arrivals’, sim=self)
self.parking = Sim.Monitor (name=’Parking’, ylab=’cars’,

tlab=’time’, sim=self)

self.activate(s, s.generate(), at=0.0)
self.simulate(until=G.maxTime)

parkinglot = Parkingsim()
parkinglot.run(1234)

plt.
plt.
plt.

plt

plt.

Figure 4.4: Main Simulation.

figure(figsize=(5.5,4))

plot(parkinglot.parking.tseries() ,parkinglot.parking.yseries())
xlabel(’Time’)

.ylabel(’Number of cars’)

x1im(0, 24)

Figure 4.5: Plotting results.

self.sim.parkedcars.

Following the main simulation class, the class is instantiated using parkinglot

= Parkingsim(), then the simulation is run using parkinglot.run(seedvalue).
One advantage of using a simulation class and object is that the monitors cre-
ated in the simulation are available to the object instance parkinglot after the
simulation is run. If the simulation is run from within the Python command
line or the IPython notebook®, this allows for interactive exploration of the sim-
ulation results. For example, the monitor parking monitors the number of cars
that are in the parking lot by time. So a graph can be plotted that tracks the
number of cars over the course of the 24 hour day. (Fig. 4.5) The steps are:

1. Load matplot lib (Fig. 4.1) import matplotlib.pyplot as plt

2. Set figure size plt.figure(figsize=(5.5,4));

3. Define the plot. Note the use of the attributes of the monitor parking.

plt.plot(parkinglot.parking.tseries(), parkinglot.parking.yseries())

4. Set labels and other options

This results in the plot in Fig. 4.6.
To make inferences or conclusions based on the simulation, it is necessary to

run the simulation many replications. So to find the daily average of the number
of cars, we can run the simulation over 1000 days and look at the average and
maximum parking over that period. Fig. 4.7 shows how to do this using a for

9http://ipython.org
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Figure 4.6: Number of parked cars over time.

initialseed = 4321

parkingdemand = []

daysrep = 1000

for i in range(daysrep):
parkinglot.initialize()
parkinglot.run(initialseed + i)
parkingdemand. append (parkinglot.parking)

Figure 4.7: 1000 replications

loop.'? For each replication, initialize the parkinglot instance of the simulation
object, then run using a new random number seed. Then, append the simulation
results to a list object that was initialized using parkingdemand = []. Note
that any object can be appended to a list. In this case the monitor parking for
each simulation run was saved to the list parkingdemand.

From this list of simulation monitor results, one can then extract a particular
data element, then calculate statistics from it. So, for each simulation monitor
saved to parkingdemand, the time average number of cars in the lot is given
by parkingdemand[i] .timeAverage(). So, to have a list of the time average
number of cars for each replication, we can use the list comprehension

[parkingdemand[i] . timeAverage() for i in range(daysrep)].

The construct [function(i) for i in range(datasetlength)] is known
as a list comprehension. It is a compact method for stating:

10The Python scientific libraries include provisions for working with multi-core processors
that this chapter will not utilize.
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averagedailyparking = [parkingdemand[i].timeAverage() for
i in range(daysrep)]
plt.hist(averagedailyparking, bins=25, cumulative = True,
label = ’Average number of cars during day’)
plt.xlabel(’Average number of cars in day’)
plt.ylabel(’Days (cumulative)’)

Figure 4.8: 1000 replications

Days (cumulative)

?80 182 184 186 188 190 192 194 196
Average number of cars in day

Figure 4.9: Cumulative histogram of average number of parked cars.

for i in range(datasetlength):
function(i)

In addition to being more compact, this construct is used often in data
analysis because it can be relatively easily parallelized if the computing facilities
are available. The resulting list can then be analyzed through visualization or
statistics. In Fig. 4.9 there is the resulting cumulative histogram.

Fig. 4.10 shows a standard histogram of the maximum number of cars parked
in a given simulation day, indicated by the option cumulative=False. The
corresponding plot is in Fig. 4.11.

maxparkingdailyparking = [max(parkingdemand[i].yseries())

for i in range(daysrep)]
plt.hist(maxparkingdailyparking, bins=25, cumulative = False)
plt.xlabel(’Maximum number of cars’)
plt.ylabel(’Days (cumulative)’)

Figure 4.10: Maximum number of cars parked in a day.
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Figure 4.11: Histogram of maximum number of parked cars.

testvalue, pvalue = sp.stats.normaltest(averagedailyparking)
print (pvalue)

0.761955484599

Figure 4.12: Test for normality for average cars parked.

We think that the distribution of the average number of cars in the lot
on any given day follows a normal distribution. We can test this using the
the sp.stats.normaltest function. (Figure 4.12) In addition, we can plot a
normal probability plot using the sp.stats.statsplot function. Figure 4.13
shows a normal probability plot that is consistant with a hypothesis that the
average number of cars in a day follows a normal distribution.

4.2.1 Issues and Extensions

1. The M (t)/M /oo simulation presented here simulates 24 hours of parking
lot operation, and treats each 24-hour period as as independent replication
starting with an empty garage. This only makes sense if the garage is
emptied each day, for instance if the mall closes at night. Is the assumed
arrival rate A(¢) appropriate for a mall that closes at night?

2. Suppose that the parking lot serves a facility that is actually in operation
24 hours a day, seven days per week (that is, all the time). How should
the simulation be initialized, and how long should the run length be in
this case?

3. How could the simulation be initialized so that there are 100 cars in the
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Figure 4.13: Normal probability plot of average cars parked in a day generated
by scipy.stats.statsplot().

parking lot at time 07

. When this example was introduced in Sect. 3.1 , it was suggested that

we size the garage based on the (Poisson) distribution of the number of
cars in the garage at the point in time when the mean number in the
garage was maximum. Is that what we did, empirically, here? If not,
how is the quantity we estimated by simulation related to the suggestion
in Sect. 3.1(for instance, will the simulation tend to suggest a bigger or
smaller garage than the analytical solution in Sect. 3.1

. One reason that this simulation executes quite slowly when A(¢) = 1000 +

100sin(7t/12) is that the thinning method we used is very inefficient (lots
of possible arrivals are rejected). Speculate about ways to make it faster.

. For stochastic processes experts: Another reason that the simulation is

slow when A(t) = 1000 + 100sin(7t/12) is that there can be 1000 or more
pending departure events in the event list at any time, which means that
scheduling a new event in chronological order involves a slow search. How-
ever, it is possible to exploit the memoryless property of the exponential
distribution of parking time to create an equivalent simulation that has
only two pending events (the next car arrival and next car departure) at
any point in time. Describe how to do this.
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4.3 Simulating the M/G/1 Queue

Here we consider the hospital example of Sect. 3.2,a queueing system with Pois-
son arrival process, some (as yet unspecified) service-time distribution, and a
single server (either a receptionist or an electronic kiosk); in other words, an
M/G/1 queue. Patient waiting time is the key system performance measure,
and the long-run average waiting time in particular.

Recall that Lindley’s Equation (3.3) provides a shortcut way to simulate
successive customer waiting times:

Yo = 0  Xo=0
Y, = max{O,Yi,1 +XZ‘71_Ai}7 1=1,2,...

where Y; is the ith customer’s waiting time, X; is that customer’s service time,
and A; is the interarrival time between customers i —1 and 7. Lindley’s equation
avoids the need for an event-based simulation, but is limited in what it produces
(how would you track the time-average number of customers in the queue?). In
this section we will describe both recursion-based and event-based simulations
of this queue, starting with the recursion.

