
either the short rate (when the underlying process is positive or zero) or
what the short rate would be without the currency option (when the un-
derlying process is negative). Black called this process the shadow short rate.
In such a model, the shadow short rate can become negative, the nominal
short rate is a positive part of the shadow rate, and all term rates are strict-
ly positive. A similar idea was independently discussed by Rogers (1995).

Based on this idea, Gorovoi & Linetsky (2002) have recently developed
a class of models where the shadow rate is modelled as a one-dimensional
diffusion that is allowed to get negative and the nominal rate is identified
with the positive part of the shadow rate. Here, we discuss the model as-
suming the shadow rate follows the Vasicek process. The general case
where the shadow rate is modelled as a one-dimensional diffusion, as well
as analytical solutions for affine models, are given in Gorovoi & Linetsky
(2002). We refer the reader to that paper for details.

The model
We assume that, under the risk-neutral probability measure, the shadow
rate {Xt, t ≥ 0} follows an Ornstein-Uhlenbeck (OU)/Vasicek process on
the real line:

(1)

where θ > 0 is the long-run level of the shadow rate, κ > 0 is the rate of
mean reversion towards the long-run level and σ > 0 is the volatility pa-
rameter. In Gorovoi & Linetsky (2002), we develop a general framework
where the shadow rate is assumed to follow a one-dimensional diffusion
process with some infinitesimal drift µ(x) and variance σ2(x). Here, we re-
strict ourselves to the Vasicek shadow rate.

Following Black (1995) and Rogers (1995), we assume that the nominal
short rate {rt, t ≥ 0} is the positive part of the shadow rate (x+ ≡ max{x, 0}):

(2)

A zero-coupon bond pays $1 at maturity τ > 0. Its price at time zero is
given by the risk-neutral expectation:

(3)

where Ex[⋅] ≡ E[⋅| X0 = x]. The corresponding yield-to-maturity R(x, τ) is
defined as usual: R(x, τ) := –ln P(x, τ)/τ. Since the short rate is always non-
negative, the zero-coupon bond prices P(x, τ) given by equation (3) are
always strictly less than one for any finite time to maturity τ > 0. Moreover,
for each fixed x the zero-coupon bond pricing function {P(x, τ), τ ≥ 0} is
strictly decreasing on [0, ∞) with P(x, 0) = 1, and all term rates (yields) R(x,
τ) are strictly positive for all τ > 0. This ensures that the model is free from
arbitrage opportunities present in models with negative short rates.

We note that the zero-coupon bond price (3) has the form of the Laplace
transform (evaluated at the unit value of the transform parameter) of an
area functional of the shadow rate diffusion:

(4)0
: , 0

t
t uA X du t+= ≥∫

( ) 0 0, u ur du X du
x xP x E e E e

τ τ +− −   ∫ ∫τ = =   
   

, 0t tr X t+= ≥

( ) 0,t t tdX X dt dB X x= κ θ − + σ =

The current short rate in Japan is zero, while the Federal Funds rate in
the US stands at 1% after the June 2003 rate cut. How does one model
the term structure of interest rates when the short rate is low or zero?

In this article, we report on a class of models recently developed by Gorovoi
& Linetsky (2002), based on Black’s (1995) idea of the non-negative nom-
inal interest rate as an option on the shadow interest rate that is allowed
to get negative. 

Gaussian interest rate models, starting with Vasicek (1977), are often
used to price interest rate derivatives. It is often said that there is no need
to worry about negative rates, as the probability of them occurring is small.
While this is true in some cases, Rogers (1996) shows that some deriva-
tives’ prices are very sensitive to the possibility of negative rates. For such
derivatives, prices obtained with the Gaussian models can be absurd (for
example, in the Vasicek model, zero-strike floorlets have substantial val-
ues when the short rate is near zero).

An alternative class of models uses diffusion processes for the short rate
with the property that zero is an unattainable boundary. The dynamics of
the short rate is restricted to the positive half-line and the short rate can
never reach zero. The Black & Karasinski (1991) model is an important ex-
ample. These models have a lognormal instantaneous short-rate volatility
and a mean-reverting drift. A common feature of such models is that the
volatility declines rapidly as the rate approaches zero, thus switching off
the diffusion term and allowing the mean-reverting drift to pull the process
away from zero, making zero unattainable. The square-root Cox, Ingersoll
& Ross (1985) model is a borderline case. When the mean-reverting drift is
large enough relative to the volatility, the rate cannot reach zero. Other-
wise, the rate can reach zero, and one must decide on the boundary con-
dition at zero. More precisely, if 2κθ ≥ σ2, then zero is an unattainable
entrance boundary for the process. Otherwise, it is an attainable regular
boundary, and a boundary condition must be specified. In both cases, the
short-rate volatility declines as the short rate decreases towards zero, be-
cause volatility is the result of a square root.