4.3.1 Lindley Simulation of the M/G/1 Queue

To be specific, suppose that the mean time between arrivals is 1 minute, with
the distribution being exponential, and the mean time to use the kiosk is 0.8
minutes (48 seconds), with the distribution being an Erlang-3. An Erlang-p is
the sum of p i.i.d. exponentially distributed random variables, so an Erlang-3
with mean 0.8 is the sum of 3 exponentially distributed random variables each
with mean 0.8/3.

In Sect. 3.2 we noted that the waiting-time random variables Y7, Y5, ... con-
verge in distribution to a random-variable Y, and it is 1 = E(Y") that we will
use to summarize the performance of the queueing system. We also noted that
Y(m) =m~1 3" Y; converges with probability 1 to p as the number of cus-
tomers simulated m goes to infinity.

All of this suggests that we make a very long simulation run (large m) and
estimate u by the average of the observed waiting times Y7,Ys,...,Y,,. But
this is not what we will do, and here is why: Any m we pick is not oo, so the
waiting times early in the run—which will tend to be smaller than p because
the queue starts empty—will likely pull Y (m) down. To reduce this effect, we
will let the simulation generate waiting times for a while (say d of them) before
starting to actually include them in our average. We will still make m large,
but our average will only include the last m — d waiting times. That is, we will
use as our estimator the truncated average

V(m,d) = —— PIRD (4.1)
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Table 4.1: Ten replications of the M/G/1 queue using Lindley’s equation.

replication Y (55000, 5000)
1 2.057990460
2.153527560
2.172301541
2.339207242
2.094318451
2.137171478
2.168302534
2.100971509
9 2117776760
10 2.220187818
average 2.156175535
std dev 0.075074639

00 3 O U = W N

In addition, we will not make a single run of m customers, but instead will make
n replications. This yields n i.i.d. averages Yi(m,d),Ya(m,d),...,Y,(m,d) to
which we can apply standard statistical analysis. This avoids the need to directly
estimate the asymptotic variance v2, a topic we defer to later chapters.

Figure 4.14 shows a Python simulation of the M/G/1 queue using Lindley’s
equation. In this simulation m = 55,000 customers, we discard the first d = 5000
of them, and make n = 10 replications.

The ten replication averages can be then individually written to an comma
separated value (csv) file named “lindley.csv” (Fig. 4.15) and also printed out
to the screen with the mean and standard deviation as in Table 4.1.

Notice that the average waiting time is a bit over 2 minutes, and that Python,
like all programming languages, could display a very large number of output
digits. How many are really meaningful? A confidence interval is one way to
provide an answer.

Since the across-replication averages are i.i.d., and since each across-replication
average is itself the within-replication average of a large number of individual
waiting times (50,000 to be exact), the assumption of independent, normally dis-
tributed output data is reasonable. This justifies a ¢-distribution confidence in-
terval on p. The key ingredient is ¢,_q /2,1, the 1 —a/2 quantile of the ¢ distri-
bution with n—1 degrees of freedom. If we want a 95% confidence interval, then
1—a/2 =0.975, and our degrees of freedom are 10—1 = 9. Since ¢¢.975,9 = 2.26,
we get 2.156175535 + (2.26)(0.075074639)/+/10 or 2.156175535 4 0.053653949.
This implies that we can claim with high confidence that p is around 2.1 min-
utes, or we could give a little more complete information as 2.15+ 0.05 minutes.
Any additional digits are statistically meaningless.

Is an average of 2 minutes too long to wait? To actually answer that question
would require some estimate of the corresponding wait to see the receptionist,
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import numpy as np
# Use scipy.stats because it includes the Erlang distribution
from scipy.stats import expon, erlang
import matplotlib.pyplot as plt
def lindley(m=55000, d = 5000):
’?? Estimates waiting time with m customers, discarding the first d

Lindley approximation for waiting time in a M/G/1 queue
P A

replications = 10

lindley = []

for rep in range(replications):
y=20
SumY = 0

for i in range(1l, d):
Random number variable generation from scipy.stats
shape = 0, rate =1, 1 value
= expon.rvs(0, 1)
rate = .8/3, shape = 3
= erlang.rvs(3, scale = 0.8/3, size=1)
= max(0, y + x - a)
in range(d, m):
= expon.rvs(0, 1)
rate = .8/3, shape = 3
= erlang.rvs(3, scale = 0.8/3, size=1)
y = max(0, y + x - a)
SumY += y
result = SumY / (m - d)
lindley.append(result)
return lindley

for

HWoHE RS X Y B H

Figure 4.14: Simulation of the M/G/1 queue using Lindley’s equation.
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import csv
with open("lindley.csv"), "rb") as myFile:
lindleyout = csv.writer (myFile)
lindleyout.writerow("Waitingtime")
for row in result:
print row

for i in range(len(result)):

print ("%1d & %11.9f " % (i+1, result[i]))
print("average & %11.9f" Y (mean(result)))
print("std dev & %11.9f" % (std(result)))

Figure 4.15: Simulation of the M/G/1 queue using Lindley’s equation.

import SimPy.Simulation as Sim
import numpy as np

from scipy.stats import expon, erlang
from random import seed

class G:
maxTime = 55000.0 # minutes
warmuptime = 5000.0
timeReceptionist = 0.8 # mean, minutes

phases = 3
ARRint = 1.0 # mean, minutes
theseed = 99999

\textbf

Figure 4.16: Declarations for the hospital simulation.

either from observational data or a simulation of the current system. Statistical
comparison of alternatives is a topic of Chap. 8.

4.3.2 Event-based Simulation of the M/G/1 Queue

The simulation program consists of some global declarations (Fig. 4.16), declara-
tions (Fig. 4.17), the main program (Fig. 4.18), some event routines (Fig. 4.19),
running the simulation and reporting provided by SimPy.

This model will illustrate the Process, Resource, and Monitor classes.
At a high level, here is what they do:

e Process objects are used to generate entities or to govern the behavior of
entities in the system.

e Resource objects including Level and Store are used to designate re-
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class Hospitalsim(Sim.Simulation):
def run(self, theseed):

np.random.seed (theseed)

self .receptionist = Sim.Resource(name="Reception", capacity=1,
unitName="Receptionist", monitored=True, sim=self)

s = Arrivals(’Source’, sim=self)

self.initialize()

self.activate(s, s.generate(meanTBA=G.ARRint,
resource=self.receptionist), at=0.0)

self.simulate(until=G.maxTime)

avgutilization = self.receptionist.actMon.timeAverage() [0]

avgwait = self.receptionist.waitMon.mean()

avgqueue = self.receptionist.waitMon.timeAverage () [0]

leftinqueue= mgl.receptionist.waitMon.yseries() [-1:] [0]

return [avgwait, avgqueue, leftinqueue,avgutilization]

Figure 4.17: Main program for the hospital simulation.

sources that are required by a Process over the course of the simulation.
Any of these can have a Process utilizing a unit of resource, or there
could be Process in a queue waiting for a resource to be available.

— A Resource has units that are required by a Process.

— A Level is an undifferentiated item that can be taken or produced
by a Process.

— A Store is an inventory of heterogeneous items where a Process will
require a specific type of item from the Store.

e Monitor objects are used to record observations so that they may be
analyzed later. In particular, a Resource can also have a Monitor to
observe Process that are utilizing or waiting in a queue to utilize a unit
of a Resource.

Figure 4.17 shows the declarations of the Process and Resource objects,
specifically:

self .receptionist = Sim.Resource(name="Reception", capacity=1,
unitName="Receptionist", monitored=True, sim=self)
s = Arrivals(’Source’, sim=self)

These are both declared within the Simulation object Hospitalsim, and
both specify that they are a part of the current simulation (sim=self). While
these could be declared as a local variable, the Resource self.receptionist
is declared as part of the simulation object self. When it is declared, it can
be given a capacity, a qtype (queue type, FIFO, LIFO, or priority), if it
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is preemptable, and if it is monitored and if so, what monitorType (Tally
or Monitor ). Default values are assumed if these are not specified. If it
is monitored, the observations of the units and processes (monitored=True)
utilizing the receptionist can be exposed outside of the simulation program
itself. The arrival Process s generates the arrivals to the process.

The simulation itself is initialized, then each process is activated through
the self.activate function. So here, the arrival process s begins generating
arrivals according to the class s (defined in Figure 4.18). Then the simulation
is run using self.simulate. The simulation runs until the time designated in
the argument until=G.maxTime. This can also be modified by using

The statements after self.simulate() are for data collection. The Re-
source self.receptionist includes a Monitor for both the resource itself
actMon and the queue of processes waiting for the resource. Among the statis-
tics that can be reported are the mean, timeAverage, and the data recorded for
all processes that used that resource (such as the actual waiting time indicated
by yseries).

Finally, at the end of the simulation, if the HospitalSim simulation was
called by another function, the return function specifies the return values.
These could be summary statistics or lists of recorded data which can be used
by the calling function in any way.

The arriving patients are represented by two classes. First, the Arrivals
class represents the source of customers. It generate Patient through activate,
which creates instances of the Patient, which then requests a Resource. Next,
the customers, represented by the Patients class. It’s actions are governed by
the visit function, which is called by the generating class Arrivals when a
patient visit is activate. The Patient class is what actually claims a unit of
the resource or is placed in the queue.

In this simulation we are interested in long-run performance, so the length
of a replication is determined by whatever we decide is long enough (which is
not an easy decision, actually). When we used Lindley’s equation it was natural
to specify the replication length in terms of the number of customers simulated.
However, in more complex simulations with many different outputs, it is far
more common to specify the replication length by a stopping time T chosen so
that it will be long enough for all of the outputs. Similarly, if we plan to discard
data, then it is easier to specify a time Ty at which all statistics will be cleared.

Let Y(T,T,) be a replication average of all waiting times recorded between
times Ty and T. Clearly Y (m,d) based on count, and Y (7, Ty) based on time,
will have different statistical properties, but it is intuitively clear that both will
be good estimators of y if their arguments are fixed (not a function of the data)
and large enough. Notice also that a run time and deletion time are ideal for
continuous-time statistics like the time-average number in queue.

For this event-based simulation it is easy to record and report a number of
statistics. Monitor objects and Resource objects that are monitored have
methods which collect data on observations and can calculate statistics. Ta-
ble 4.2 shows the results from 10 replications, along with the overall averages
and 95% confidence interval halfwidths.
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class Arrivals(Sim.Process):
""" Source generates customers randomly """

def generate(self, meanTBA, resource):

i=0

while self.sim.now() < G.maxTime:
¢ = Patient(name="Patient02d" % (i), sim=self.sim)
self.sim.activate(c, c.visit(b=resource))
t = expon.rvs(0, 1.0 / meanTBA, size = 1)
yield Sim.hold, self, t
i+=1

class Patient(Sim.Process):
""" Patient arrives, is served and leaves """
def visit(self, b):
arrive = self.sim.now()
yield Sim.request, self, b
wait = self.sim.now() - arrive
tib = erlang.rvs(G.phases,
scale = float(G.timeReceptionist)/G.phases,
size = 1)
yield Sim.hold, self, tib
yield Sim.release, self, b

Figure 4.18: Event routines for the hospital simulation.

hospitalreception = []
for i in range(10):
mgl = Hospitalsim()
mgl.startCollection(when=G.warmuptime,
monitors=mgl.allMonitors)
result = mgl.run(4321 + i)
hospitalreception.append(result)

hospitalaverage = mean(hospitalreception, axis=0)

hospitalstd = std(hospitalreception, axis=0)
hospital95 = [hstd * t.ppf(0.975, reps-1) for hstd in hospitalstd]

Figure 4.19: Initializing and running the hospital simulation.
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Table 4.2: Ten replications of the M/G/1 queue using the event-based simula-

CHAPTER 4. SIMULATION PROGRAMMING WITH PYTHON

tion.

Rep Total Wait Queue Remaining Utilization
1 3.213462878  2.160833599 0 0.798567300
2 3.280708784  2.246598372 1 0.808480012
3 3.165536548  2.108143837 12 0.793258928
4 2.879284462 1.919272701 6 0.794702843
5 3.222073305 2.176042086 0 0.800707100
6 3.179741189  2.145124000 4 0.800669924
7 3.201467600 2.170802331 1 0.801600605
8 3.095751521  2.062482343 3 0.795603232
9 3.445755412  2.331405016 5 0.802041612
10 3.039486198  2.032295429 2 0.796786730
average 3.172326790 2.135299972  3.400000000 0.799241829
std dev  0.141778429 0.108549951 3.469870315 0.004231459
95 C.I.  0.320725089 0.245557048 7.849391986 0.009572226

Again there are meaningless digits, but the confidence intervals can be used
to prune them. For instance, for the mean total wait we could report 3.17+0.32
minutes. How does this statistic relate to the 2.16+£0.08 minutes reported for the
simulation via Lindley’s equation? Mean total time in the kiosk system (which
is what the event-based simulation estimates) consists of mean time waiting
to be served (which is what the Lindley simulation estimates) plus the mean
service time (which we know to be 0.8 minutes). So it is not surprising that
these two estimates differ by about 0.8 minutes.

4.3.3 Issues and Extensions

1. In what situations does it make more sense to compare the simulated kiosk
system to simulated data from the current receptionist system rather than
real data from the current receptionist system?

2. It is clear that if all we are interested in is mean waiting time, defined
either as time until service begins or total time including service, the
Lindley approach is superior (since it is clearly faster, and we can always
add in the mean service time to the Lindley estimate). However, if we
are interested in the distribution of total waiting time, then adding in
the mean service time does not work. How can the Lindley recursion be
modified to simulate total waiting times?

3. How can the event-based simulation be modified so that it also records
waiting time until service begins?
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. How can the event-based simulation be modified to clear statistics after

exactly 5000 patients, and to stop at exactly 55,000 patients?

. The experiment design method illustrated in the event-based simulation

is often called the “replication-deletion” method. If we only had time
to generate 500,000 waiting times, what issues should be considered in
deciding the values of n (replications), m (run length) and d (deletion
amount)? Notice that we must have nm = 500,000, and only n(m — d)
observations will be used for estimating u.