Volatility structures that vanish as the short rate falls to zero contradict
empirical evidence. Over the past few years, short-term interest rates in
Japan have stayed near zero. However, their volatility remained quite high
throughout the period (Goldstein & Keirstead, 1997). Furthermore, after a
series of rate cuts, the US federal funds rate stands at 1%. Obviously, both
the Gaussian models that allow the short rate to become negative and the
lognormal or square-root models with zero an unattainable boundary are
inadequate in the current zero short-rate regime in Japan, and are coming
into question in the low-rate regimes in the US and Europe.

To model the low-rate regime, one would like a model where the short
rate stays non-negative (although it could become zero) and, at the same
time, has non-vanishing volatility at low rates. Black (1995) has put forward
the following idea to model nominal interest rates as options. He argued that
the short rate cannot become negative because currency is an option: when
an instrument has a negative rate, we can choose currency instead. Thus,
we can treat the short rate itself as an option: we can choose an underlying
process that can take negative values and simply replace all the negative val-
ues with zeros (take the positive part). We still have a one-factor process:
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Using a Vasicek process for the shadow rate, Viatcheslav Gorovoi and Vadim Linetsky develop
an analytical solution for pricing zero-coupon bonds using eigenfunction expansions, and
show how to calibrate their model to the Japanese bond market. This article is not the last
word on the subject – in particular, the relationship between shadow interest rates, real rates
and inflation should be explored – but we hope it will encourage further research



The area functional measures the area below the positive part of a sample
path of the process up to time t. Perman & Wellner (1996) study area func-
tionals of standard Brownian motion. For Brownian motion with drift, the
area functional has appeared in the finance literature in connection with
the valuation of executive stock options in Carr & Linetsky (2000). Here,
we are interested in area functionals of the OU process. Namely, we need
to calculate the zero-coupon bond price P(x, τ) = Ex[e

–Aτ].

The eigenfunction expansion solution
To calculate prices of zero-coupon bonds and interest rate derivatives, we
use the spectral expansion approach described in detail in Linetsky (2002a)
(see also Davydov & Linetsky, 2003; Goldstein & Keirstead, 1997; Gorovoi

& Linetsky, 2002; Lewis, 1994 and 1998; Linetsky, 2001, 2002b and 2000c;
Lipton, 2001 and 2002; and Lipton & McGhee, 2002, for applications of the
eigenfunction expansion method to derivatives pricing). Below, we give
the final result for the model with the Vasicek shadow rate. See Gorovoi
& Linetsky (2002) for details.

The zero-coupon bond pricing function P(x, τ) as a function of time to
maturity τ and shadow rate x solves the fundamental pricing partial dif-
ferential equation:

(5)

with the initial condition P(x, 0) = 1. The solution has the eigenfunction
expansion:

(6)

where {λn}
∞
n = 0 are the eigenvalues, 0 < λ0 < λ1 < ..., limn↑∞λn = ∞, and

{ϕn}
∞
n = 0 are the corresponding eigenfunctions of the associate Sturm-Li-

ouville (SL) spectral problem:

(7)

The eigenfunctions form a complete, orthonormal basis in the Hilbert space
L2(R, m) of real-value functions square-integrable with the speed density
m(x) of the Vasicek diffusion:

(8)

and endowed with the inner product ( f, g) = ∫ ∞
–∞ f (x)g(x)m(x)dx, so that

||ϕn||
2 ≡ (ϕn, ϕn) = 1. Since the payout of the zero-coupon bond is a con-

stant, and constants are in L2(R, m), the expansion coefficients cn in equa-
tion (6) are given by:

(9)

Due to the factors e–λnτ in equation (6), the longer the time to maturity τ
the faster the eigenfunction expansion converges.

We have expressed the zero-coupon bond pricing function in terms of the
eigenvalues λn and eigenfunctions ϕn of the SL problem (7). It remains to de-
termine their explicit expressions and plug them into the eigenfunction ex-
pansion. The results are expressed in terms of the Weber-Hermite parabolic
cylinder function Dν(z) (we follow the notation of Erdelyi, 1953, pages 116–130,
and Buchholz, 1969, pages 39–49). Introduce the following notation:

(10)

For λ ∈ C, define the function w(λ) by:

(11)

This function is entire in λ, its zeros are simple and positive, and the eigen-
values λn of the SL problem (6) can be identified with its zeros. The cor-
responding continuous eigenfunctions with continuous first derivatives and
normalised so that ||ϕn||

2 = 1 are:

(12)
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Zero-coupon yield curve bootstrapped from JGB data on April 9, 2003
and calibrated Black's model of interest rates as options zero-coupon
yield curve. Calibrated Vasicek shadow rate risk-neutral process
parameters are: θ = 0.008 (0.8%), κ = 0.18, σ = 0.026, x = –0.056
(–5.6%). JGB data from Bloomberg

1. JGB yield curve

Coupon Maturity Price Bootstrapped Model
(%) yield (%) yield (%)
0 Sep 10, 2003 99.992 0.02 0.00
0.1 Jun 21, 2004 100.080 0.03 0.01
0.1 Apr 20, 2005 100.059 0.07 0.05
0.5 Mar 20, 2006 101.080 0.13 0.12
0.5 Sep 20, 2006 101.140 0.17 0.17
0.5 Mar 20, 2007 101.150 0.21 0.21
1.9 Mar 20, 2008 107.940 0.29 0.31
1.9 Mar 20, 2009 108.970 0.38 0.40
1.9 Jun 21, 2010 110.166 0.48 0.52
1.5 Jun 20, 2011 107.300 0.60 0.60
1.5 Mar 20, 2012 107.290 0.68 0.66
4.5 Sep 22, 2014 140.680 0.85 0.83
3.7 Sep 21, 2015 133.710 0.91 0.89
2.7 Mar 20, 2018 124.460 0.99 1.01
2.2 Jun 22, 2020 118.420 1.08 1.10
1.9 Sep 20, 2022 113.650 1.17 1.18
2.4 Feb 20, 2030 125.850 1.34 1.35

Note: the first three columns give JGB data from Bloomberg, including
coupon, maturity and prices on April 9, 2003. The fourth and fifth columns
give boot-strapped zero-coupon yields and calibrated model yields.
Calibrated Vasicek shadow rate process parameters are: θ = 0.008 (0.8%),
κ = 0.18, σ = 0.026, x = –0.056 (–5.6%)

A. Calibration to JGB data



tion of the first hitting time of zero, starting from the negative value x =
–5.6%. With these parameters, the risk-neutral expected time to hit zero is
calculated as E–0.056[T0] = 5.36 years. The real-world expected time should
be shorter, as the risk-neutral parameter θ = 0.008 reflects the risk adjust-
ment θ = θrw – σλ/κ, assuming the constant market price of risk λ. Under
the real-world probability measure, θrw = θ + σλ/κ > θ and the mean re-
version pulls the shadow rate process towards this higher value θrw.

It is also interesting to analyse distributions of future term rates. Figure 3
plots the probability density functions of the one-year rate (yield on a one-
year bond) one year and five years into the future, starting with the initial shad-
ow rate x = –5.6%. While the one-year rate is strictly positive, since the initial
shadow rate is negative at x = –5.6% and the mean hitting time of zero is over
five years, there is a significant probability of finding the one-year rate near
zero both in one year and five years. For the probability density function one
year forward, most probability is concentrated in the interval between zero

where w′(λn) ≡
dw(λ)
dλ    |λ = λn

. The Weber-Hermite parabolic cylinder function
Dν(z) is expressed in terms of the Hermite function Hν(z) (Lebedev, 1972,
page 284):

(13)

When ν = n is an integer, the Hermite function reduces to the Hermite
polynomial. For any ν, real or complex, the Hermite function can be rep-
resented by an (infinite for ν not an integer) series in z and is available as
a built-in function in Mathematica (HermiteH[ν, z]). For more details, see
the Mathematica documentation available on the Mathematica website
(http://functions.wolfram.com/HypergeometricFunctions/HermiteHGeneral/).
To calculate the eigenfunction expansion coefficients, the single integrals
in equation (9) were calculated numerically using the built-in numerical
integration routine in Mathematica. For longer times to maturity, several
terms in expansion (6) are enough to attain the five-decimal accuracy. As
time to maturity decreases, more terms in the eigenfunction expansion
have to be added to attain the same accuracy.

From equation (6), we have the following asymptotics for large times
to maturity:

(14)

As time to maturity increases, the yield curve flattens out and approaches
the principal eigenvalue λ0 > 0 (see Lewis, 1994 and 1998, for general dis-
cussions along these lines, as well as some interesting examples). In Black’s
model of interest rates as options, the principal eigenvalue is guaranteed
to be strictly positive. However, in models that allow negative nominal
rates, the principal eigenvalue can, in general, be negative. This can lead
to absurd economic consequences. As time to maturity increases, the zero-
coupon bond price blows up to infinity as the yield curve flattens out and
approaches a negative asymptotic yield. In particular, this happens in the
Vasicek model with σ2 > 2κ2θ (in the Vasicek model, λ0 = θ – σ 2

2κ2). 