. An argument against summarizing system performance by long-run mea-

sures is that no system stays unchanged forever (55,000 patients is approx-
imately 38 24-hour days during which time there could be staff changes,
construction or emergencies), so a measure like p is not a reflection of
reality. The counter argument is that it is difficult, if not impossible, to
model all of the detailed changes that occur over any time horizon (even
the time-dependent arrival process in the M (t)/M /oo simulation is diffi-
cult to estimate in practice), so long-run performance at least provides an
understandable summary measure (“If our process stayed the same, then
over the long run....”). Also, it is often mathematically easier to obtain
long-run measures than it is to estimate them by simulation (since simula-
tions have to stop). Considering these issues, what sort of analysis makes
the most sense for the hospital problem?

4.4 Simulating the Stochastic Activity Network

Here we consider the construction example of Sect. 3.4which is represented as a
stochastic activity network (SAN). Recall that the time to complete the project,
Y, can be represented as

Y = max{X1 —+ X4,X1 + X3 —+ X5,X2 + X5}

where X; is the duration of the ¢th activity. This simple representation requires
that we enumerate all paths through the SAN, so that the project comple-
tion time is the longest of these paths. Path enumeration itself can be time
consuming, and this approach does not easily generalize to projects that have
resources shared between activities, for instance. Therefore, we also present a
discrete-event representation which is more complicated, but also more general.

4.4.1 Maximum Path Simulation of the SAN

Figure 4.20 shows a Python implementation of the algorithm displayed in Sect. 3.4
and repeated here:
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1. set s=0

2. repeat n times:

(a) generate X1, Xa,..., X5
(b) set Y = max{X1 + X47X1 + X3 + X5,X2 + X5}
(c) if Y >t, thenset s=s+1

3. estimate 0 by 6 = s/n

Since Pr{Y < t,} is known for this example (see Eq. 3.12), the true § =
Pr{Y > t,} = 0.16533 when ¢, = 5 is also computed by the program so that
we can compare it to the simulation estimate. Of course, in a practical problem
we would not know the answer, and we would be wasting our time simulating
it if we did. Notice that even if all of the digits in this probability estimate are
correct, they certainly are not practically useful.

The simulation estimate turns out to be 8 = 0.15400. A nice feature of a
probability estimate that is based on i.i.d. outputs is that an estimate of its
standard error is easily computed:

-0
n
Thus, se¢ is approximately 0.011, and the simulation has done its job since the
true value 6 is well within +1.96 Sé of 6. This is a reminder that simulations do
not deliver the answer, like Eq. 3.12, but do provide the capability to estimate
the simulation error, and to reduce that error to an acceptable level by increasing
the simulation effort (number of replications).

4.4.2 Discrete-event Simulation of the SAN

This section uses the NetworkX graph library and may be skipped without loss
of continuity.

As noted in Sect. 3.4,we can think of the completion of a project activity
as an event, and when all of the inbound activities Z(j) to a milestone j are
completed then the outbound activities ¢ € O(j) can be scheduled, where the
destination milestone of activity 7 is D(4). Thus, the following generic milestone
event is the only one needed:

event milestone (activity ¢ inbound to node j)
I(j) =1() ¢
if Z(j) = ) then
for each activity i € O(j)
schedule milestone(activity ¢ inbound to node D(4) to occur X; time
units later)
end if
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import math, random

class SAN:
N = 1000
tp = 5.0

def constructionsan(seed):
random. seed (seed)
X = [random.expovariate(1.0) for i in range(5)]
Y = max(X[0]J+X[3], X[0]+X[2] + X[4], X[1] + X[4D)
return Y

initialseed = 2124

Y = [constructionsan(initialseed + i) for i in range(SAN.N)]
Ytp = [1.0 if Y[i]>SAN.tp else O for i in range(SAN.N)]
thetahat = sum(Ytp)/SAN.N

sethetahat = math.sqrt((thetahat*(l1-thetahat))/SAN.N)

Theta = 1 - ( (math.pow(SAN.tp,2) / 2 - 3.0 * SAN.tp - 3) * \
math.exp(-2 * SAN.tp) + (-1.0/2 *math.pow(SAN.tp, 2) - 3 * SAN.tp + 3) * \
math.exp(-SAN.tp) + 1.0 - math.exp(-3 * SAN.tp))

Theta = 1 - ( (math.pow(SAN.tp,2) / 2 - 3.0 * SAN.tp - 3) * \

math.exp(-2 * SAN.tp) + (-1.0/2 *math.pow(SAN.tp, 2) - 3 * SAN.tp + 3) * \
math.exp(-SAN.tp) + 1.0 - math.exp(-3 * SAN.tp))

Figure 4.20: Simulation of the SAN as the maximum path through the network.



26 CHAPTER 4. SIMULATION PROGRAMMING WITH PYTHON

import random
import SimPy.Simulation as Sim
import networkx as nx

class SANglobal:

F = nx.DiGraph()
a=20

b=1

c =2

d=3

inTo = 0

outOf =1

F.add_nodes_from([a, b, c, d])
F.add_edges_from([(a,b), (a,c), (b,c), (b,d), (c,d)1)

Figure 4.21: Network description for the discrete-event SAN simulation.

Of course, this approach shifts the effort from enumerating all of the paths
through the SAN to creating the sets Z, O, D, but these sets have to be either
explicitly or implicitly defined to define the project itself. The key lesson from
this example, which applies to many simulations, is that it is possible to program
a single event routine to handle many simulation events that are conceptually
distinct, and this is done by passing event-specific information to the event
routine.

In this case we need to develop the configuration of that activity network
and use that description to direct the simulation. To do so we will use the
NetworkX!'!' graph library. NetworkX is a Python language software library for
the creation, manipulation, and study of the structure, dynamics, and functions
of complex networks. While it includes a wide range of graph algorithms, we
will use it as a standard representation of graphs such as the stochastic activity
network.

Using NetworkX, we create a directed graph (nx.DiGraph()) with four nodes
with five directed edges. (Figure 4.21) Implicitely, it also creates predecessor
and successor lists for each node that can be accessed using F.predecessors (i)
or F.successors(i).

We then define events as the completion of activities that go into a given
node. Events trigger a signal that can be used to trigger other activities.

In the first block of code in Figure 4.22 an event is defined for each node in
the network and added to a list of events (nodecomplete) which corresponds to
the list of nodes. Then, for each node, the list of predecessor events is created
(preevents) and the node is created as an ActivityProcess. (Figure )

For each ActivityProcess, the waitup () function is focused on the waitevent
event. This takes as an arguement myEvent, which is the list of predecessor

Uhttp:/ /networkx.github.io/
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SANglobal.finishtime = 0
Sim.initialize()
SANglobal.F.nodecomplete= []
for i in range(len(SANglobal.F.nodes())):
eventname = ’Completel1d’ % i
SANglobal.F.nodecomplete.append(Sim.SimEvent (eventname))
SANglobal.F.nodecomplete

activitynode = []
for i in range(len(SANglobal.F.nodes())):
activityname = ’Activity%1d’ % i
activitynode.append(ActivityProcess(activityname))
for i in range(len(SANglobal.F.nodes())):
if i <> SANglobal.inTo:
prenodes = SANglobal.F.predecessors(i)
preevents = [SANglobal.F.nodecomplete[j] for j in prenodes]
Sim.activate(activitynode[i], activitynodel[i] .waitup(i,preevents))
startevent = Sim.SimEvent(’Start’)
Sim.activate(activitynode [SANglobal.inTo],
activitynode [SANglobal.inTo] .waitup(SANglobal.inTo, startevent))
sstart = StartSignaller(’Signal’)
Sim.activate(sstart, sstart.startSignals())
Sim.simulate (until=50)

Figure 4.22: Main SAN DES simulation.

class ActivityProcess(Sim.Process):
def waitup(self,node, myEvent): # PEM illustrating "waitevent"
# wait for "myEvent" to occur
yield Sim.waitevent, self, myEvent
tis = random.expovariate(1.0)
print (° The activating event(s) were %s’ %
([x.name for x in self.eventsFired]))
yield Sim.hold, self, tis
finishtime = Sim.now()
if finishtime >SANglobal.finishtime:
SANglobal.finishtime = finishtime
SANglobal.F.nodecomplete [node] .signal ()

Figure 4.23: Activity process waits for events to be cast.
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class StartSignaller(Sim.Process):
# here we just schedule some events to fire
def startSignals(self):
yield Sim.hold, self, O
startevent.signal()

Figure 4.24: StartSignaller class for initiating the SAN simulation.
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Figure 4.25: Empirical cdf of the project completion times.

events that were identified in the main simulation. As each in the myEvent list
occurs, it broadcasts its associated signal using the signal () function. When all
the events in a ActivityProcess waitevent list (myEvent in Figure ?? have
occurred, the yield condition is met and the next line in ActivityProcess
begins.

To start the simulation, we create a Process that will provide the initiating
event of the simulation. (Figure 4.24) Similarly, we treat the initial node of the
simulation differently by having it wait for the start signal to begin instead of
waiting for predecessor events like the other nodes.

Notice (see Fig. 4.22) that the simulation ends when there are no additional
activities remaining to be completed.

A difference between this implementation of the SAN simulation and the one
in Sect. 4.4.1 is that here we write out the actual time the project completes on
each replication. By doing so, we can estimate Pr{Y > t,} for any value of ¢, by
sorting the data and counting how many out of 1000 replications were greater
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than t,. Figure 4.25 shows the empirical cdf of the 1000 project completion
times, which is the simulation estimate of Eq. (3.12).

4.4.3 Issues and Extensions

1. In real projects there are not only activities, but also limited and often
shared resources that are needed to complete the activities. Further, there
may be specific resource allocation rules when multiple activities contend
for the same resource. How might this be modeled in SimPy?

2. Time to complete the project is an important overall measure, but at the
planning stage it may be more important to discover which activities or
resources are the most critical to on-time completion of the project. What
additional output measures might be useful for deciding which activities
are “critical?”

4.5 Simulating the Asian Option
Here we consider estimating the value of an Asian option
v=E[e"""(X(T) - K)*]

as described in Sect. (3.5),where the maturity is T' = 1 year, the risk-free interest
rate is 7 = 0.05 and the strike price is K = $55. The underlying asset has an
initial value of X (0) = $50 and the volatility is 0® = (0.3)?. Recall that the key
quantity is

X(T) = ;/OTX(t) at

the time average of a continuous-time, continuous-state geometric Brownian
motion process which we cannot truly simulate on a digital computer. Thus,
we approximate it by dividing the interval [0, 7] into m steps of size At = T'/m
and using the discrete approximation

m

X(T) = % 3 X(iat).

i=1

This makes simulation possible, since

1
X(tiJrl) = X(tz) exp { (’I‘ — 20'2) (ti+1 - ti) +o\/tit1 — Zi+1}

for any increasing sequence of times {to,t1,...,tn}, where Z1, Zs, ..., Z,, are
ii.d. N(0,1).

Figure 4.26 is Python code that uses m = 32 steps in the approximation,
and makes 10,000 replications to estimate v. Discrete-event structure would
slow execution without any obvious benefit, so a simple loop is used to advance
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Table 4.3: Arrival rate of faxes by hour.

Time Rate (faxes/minute)
8 AM-9 AM 4.37
9 AM-10 AM 6.24
10 AM-11 AM 5.29
11 AM-12 PM 2.97
12 PM-1 PM 2.03
1 PM-2 PM 2.79
2 PM-3 PM 2.36
3 PM-4 PM 1.04

time. The value of the option from each replication is saved to a list for post-
simulation analysis.

The estimated value of v is $2.20 with a relative error of just over 2% (recall
that the relative error is the standard error divided by the mean). As the
histogram in Fig. 4.27 shows, the option is frequently worthless (approximately
68% of the time), but the average payoff, conditional on the payoff being positive,
is approximately $6.95.

4.6 Case Study: Service Center Simulation

This section presents a simulation case based on a project provided by a former
student. While still relatively simple, it is more complex than the previous
stylized examples, and the answer is not known without simulating. The purpose
of this section is to illustrate how one might attack simulation modeling and
programming for a realistic problem.

Example 4.1 (Fax Center Staffing) A service center receives faxed orders
throughout the day, with the rate of arrival varying hour by hour. The ar-
riwals are modeled by a nonstationary Poisson process with the rates shown in
Table 4.3.

A team of Entry Agents select faxes on a first-come-first-served basis from
the fax queue. Their time to process a fax is modeled as normally distributed
with mean 2.5 minutes and standard deviation 1 minute. There are two possible
outcomes after the Entry Agent finishes processing a fax: either it was a simple
fax and the work on it is complete, or it was not simple and it needs to go to a
Specialist for further processing. Qver the course of a day, approximately 20%
of the faxes require a Specialist. The time for a Specialist to process a fax is
modeled as normally distributed with mean 4.0 minutes and standard deviation
1 minute.

Minimizing the number of staff minimizes cost, but certain service-level re-
quirements much be achieved. In particular, 96% of all simple faxes should be



4.6. CASE STUDY: SERVICE CENTER SIMULATION 31

completed within 10 minutes of their arrival, while 80% of fazes requiring a
Specialist should also be completed (by both the Entry Agent and the Specialist)
within 10 minutes of their arrival.

The service center is open from 8 AM to 4 PM daily, and it is possible to
change the staffing level at 12 PM. Thus, a staffing policy consists of four num-
bers: the number of Entry Agents and Specialists before noon, and the number
of Entry Agents and Specialists after noon. Any fax that starts its processing
before moon completes processing by that same agent before the agent goes off
duty; and faxes in the queues at the end of the day are processed before the
agents leave work and therefore are not carried over to the next day.

The first step in building any simulation model is deciding what question or
questions that the model should answer. Knowing the questions helps identify
the system performance measures that the simulation needs to estimate, which
in turn drives the scope and level of detail in the simulation model.

The grand question for the service center is, what is the minimum number of
Entry Agents and Specialists needed for both time periods to meet the service-
level requirements? Therefore, the simulation must at least provide an estimate
of the percentage of faxes of each type entered within 10 minutes, given a specific
staff assignment.

Even when there seems to be a clear overall objective (minimize the staff re-
quired to achieve the service-level requirement), we often want to consider trade
offs around that objective. For instance, if meeting the requirement requires a
staff that is so large that they are frequently underutilized, or if employing the
minimal staff means that the Entry Agents or Specialists frequently have to
work well past the end of the day, then we might be willing to alter the service
requirement a bit. Statistics on the number and the time spent by faxes in
queue, and when the last fax of each day is actually completed, provide this
information. Including additional measures of system performance, beyond the
most critical ones, makes the simulation more useful.