Model calibration and analysis
We now calibrate Black’s model with Vasicek shadow rate to the Japanese
government bond (JGB) data. Table A gives JGB data from Bloomberg, in-
cluding coupon, maturity and prices on April 9, 2003.1 The fourth and fifth
columns give bootstrapped zero-coupon yields and calibrated model yields.
Calibrated Vasicek shadow rate process parameters are: θ = 0.008 (0.8%),
κ = 0.18, σ = 0.026 and x = –0.056 (–5.6%). Figure 1 plots JGB and cali-
brated model yield curves. The fit of the model to the JGB data is excel-
lent. We have 17 data points (17 bonds), three model parameters (θ, κ and
σ) plus the initial shadow rate x. We fit the model by minimising the root
mean-squared error between the JGB yield curve and the model yield curve
(table A). We use the built-in Mead & Nelder (1965) minimisation algo-
rithm in Mathematica that searches for a global minimum of a function.
Typical bid/ask spreads for JGBs reported on Bloomberg are 2 basis points.
Our model calibrates to within 2bp for all 17 data points but one.

It is particularly notable that the current implied shadow rate is nega-
tive at –5.6%. For comparison, Gorovoi & Linetsky (2002) give calibration
results on February 3, 2002: θ = 0.0354, κ = 0.21, σ = 0.028 and x = –0.051.
Comparing this with the April 2003 results presented above, we see that
the shadow rate further declined from –5.1% to –5.6%, θ declined from
3.5% to 0.8%, while model parameters κ and σ did not change significantly
over the 14-month period (the model seems to be relatively robust with
respect to the estimates for parameters κ and σ). The observed decline in
the long-run level θ over this 14-month period suggests a further exten-
sion of our model to a two-factor model with stochastic θ.

It is interesting to calculate the expected time for the shadow rate to be-
come positive again, starting from the negative value of –5.6%. The distri-
bution of the first hitting time of zero for the Vasicek process can be readily
calculated by using the eigenfunction expansion method (see Linetsky, 2003,
for details). Figure 2 plots the resulting risk-neutral probability density func-
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Probability density function of the first hitting time of zero, starting from x =
–5.6%. Calibrated Vasicek shadow rate process parameters are: θ = 0.008
(0.8%), κ = 0.18, σ = 0.026, x = –0.056 (–5.6%)

2. PDF of first hitting time of zero
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from x = –5.6%. Calibrated Vasicek shadow rate process parameters
are: θ = 0.008 (0.8%), κ = 0.18, σ = 0.026, x = –0.056 (–5.6%)

3. PDF of one-year rate in one and five years

1 To avoid the so-called reverse coupon effect, one should try to select bonds with similar
coupons. Generally, in the JGB market premium bonds with larger coupons tend to be in
greater demand, which can result in some liquidity premium for those bonds



and 0.5%, while for the probability density function five years forward the right
tail is much fatter, meaningfully extending to rates above 3%.

Interest rate derivatives, numerical implementations 
and multi-factor extensions
While here we only consider the pricing of zero-coupon bonds, the eigen-
function expansion framework provides a methodology for the pricing of
general interest rate derivatives in this model. In particular, in Gorovoi &
Linetsky (2002) we consider the pricing of bond options. At the same time,
the model can also be easily implemented numerically within any stan-
dard numerical environment, such as binomial and trinomial trees, nu-
merical partial differential equation schemes, and Monte Carlo simulation.
For example, in the binomial or trinomial tree framework, one first needs
to implement the underlying Vasicek tree for the shadow rate, and then
observe that the short rate is equal to the shadow rate at the nodes of the
tree where the shadow rate is non-negative, and is equal to zero at the
nodes where the shadow rate is negative. Just as with the pricing of bar-
rier options, to achieve stable numerical convergence, one should make
sure that one of the layers of nodes sits exactly at the zero shadow rate
boundary x = 0. From the practitioner’s perspective, such lattice schemes
are easy to implement in practice, as they do not require access to pro-
grams such as Mathematica to calculate special functions involved in the
spectral expansion solution. Furthermore, such numerical implementations

readily generalise to time-inhomogeneous or multi-factor versions of our
model where no analytical solutions are available. In particular, one can
make the long-run level θ and/or volatility σ time-dependent or stochas-
tic, and consider a time-inhomogeneous and/or multi-factor extension of
the Gaussian Vasicek model for the shadow rate, then take the positive
part to obtain the nominal rate model. Such models would allow one to
accurately calibrate to a larger set of instruments, including some bench-
mark interest rate derivatives in addition to JGBs used here.

Conclusion
The calibrated Black model of interest rates as options, as well as its time-
inhomogeneous and multi-factor extensions, can be used for pricing and
hedging of interest rate derivatives in low interest rate environments, such
as the one currently experienced in Japan. Furthermore, with short-term
interest rates near record lows both in the US and Europe, models of this
type may be required in these markets as well. ■
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