Many discrete-event, stochastic simulations involve entities that dynamically
flow through some sort of queueing network where they compete for resources.
In such simulations, identifying the entities and resources is a good place to
start the model. For this service center the faxes are clearly the dynamic en-
tities, while the Entry Agents and Specialists are resources. The fax machines
themselves might also be considered a resource, especially if they are heavily
utilized or if outgoing as well as incoming faxes use the same machines. It turns
out that for this service center there is a bank of fax machines dedicated to in-
coming faxes, so it is reasonable to treat the arrival of faxes as an unconstrained
external arrival process. This fact was not stated in the original description of
the problem; follow-up questions are often needed to fully understand the system
of interest.

Whenever there are scarce resources, queues may form. Queues are often
first-in-first-out, with one queue for each resource, as they are in this service
center. However, queues may have priorities, and multiple queues may be served
by the same resource, or a single queue may feed multiple resources. Queueing
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behavior is often a critical part of the model.

When the simulation involves entities flowing through a network of queues,
then there can be two types of arrivals: arrivals from outside of the network and
arrivals internal to the network. Outside arrivals are like those we have already
seen in the M (t)/M /oo and M/G/1 examples. Internal arrivals are departures
from one queue that become arrivals to others. How these are modeled depends
largely on whether the departure from one queue is an immediate arrival to the
next—in which case the departure and arrival events are effectively the same
thing—or whether there is some sort of transportation delay—in which case the
arrival to the next queue should be scheduled as a distinct event. For the service
center the arrival of faxes to the Entry Agents is an outside arrival process, while
the 20% of faxes that require a Specialist are internal arrivals from the Entry
Agents to the Specialists.

Critical to experiment design is defining what constitutes a replication.
Replications should be independent and identically distributed. Since the ser-
vice center does not carry faxes over from one day to the next, a “day” defines
a replication. If faxes did carry over, but all faxes are cleared weekly, then a
replication might be defined by a work week. However, if there is always signif-
icant carry over from one day to the next, then a replication might have to be
defined arbitrarily.

The work day at the service center is eight hours; however the staff does
not leave until all faxes that arrive before 4 PM are processed. If we defined a
replication to be exactly eight hours then we could be fooled by a staffing policy
that allows a large queue of faxes to build up toward the end of the day, since
the entry of those faxes would not be included in our statistics. To model a
replication that ends when there is no additional work remaining, we will cut
off the fax arrivals at 4 PM and then end the simulation when the event calendar
is empty. This works because idle Entry Agents and Specialists will always take
a fax from their queue if one is available.

Rather than walk through the SimPy code line by line, we will point out
some highlights to facilitate the reader’s understanding of the code.

Figure 4.28 shows the global declarations for the service center simulation.
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import math, random

def Asianoption(interestrate, sigma, steps, initialValue, strikePrice, maturity, seed):
"""  Asian Options simulation

sumx = 0.0
# Create instance of a random number object
generator = random.Random()
generator.seed(seed)
X = initialValue
sigma2 = (sigma*sigma)/2.0
for j in range(steps):
z = generator.normalvariate(0, 1)
x = x * math.exp((interestRate - sigma2) * interval + sigma * math.sqrt(interval) * z)
sumx = sumx + X
value = math.exp(-interestRate * maturity) * max(sumx / float(steps) - strikePrice, 0.0)
return value
replications = 10000
initialSeed = 1234
maturity = 1.0
steps = 32
sigma = 0.3
interestRate = 0.05
initialValue = 50.0
strikePrice = 55.0
interval = maturity / float(steps)

values = [Asianoption(interestRate, sigma, steps, initialValue, strikePrice, maturity, \
i + initialSeed) for i in range(replications)]

print (mean(values))

print(std(values)/math.sqrt(replications)) # standard error

print (std(values)/math.sqrt(replications)/mean(values)) # relative error

Figure 4.26: Python Simulation of the Asian option problem.
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Figure 4.27: Histogram of the realized value of the Asian option from 10,000
replications.

import random
import SimPy.Simulation as Sim

class F:
maxTime 100 # hours
seedval = 1234
period = 60.0
nPeriods = 8 # periods per day
meanRegular = 2.5/period # hours
varRegular = 1.0/period # hours
stdRegular = math.sqrt(1.0)/period
meanSpecial = 4.0/period # hours
varSpecial = 1.0/period # hours
stdSpecial = math.sqrt(1.0)/period
tPMshiftchange = 4.0
numAgents = 15
numAgentsPM = 9
numSpecialists =
numSpecialistsPM
maxRate = 6.24
aRate= [4.37, 6.24, 5.29, 2.97, 2.03, 2.79, 2.36, 1.04]
aRateperhour = [aRate[i] * period for i in range(len(aRate))]
meanTBA = 1/(maxRate * period) # hours
pSpecial = 0.20

6
=3

Figure 4.28: Global declarations for service center simulation.
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The main program for the simulation is in Fig. 4.29. Of particular note are
the two Monitor statements defining Regular10 and Speciall0. These will
be used to obtain the fraction of regular and special faxes that are processed
within the 10-minute requirement by recording a 1 for any fax that meets the
requirement, and a 0 otherwise. The mean of these values is the desired fraction.

Also notice is the condition that ends the main simulation loop:

self.simulate(until=F.maxTime)

Because the simulation ends well after the arrivals cease, any faxes still in
the queue will be completed prior to the end of the simulation. When the event
calendar is empty, then there are no additional faxes to process, and no pending
arrival of a fax. This condition will only hold after 4 PM and once all remaining
faxes have been entered.



36 CHAPTER 4. SIMULATION PROGRAMMING WITH PYTHON

class Faxcentersim(Sim.Simulation) :
def run(self, aseed):
random. seed (aseed)
self.agents = Sim.Resource(capacity=F.numAgents,
name="Service Agents", unitName="Agent", monitored = True,
qType=Sim.PriorityQ, sim=self)
self .specialagents = Sim.Resource(capacity=F.numSpecialists,
name="Specialist Agents", unitName="Specialist", monitored=True,
qType=Sim.PriorityQ, sim=self)
self.meanTBA = 0.0
self.initialize()
s = Source(’Source’, sim=self)
a = ArrivalRate(’Arrival Rate’, sim=self)
tchange = SecondShift(’PM Shift’, sim=self)
self .Regularwait = Sim.Monitor(name="Regular time",
ylab="hours’, sim=self)
self.Specialistwait = Sim.Monitor (name="Special time",
ylab="hours’, sim=self)
self.activate(a, a.generate(F.aRateperhour))
self.activate(s,
s.generate(resourcenormal=self.agents,
resourcespecial=self.specialagents), at=0.0)
self.activate(tchange, tchange.generate(F.tPMshiftchange,
resourcenormal=self.agents,
resourcespecial=self.specialagents))
self.simulate(until=F.maxTime)
def reporting(self):
regularcount = self.Regularwait.count()
regularwait = self.Regularwait.mean()
regularQ = self.agents.waitMon.timeAverage ()
regularagents = self.agents.actMon.timeAverage()
regulariOmin = sum([1.0 if waittime < 1./6 else O
for waittime in self.Regularwait.yseries()])
fractionregulariOmin = regulariOmin/regularcount
specialcount = self.Specialistwait.count()
specialwait = self.Specialistwait.mean()
specialQ = self.specialagents.waitMon.timeAverage()
specialagents = self.specialagents.actMon.timeAverage()
speciallOmin = sum([1.0 if waittime < 1./6 else O
for waittime in self.Specialistwait.yseries()])
fractionspeciallOmin = speciallOmin/specialcount
result = [regularwait, regularQ, regularagents,
specialwait, specialQ, specialagents,
fractionregulariOmin, fractionspeciallOmin]
return result
reps=10
faxsimulation = []
for i in range(reps):
faxsim = Faxcentersim()
faxsim.run(F.seedval + i)
result = faxsim.reporting()
faxsimulation.append(result)

mean(faxsimulation, axis=0)
std(faxsimulation, axis=0)

Figure 4.29: Main program and statistics reporting for service center simulation.
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Figure 4.30 includes processes that generate faxes (Source) and determine
how they are routed to agents (Fax). As faxes are routed, the simulation de-
termines if they require special handling after the regular agent is complete
(if (checkSpecial < F.pSpecial)). There are also two Monitor present,
Regularwait and Specialistwait which record the total wait time for each
fax that is completed.

self.sim.Regularwait.observe(finished)

Later, in the reporting()) function of the main program shown in Figure
4.29, this Monitor will be used to both get the number of total faxes of this
type, the number that waited less than 10 minutes before completing processing,
and the fraction.

regularcount = self.Regularwait.count()

regulariOmin = sum([1.0 if waittime < 1./6 else O
for waittime in self.Regularwait.yseries()])

fractionregulariOmin = regulariOmin/regularcount

While collecting statistics in this fashion provides the most flexibility as it
keeps the wait time observations for future use, we could have instead recorded
if the wait time was less than 10 minutes.

if finished < 1.0/6: # 10 minutes
self.sim.Regularwait.observe(1)
else:
self.sim.Regularwait.observe(0)

Then we could have calculated the fraction by taking the sum of the obser-
vations divided by the number of observations.

fractionregulariOmin = float(sum(self.Regularwait))/
len(self.Regularwait)

The Fax.reporting() then uses the Monitor for wait time as well as the
monitors associated with the agents and specialagents resources. The actMon
monitors track how the resources are being used while the waitMon monitors
track the waiting queue for each monitor. For resources, we tend to be inter-
ested in the time average value of the size of the queue or the number of units of
resource in use so the agents.actMon. timeAverage () function returns the av-
erage utilization of the agents while specialagents.waitMon.timeAverage ()
function returns the average number of special faxes in queue.

Ten replications of this simulation with a staffing policy of 15 Entry Agents
in the morning and 9 in the afternoon, and 6 Specialists in the morning and 3
in the afternoon, gives 0.98 +0.04 for the fraction of regular faxes entered in 10
minutes or less, and 0.84+0.08 for the special faxes. The “+” are 95% confidence
intervals. This policy appears to be close to the requirements, although if we
absolutely insist on 80% for the special faxes then additional replications are
needed to narrow the confidence interval.
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class Source(Sim.Process):
""" Source generates customers randomly """

def generate(self, resourcenormal, resourcespecial):

i=0

while(self.sim.now() < F.nPeriods and self.sim.meanTBA>0):
f = Fax(name="Fax},02d" % (i), sim=self.sim)
self.sim.activate(f, \

f.visit(agent=resourcenormal, specialagent = resourcespecial))

t = random.expovariate(1.0 / self.sim.meanTBA)
yield Sim.hold, self, t
i+=1

class Fax(Sim.Process):
""" Fax arrives and is procossed

Processed first by regular staff, then specialized staff if needed

Assume that anyone working on a fax will continue working until it finishes.
nnn

def visit(self, agent, specialagent):
arrive = self.sim.now()
yield Sim.request, self, agent
wait = self.sim.now() - arrive
tis = -1.0
while (tis < 0):
tis = random.normalvariate(F.meanRegular, F.stdRegular)
yield Sim.hold, self, tis
yield Sim.release, self, agent
checkSpecial = random.random()
if (checkSpecial < F.pSpecial):
tspecial = -1.0
while (tspecial < 0):
tspecial = random.normalvariate(F.meanSpecial, F.stdSpecial)
yield Sim.request, self, specialagent
yield Sim.hold, self, tspecial
yield Sim.release, self, specialagent
finished = self.sim.now() - arrive
self.sim.Specialistwait.observe(finished)
else:
finished = self.sim.now() - arrive
self.sim.Regularwait.observe(finished)

Figure 4.30: Processes for arriving agents.
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class ArrivalRate(Sim.Process):
""" update the arrival rate every hour

Reads in the arrival rate table and updates the arrival rate every hour
One hour after the last hour begins, changes arrival rate to O
nnn
def generate(self, arrivalrate):
for i in range(len(arrivalrate)):
self.sim.meanTBA = 1.0/ (arrivalratel[i])
yield Sim.hold, self, 1.0
# After the end of the day, set the arrival rate = 0
self.sim.meanTBA = 0.0

class SecondShift(Sim.Process):
""" Trigger the change in shifts for agents

The effect should be to move the wait queue to the new set of agents

def generate(self, tshiftchange, resourcenormal, resourcespecial):
yield Sim.hold, self, tshiftchange
reduceagents = F.numAgents - F.numAgentsPM
reducespecial = F.numSpecialists - F.numSpecialistsPM

for i in range(reduceagents):
a = Agentoff (name="removeagent’02d" % (i), sim=self.sim)
self.sim.activate(a, a.visit(resourcenormal))

for j in range(reducespecial):
a = Agentoff (name="removespecial’02d" % (i) , sim=self.sim)
self.sim.activate(a, a.visit(resourcespecial))

class Agentoff (Sim.Process):
def visit(self, agent):
tremain = F.maxTime - self.sim.now()+1
# use priority 100 to ensure agent is removed as soon as current fax is done
yield Sim.request, self, agent, 100
yield Sim.hold, self, tremain
yield Sim.release, self, agent

Figure 4.31: Processes handling changes over time.
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class F:
maxTime = 100.0 # hours
theseed = 9999

period = 60.0

nPeriods = 8

meanRegular = 2.5/period # hours
varRegular = 1.0/period # hours
stdRegular = math.sqrt(1.0)/period
meanSpecial = 4.0/period # hours
varSpecial 1.0/period # hours
stdSpecial = math.sqrt(1.0)/period

tPMshiftchange = 4.0
numAgents = 15
numAgentsPM = 9
numSpecialists

=6
numSpecialistsPM =

3

maxRate = 6.24

aRate= [4.37, 6.24, 5.29, 2.97, 2.03, 2.79, 2.36, 1.04] # per minute
aRateperhour = [aRate[i] * period for i in range(len(aRate))] # per hour
meanTBA = 1/(maxRate * period) # hours

pSpecial = 0.20

Figure 4.32: Parameters for service center simulation.

4.6.1 Issues and Extensions

1. There are many similarities between the programming for this simulation
and the event-based simulation of the M/G/1 queue.

2. The fax entry times were modeled as being normally distributed. However,
the normal distribution admits negative values, which certainly does not
make sense. What should be done about this? Consider mapping negative
values to 0, or generating a new value whenever a negative value occurs.
Which is more likely to be realistic and why?

Exercises

1. For the hospital problem, simulate the current system in which the recep-
tionist’s service time is well modeled as having an Erlang-4 distribution
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with mean 0.6 minutes. Compare the waiting time to the proposed elec-
tronic kiosk alternative.

. Simulate an M (t)/G /oo queue where G corresponds to an Erlang distri-

bution with fixed mean but try different numbers of phases. That is, keep
the mean service time fixed but change the variability. Is the expected
number if queue sensitive to the variance in the service time?

. Modify the SAN simulation to allow each activity to have a different mean

time to complete (currently they all have mean time 1). Use a Collection
to hold these mean times.

. Try the following numbers of steps for approximating the value of the

Asian option to see how sensitive the value is to the step size: m =
8,16, 32,64, 128.

. In the simulation of the Asian option, the sample mean of 10,000 repli-

cations was 2.198270479, and the standard deviation was 4.770393202.
Approximately how many replications would it take to decrease the rela-
tive error to less than 1%?

. For the service center, increase the number of replications until you can

be confident that that suggested policy does or does not achieve the 80%
entry in less than 10 minutes requirement for special faxes.

. For the service center, find the minimum staffing policy (in terms of total

number of staff) that achieves the service-level requirement. Examine the
other statistics generated by the simulation to make sure you are satisfied
with this policy.

. For the service center, suppose that Specialists earn twice as much as

Entry Agents. Find the minimum cost staffing policy that achieves the
service-level requirement. Examine the other statistics generated by the
simulation to make sure you are satisfied with this policy.

. For the service center, suppose that the staffing level can change hourly,

but once an Agent or Specialist comes on duty they must work for four
hours. Find the minimum staffing policy (in terms of total number of
staff) that achieves the service-level requirement.

For the service center, pick a staffing policy that fails to achieve the service
level requirements by 20% or more. Rerun the simulation with a replica-
tion being defined as exactly 8 hours, but do not carry waiting faxes over
to the next day. How much do the statistics differ using the two different
ways to end a replication?

The function NSPP_Fax is listed below. This function implements the
thinning method described in Sect. 4.2 for a nonstationary Poisson process
with piecewise-constant rate function. Study it and describe how it works.
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def NSPP_Fax(arrivalrate, MaxRate, NPeriods, periodlength, stream):
’??>  Non-stationary Poisson Process

This function generates interarrival times from a NSPP with
piecewise constant arrival rate over a fixed time of NPeriod time units

arrivalrate - Array of arrival rates over a common length period
MaxRate - The maximum value of ARate
NPeriods - Number of time periods in ARate

periodlength - time units between (possible) changes in arrival rate
10

random. seed (stream)
pthinning = [(1-hourlyrate/MaxRate) for hourlyrate in arrivalrate]
t =0.0
arrivaltimes = []
totaltime = NPeriods * periodlength
while t < totaltime:
deltat = random.expovariate(MaxRate)
t =t + deltat
if t < totaltime:
pthin = pthinning[int(floor (t/periodlength))]
uthin = random.random()
if uthin > pthin:
arrivaltimes.append(float(t)) # add arrival since not thinned
return arrivaltimes

12. Beginning with the event-based M/G/1 simulation, implement the changes
necessary to make it an M/G /s simulation (a single queue with any num-
ber of servers). Keeping A = 1 and 7/s = 0.8, simulate s = 1,2, 3 servers
and compare the results. What you are doing is comparing queues with
the same service capacity, but with 1 fast server as compared to two or
more slower servers. State clearly what you observe.

13. Modify the SimPy event-based simulation of the M/G/1 queue to simulate
an M/G/1/c retrial queue. This means that customers who arrive to
find ¢ customers in the system (including the customer in service) leave
immediately, but arrive again after an exponentially distributed amount
of time with mean MeanTR. Hint: The existence of retrial customers should
not affect the arrival process for first-time arrivals.

14. This problem assumes a more advanced background in stochastic pro-
cesses. In the simulation of the M(t)/M /oo queue there could be a very
large number of events on the event calendar: one “Arrival” and one “De-
parture” for each car currently in the garage. However, properties of the
exponential distribution can reduce this to no more than two events. Let
B = 1/7 be the departure rate for a car (recall that 7 is the mean parking
time). If at any time we observe that there are N car in the garage (no
matter how long they have been there), then the time until the first of
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these cars departs is exponentially distributed with mean 1/(N3). Use
this insight to build an M (¢)/M /oo simulation with at most two pending
events, next arrival and next departure. Hint: Whenever an arrival oc-
curs the distribution of the time until the next departure changes, so the
scheduled next departure time must again be generated.

The phone desk for a small office is staffed from 8 AM to 4 PM by a
single operator. Calls arrive according to a Poisson process with rate 6
per hour, and the time to serve a call is uniformly distributed between 5
and 12 minutes. Callers who find the operator busy are placed on hold, if
there is space available, otherwise they receive a busy signal and the call
is considered “lost.” In addition, 10% of callers who do not immediately
get the operator decide to hang up rather than go on hold; they are not
considered lost, since it was their choice. Because the hold queue occupies
resources, the company would like to know the smallest capacity (number
of callers) for the hold queue that keeps the daily fraction of lost calls
under 5%. In addition, they would like to know the long-run utilization
of the operator to make sure he or she will not be too busy. Use SimPy
to simulate this system and find the required capacity for the hold queue.
Model the callers as a Process and the operator as a Resource. Use the
functions random. expovariate and random.uniform for random-variate
generation. Estimate the fraction of calls lost (record a 0 for calls not lost,
a 1 for those that are lost so that the sample mean is the fraction lost).
Use the statistics collected by class Resource to estimate the utilization.

Software Made Personal (SMP) customizes software products in two ar-
eas: financial tracking and contact management. They currently have a
customer support call center that handles technical questions for owners
of their software from the hours of 8 AM to 4 PM Eastern Time.

When a customer calls they the first listen to a recording that asks them to
select among the product lines; historically 59% are financial products and
41% contact management products. The number of customers who can be
connected (talking to an agent or on hold) at any one time is essentially
unlimited. Each product line has its own agents. If an appropriate agent is
available then the call is immediately routed to the agent; if an appropriate
agent is not available, then the caller is placed in a hold queue (and listens
to a combination of music and ads). SMP has observed that hang ups very
rarely happen.

SMP is hoping to reduce the total number of agents they need by cross-
training agents so that they can answer calls for any product line. Since
the agents will not be experts across all products, this is expected to
increase the time to process a call by about 5%. The question that SMP
has asked you to answer is how many cross-trained agents are needed to
provide service at the same level as the current system.

Incoming calls can be modeled as a Poisson arrival process with a rate of
60 per hour. The mean time required for an agent to answer a question
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is 5 minutes, with the actual time being Erlang-2 for financial calls, and
Erlang-3 for contact management calls. The current assignment of agents
is 4 for financial and 3 for contact management. Simulate the system to
find out how many agents are needed to deliver the same level of service
in the cross-trained system as in the current system.



Bibliography

[1] SimPy Development Team, SimPy  Simulation  Package,
http://simpy.sourceforge.net/, 2012.

[2] Norm Matloff, A Discrete-Event Simulation Course Based on the SimPy
Language, http:/ /heather.cs.ucdavis.edu/~matloff/simcourse.html, 2011.

[3] Eric Jones, Travis Oliphant, Pearu Peterson, and others, SciPy: Open
Source Scientific Tools for Python, http://www.scipy.org/, 2001.

45



